A parabolic iterative solution procedure is investigated that seeks to extend the parabolic approximation used within the internal propagation module of the duct noise propagation and radiation code CDUCT-LaRC. The governing convected Helmholtz equation is split into a set of coupled equations governing propagation in the positive and negative directions. The proposed method utilizes an iterative procedure to solve the coupled equations in an attempt to account for possible reflections from...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC PROPERTIES, ITERATIVE SOLUTION, NOISE PROPAGATION,...

Periodic time-domain boundary conditions are formulated for direct numerical simulation of acoustic waves in ducts without flow. Well-developed frequency-domain boundary conditions are transformed into the time domain. The formulation is presented here in one space dimension and time; however, this formulation has an advantage in that its extension to variable-area, higher dimensional, and acoustically treated ducts is rigorous and straightforward. The boundary condition simulates a...

Topics: NASA Technical Reports Server (NTRS), BOUNDARY CONDITIONS, DOMAINS, EULER EQUATIONS OF MOTION,...

Increased understanding of the effects of acoustic treatment on the propagation of sound through commercial aircraft engine nacelles is a requirement for more efficient liner design. To this end, one of NASA s goals is to further the development of duct propagation and impedance reduction codes. A number of these codes have been developed over the last three decades. These codes are typically divided into two categories: (1) codes that use the measured complex acoustic pressure field to reduce...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC IMPEDANCE, AEROACOUSTICS, ACOUSTIC PROPAGATION,...

This paper reports results of a research effort to validate a method for educing the normal incidence impedance of a locally reacting liner, located in a grazing incidence, nonprogressive acoustic wave environment with flow. The results presented in this paper test the ability of the method to reproduce the measured normal incidence impedance of a solid steel plate and two soft test liners in a uniform flow. The test liners are known to be locally react- ing and exhibit no measurable...

Topics: NASA Technical Reports Server (NTRS), ALGORITHMS, SOUND WAVES, ACOUSTIC EMISSION, GRAZING...

Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level...

Topics: NASA Technical Reports Server (NTRS), ACCURACY, WAVEGUIDES, PRESSURE DISTRIBUTION, LININGS, SOUND...

A mathematical model containing the essential features embodied in the noise suppression of lined ejectors is presented. Although some simplification of the physics is necessary to render the model mathematically tractable, the current model is the most versatile and technologically advanced at the current time. A system of linearized equations and the boundary conditions governing the sound field are derived starting from the equations of fluid dynamics. A nonreflecting boundary condition is...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC ATTENUATION, AERODYNAMIC NOISE, COMPUTATIONAL FLUID...

The Helmholtz equation is solved within a three-dimensional rectangular duct with a nonlocal radiation boundary condition at the duct exit plane. This condition accurately models the acoustic admittance at an arbitrarily-located computational boundary plane. A linear system of equations is constructed with second-order central differences for the Helmholtz operator and second-order backward differences for both local admittance conditions and the gradient term in the nonlocal radiation boundary...

Topics: NASA Technical Reports Server (NTRS), BOUNDARY CONDITIONS, DUCTED FLOW, HELMHOLTZ EQUATIONS, LINEAR...

The ability to predict fan noise within complex three-dimensional aircraft engine nacelle geometries is a valuable tool in designing and assessing low-noise concepts. This work begins a systematic study to identify the areas of the design space in which propagation codes of varying fidelity may be used effectively to provide efficient design and assessment. An efficient lower-fidelity code is used in conjunction with two higher-fidelity, more computationally intensive methods to solve benchmark...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC PROPAGATION, AERODYNAMIC NOISE, LOW NOISE, FAN...

This paper presents results of uncertainty and sensitivity analyses conducted to assess the relative merits of three duct propagation codes. Results from this study are intended to support identification of a "working envelope" within which to use the various approaches underlying these propagation codes. This investigation considers a segmented liner configuration that models the NASA Langley Grazing Incidence Tube, for which a large set of measured data was available. For the...

Topics: NASA Technical Reports Server (NTRS), DUCTS, SOUND PRESSURE, REACTANCE, STATIC PRESSURE, GRAZING...

Several non-reflecting computational boundary conditions that meet certain criteria and have potential applications to duct acoustics are evaluated for their effectiveness. The same interior solution scheme, grid, and order of approximation are used to evaluate each condition. Sparse matrix solution techniques are applied to solve the matrix equation resulting from the discretization. Modal series solutions for the sound attenuation in an infinite duct are used to evaluate the accuracy of each...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC ATTENUATION, ACOUSTIC DUCTS, BOUNDARY CONDITIONS,...

