The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius-of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the...
Topics: Chaney, David, Connolly, Mark, Cosentino, Joseph, Exelis, Inc., Hadaway, James B., Harris Corp.,...
The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at...
Topics: Chaney, David, Connolly, Mark, Cosentino, Joseph, Exelis, Inc., Hadaway, James B., Harris Corp.,...
The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are...
Topics: Aronstein, David L., Fienup, James R., Moore, Dustin B., NASA Goddard Space Flight Center,...
The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by...
Topics: Aronstein, David L., Fienup, James R., Moore, Dustin B., NASA Goddard Space Flight Center,...
A method for corrections of measurements of points of interests measured by beams of radiation propagating through stratified media including performance of ray-tracing of at least one ray lunched from a metrology instrument in a direction of an apparent point of interest, calculation a path length of the ray through stratified medium, and determination of coordinates of true position of the point interest using the at least one path length and the direction of propagation of the ray.
Topics: NASA Technical Reports Server (NTRS), BEAMS (RADIATION), CORRECTION, OPTICAL RADAR, RAY TRACING,...
The JWST (James Webb Space Telescope) Optical Telescope Element (OTE) consists of a 6.6 meter clear aperture, 18-segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at NASA Johnson Space Center using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST...
Topics: Alabama Univ., Ball Aerospace and Technologies Corp., Chaney, David, Connolly, Mark, Cosentino,...
NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (~40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the fine guider. The SIs are mounted to a composite metering structure. The SI and guider units were integrated to the ISIM structure and optically tested at the NASA Goddard Space Flight Center as a...
Topics: AK Aerospace Technology Corp., Adnet Systems, Inc., Antonille, Scott R., Arizona Univ., Aronstein,...
Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated...
Topics: NASA Technical Reports Server (NTRS), OPTICAL RADAR, OPTICAL MEASUREMENT, METROLOGY, RADAR...