We explore the dynamical consequences of switching the coupling form in a system of coupled oscillators. We consider two types of switching, one where the coupling function changes periodically and one where it changes probabilistically. We find, through bifurcation diagrams and Basin Stability analysis, that there exists a window in coupling strength where the oscillations get suppressed. Beyond this window, the oscillations are revived again. A similar trend emerges with respect to the...
Topics: Chaotic Dynamics, Nonlinear Sciences
Source: http://arxiv.org/abs/1701.07314
We explore the behaviour of an ensemble of chaotic oscillators coupled only to an external chaotic system, whose intrinsic dynamics may be similar or dissimilar to the group. Counter-intuitively, we find that a dissimilar external system manages to suppress the intrinsic chaos of the oscillators to fixed point dynamics, at sufficiently high coupling strengths. So, while synchronization is induced readily by coupling to an identical external system, control to fixed states is achieved only if...
Topics: Chaotic Dynamics, Nonlinear Sciences
Source: http://arxiv.org/abs/1607.00462