The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a \"toolbox\" format. We discuss a range of applications, from small-scale optical alignment...
Topics: Blake, Peter N., Bos, Brent J., Coulter, Phillip, Eichhorn, William L., Genesis Engineering...
NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (~40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the fine guider. The SIs are mounted to a composite metering structure. The SI and guider units were integrated to the ISIM structure and optically tested at the NASA Goddard Space Flight Center as a...
Topics: AK Aerospace Technology Corp., Adnet Systems, Inc., Antonille, Scott R., Arizona Univ., Aronstein,...
The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a toolbox format. We discuss a range of applications, from small-scale optical alignment of sensors to...
Topics: Blake, Peter N., Bos, Brent J., Casto, Gordon V., Coulter, Phillip, Eichhorn, William L., Genesis...
Data were obtained for the purpose of measuring the relative throughput of the Near-IR Science Instruments (SIs) of the James Webb Space Telescope (JWST) as part of the second and third cryogenic-vacuum tests (CV2CV3) of the Integrated Science Instrument Module (ISIM) conducted at the Goddard Space Flight Center (GSFC) in 2014 and 20152016, at the beginning and end of the environmental test program, respectively. This Poster focuses on data obtained as part of the Initial Optical Baseline and...
Topics: Arizona Univ., Birkmann, Stephan, European Space Agency, Honeywell Aerospace, Kelly, Douglas M.,...
The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references...
Topics: NASA Technical Reports Server (NTRS), OPTICAL MEASUREMENT, METROLOGY, INSTRUMENT ERRORS, FLIGHT...
Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated...
Topics: NASA Technical Reports Server (NTRS), OPTICAL RADAR, OPTICAL MEASUREMENT, METROLOGY, RADAR...
The fabrication of large optics is traditionally a slow process, and fabrication capability is often limited by measurement capability. W hile techniques exist to measure mirror figure with nanometer precis ion, measurements of large-mirror prescription are typically limited to submillimeter accuracy. Using a lidar instrument enables one to measure the optical surface rough figure and prescription in virtuall y all phases of fabrication without moving the mirror from its polis hing setup. This...
Topics: NASA Technical Reports Server (NTRS), METROLOGY, OPTICAL RADAR, SEGMENTED MIRRORS, MEASURING...
For many optical systems the properties and alignment of the internal apertures and pupils are not critical or controlled with high precision during optical system design, fabrication or assembly. In wide angle imaging systems, for instance, the entrance pupil position and orientation is typically unconstrained and varies over the system s field of view in order to optimize image quality. Aperture tolerances usually do not receive the same amount of scrutiny as optical surface aberrations or...
Topics: NASA Technical Reports Server (NTRS), JAMES WEBB SPACE TELESCOPE, PUPILS, ALIGNMENT, APERTURES,...
A laser tracker (LT) is an important coordinate metrology tool that uses laser interferometry to determine precise distances to objects, points, or surfaces defined by an optical reference, such as a retroreflector. A retroreflector is a precision optic consisting of three orthogonal faces that returns an incident laser beam nearly exactly parallel to the incident beam. Commercial retroreflectors are designed for operation at room temperature and are specified by the divergence, or beam...
Topics: NASA Technical Reports Server (NTRS), METROLOGY, LASER INTERFEROMETRY, RETROREFLECTORS, DISTANCE,...
A document describes cryogenic test architecture for the James Webb Space Telescope (JWST) integrated science instrument module (ISIM). The ISIM element primarily consists of a mechanical metering structure, three science instruments, and a fine guidance sensor. One of the critical optomechanical alignments is the co-registration of the optical telescope element (OTE) exit pupil with the entrance pupils of the ISIM instruments. The test architecture has been developed to verify that the ISIM...
Topics: NASA Technical Reports Server (NTRS), PUPILS, JAMES WEBB SPACE TELESCOPE, DEGREES OF FREEDOM,...
Two diamond-machining methods have been developed as part of an effort to design and fabricate an off-axis, biconic ellipsoidal, concave aluminum mirror for an infrared spectrometer at the Kitt Peak National Observatory. Beyond this initial application, the methods can be expected to enable satisfaction of requirements for future instrument mirrors having increasingly complex (including asymmetrical), precise shapes that, heretofore, could not readily be fabricated by diamond machining or, in...
Topics: NASA Technical Reports Server (NTRS), MACHINING, ASPHERICITY, FABRICATION, ASYMMETRY, ELLIPSOIDS,...
An established method of room-temperature interferometric null testing of mirrors having simple shapes (e.g., flat, spherical, or spheroidal) has been augmented to enable measurement of errors in the surface figures of off-axis, non-axisymmetric, aspherical mirrors when the mirrors are located inside cryogenic vacuum chambers. The established method involves the use of a computer-generated hologram (CGH), functionally equivalent to a traditional null lens, to modify the laser beam of an imaging...
