A methodology for very fast design of 3DOF entry trajectories subject to all common inequality and equality constraints is developed. The approach make novel use of the well known quasi-equilibrium glide phenomenon in lifting entry as a center piece for conveniently enforcing the inequality constraints which are otherwise difficulty to handle. The algorithm is able to generate a complete feasible 3DOF entry trajectory, given the entry conditions, values of constraint parameters, and final conditions in about 2 seconds on a PC. Numerical simulations with the X-33 vehicle model for various entry missions to land at Kennedy Space Center will be presented.