The Eshelby-type problem of an arbitrary-shape polyhedral inclusion embedded in an infinite homogeneous isotropic elastic material is analytically solved using a simplified strain gradient elasticity theory (SSGET) that contains a material length scale parameter. The Eshelby tensor for a polyhedral inclusion of arbitrary shape is obtained in a general analytical form in terms of three potential functions, two of which are the same as the ones involved in the counterpart Eshelby tensor based on classical elasticity. These potential functions, as volume integrals over the polyhedral inclusion, are evaluated by dividing the polyhedral inclusion domain into tetrahedral duplexes, with each duplex and the associated local coordinate system constructed using a procedure similar to that employed by Rodin (1996. J. Mech. Phys. Solids 44, 1977 1995). Each of the three volume integrals is first transformed to a surface integral by applying the divergence theorem, which is then transformed to a contour (line) integral based on Stokes theorem and using an inverse approach different from those adopted in the existing studies based on classical elasticity. The newly derived SSGET-based Eshelby tensor is separated into a classical part and a gradient part. The former contains Poisson s ratio only, while the latter includes the material length scale parameter additionally, thereby enabling the interpretation of the inclusion size effect. This SSGET-based Eshelby tensor reduces to that based on classical elasticity when the strain gradient effect is not considered. For homogenization applications, the volume average of the new Eshelby tensor over the polyhedral inclusion is also provided in a general form. To illustrate the newly obtained Eshelby tensor and its volume average, three types of polyhedral inclusions- cubic, octahedral and tetrakaidecahedral- are quantitatively studied by directly using the general formulas derived.