Topics: NASA Technical Reports Server (NTRS), ASPHERICITY, MIRRORS, HOLOGRAPHY, VACUUM CHAMBERS, OPTICAL...
An enhanced alignment cube has been invented for use in a confined setting (e.g., a cryogenic chamber) in which optical access may be limited to a single line of sight. Whereas traditional alignment-cube practice entails the use of two theodolites aimed along two lines of sight, the enhanced alignment cube yields complete alignment information through use of a single theodolite aimed along a single line of sight. Typically, an alignment cube is placed in contact with a datum surface or other...
Topics: NASA Technical Reports Server (NTRS), ALIGNMENT, CRYOGENICS, THEODOLITES, CUBIC LATTICES,...
Semi-kinematic, six-degree-of-freedom flexure mounts have been incorporated as integral parts of metal mirrors designed to be used under cryogenic conditions as parts of an astronomical instrument. The design of the mirrors and their integral flexure mounts can also be adapted to other instruments and other operating temperatures. In comparison with prior kinematic cryogenic mirror mounts, the present mounts are more compact and can be fabricated easily using Ram-EDM (electrical discharge...
Topics: NASA Technical Reports Server (NTRS), CRYOGENICS, FLEXING, KINEMATICS, MIRRORS, SUPPORTS, DEGREES...
Five metallurgical treatments have been tested as means of stabilizing mirrors that are made of aluminum alloy 6061 and are intended for use in cryogenic applications. Aluminum alloy 6061 is favored as a mirror material by many scientists and engineers. Like other alloys, it shrinks upon cool-down from room temperature to cryogenic temperature. This shrinkage degrades the optical quality of the mirror surfaces. Hence, the metallurgical treatments were tested to determine which one could be most...
Topics: NASA Technical Reports Server (NTRS), ALUMINUM ALLOYS, MIRRORS, OPTICAL PROPERTIES, CRYOGENIC...
The Infrared Multi-Object Spectrometer (IRMOS) is a principle investigator class instrument for the Kitt Peak National Observatory 4 and 2.1 meter telescopes. IRMOS is a near-IR (0.8 - 2.5 micron) spectrometer with low-to mid-resolving power (R = 300 - 3000). IRMOS produces simultaneous spectra of approximately 100 objects in its 2.8 x 2.0 arc-min field of view (4 m telescope) using a commercial Micro Electro-Mechanical Systems (MEMS) micro-mirror array (MMA) from Texas Instruments. The IRMOS...
Topics: NASA Technical Reports Server (NTRS), ALIGNMENT, PERFORMANCE PREDICTION, INFRARED SPECTROMETERS,...
This viewgraph presentation describes potential verification and testing procedures for the primary mirror of the Terrestrial Planet Finder (TPF).
Topics: NASA Technical Reports Server (NTRS), SPACEBORNE TELESCOPES, OPTICAL MEASUREMENT, STATIC TESTS,...
We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al 6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(trademark) aluminum coating to measure the effect of these variables on...
Topics: NASA Technical Reports Server (NTRS), ALUMINUM COATINGS, MIRRORS, HEAT TREATMENT, STRESS RELIEVING,...
We describe the population, optomechanical alignment, and alignment verification of near-infrared gratings on the grating wheel mechanism (GWM) for the Infrared Multi-Object Spectrometer (IRMOS). IRMOS is a cryogenic (80 K), principle investigator-class instrument for the 2.1 m and Mayall 3.8 m telescopes at Kitt Peak National Observatory, and a MEMS spectrometer concept demonstrator for the James Webb Space Telescope. The GWM consists of 13 planar diffraction gratings and one flat imaging...
Topics: NASA Technical Reports Server (NTRS), WHEELS, ALIGNMENT, CATHETOMETERS, CRYOGENICS, INFRARED...
The Infrared Multi-Object Spectrometer (IRMOS) is a facility-class instrument for the Kitt Peak National Observatory 4 and 2.1 meter telescopes. IRMOS is a near-IR (0.8-2.5 micron) spectrometer and operates at approximately 80 K. The 6061-T651 aluminum bench and mirrors constitute an athermal design. The instrument produces simultaneous spectra at low- to mid-resolving power (R=lambda/delta lambda= 300-3000) of approximately 100 objects in its 2.8 x 2.0 arcmin field. We describe ambient and...
Topics: NASA Technical Reports Server (NTRS), MIRRORS, INFRARED SPECTROMETERS, INSTRUMENT ERRORS, DESIGN...