We test the predictions of the L-functions Ratios Conjecture for the family of cuspidal newforms of weight k and level N, with either k fixed and N --> oo through the primes or N=1 and k --> oo. We study the main and lower order terms in the 1-level density. We provide evidence for the Ratios Conjecture by computing and confirming its predictions up to a power savings in the family's cardinality, at least for test functions whose Fourier transforms are supported in (-2, 2). We do this...

Source: http://arxiv.org/abs/0805.4208v1