Several enhancements that improve the accuracy and robustness of an impedance eduction technique that use an automatic optimizer are presented. These enhancements are then used to launch an intensive investigation into the cause of anomalous behavior that occurs for a small number of test conditions. This anomalous behavior is investigated for both a hardwall insert and a conventional liner. The primary conclusions of the study are that: (1) for the hard wall insert, the anomalies are due to...

Topics: NASA Technical Reports Server (NTRS), ANOMALIES, IMPEDANCE, AUTOMATIC CONTROL, OPTIMAL CONTROL,...

The overall objectives of this research work are to formulate and validate efficient parallel algorithms, and to efficiently design/implement computer software for solving large-scale acoustic problems, arised from the unified frameworks of the finite element procedures. The adopted parallel Finite Element (FE) Domain Decomposition (DD) procedures should fully take advantages of multiple processing capabilities offered by most modern high performance computing platforms for efficient parallel...

Topics: NASA Technical Reports Server (NTRS), AEROACOUSTICS, SYMMETRY, DECOMPOSITION, FINITE ELEMENT...

Impedances educed from a well-tested convected Helmholtz model are compared to that of a recently developed linearized Euler model using two ceramic test liners under the assumed conditions or uniform flow and a plane wave source. The convected Helmholtz model is restricted to uniform mean flow whereas the linearized Euler model can account for the effect or the shear layer. Test data to educe the impedance is acquired from measurements obtained in the NASA Langley Research Center Grazing...

Topics: NASA Technical Reports Server (NTRS), IMPEDANCE, UNIFORM FLOW, CERAMICS, LININGS, PLANE WAVES,...

A finite element solution to the convected Helmholtz equation in a nonuniform flow is used to model the noise field within 3-D acoustically treated aero-engine nacelles. Options to select linear or cubic Hermite polynomial basis functions and isoparametric elements are included. However, the key feature of the method is a domain decomposition procedure that is based upon the inter-mixing of an iterative and a direct solve strategy for solving the discrete finite element equations. This...

Topics: NASA Technical Reports Server (NTRS), FINITE ELEMENT METHOD, NACELLES, PARALLEL PROCESSING...

This report concentrates on reporting the effort and status of work done on three dimensional (3-D) simulation of a multi-hole resonator in an impedance tube. This work is coordinated with a parallel experimental effort to be carried out at the NASA Langley Research Center. The outline of this report is as follows : 1. Preliminary consideration. 2. Computation model. 3. Mesh design and parallel computing. 4. Visualization. 5. Status of computer code development. 1. Preliminary Consideration.

Topics: NASA Technical Reports Server (NTRS), NUMERICAL ANALYSIS, COMPUTER PROGRAMS, PARALLEL PROCESSING...

This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC IMPEDANCE, GRAZING FLOW, HONEYCOMB STRUCTURES,...

Grazing flows and high acoustic intensities impose unusual design requirements on acoustic liner treatments used in aircraft engine nacelles. Increased sound absorption efficiency (requiring increased accuracy of liner impedance specification) is particularly critical in the face of ever decreasing nacelle wall area available for liner treatments in modern, high-bypass ratio engines. This paper reviews the strategy developed at Langley Research Center for achieving a robust measurement...

Topics: NASA Technical Reports Server (NTRS), NACELLES, AIRCRAFT MODELS, DUCTS, LININGS, TRAILING EDGES,...

The Curved Duct Test Rig (CDTR), which is designed to investigate propagation of sound in a duct with flow, has been developed at NASA Langley Research Center. The duct incorporates an adaptive control system to generate a tone in the duct at a specific frequency with a target Sound Pressure Level and a target mode shape. The size of the duct, the ability to isolate higher order modes, and the ability to modify the duct configuration make this rig unique among experimental duct acoustics...

Topics: NASA Technical Reports Server (NTRS), LININGS, CURVATURE, MATHEMATICAL MODELS, WALLS, TEST...

This paper reports the initial results of a test series to evaluate a method for determining the normal incidence impedance of a locally reacting acoustically absorbing liner, located on the lower wall of a duct in a grazing incidence, multi-modal, non-progressive acoustic wave environment without flow. This initial evaluation is accomplished by testing the methods' ability to converge to the known normal incidence impedance of a solid steel plate, and to the normal incidence impedance of an...

Topics: NASA Technical Reports Server (NTRS), NUMERICAL ANALYSIS, AEROACOUSTICS, COMMERCIAL AIRCRAFT,...

A non-local boundary condition is formulated for acoustic waves in ducts without flow. The ducts are two dimensional with constant area, but with variable impedance wall lining. Extension of the formulation to three dimensional and variable area ducts is straightforward in principle, but requires significantly more computation. The boundary condition simulates a nonreflecting wave field in an infinite duct. It is implemented by a constant matrix operator which is applied at the boundary of the...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC DUCTS, AEROACOUSTICS, BOUNDARY CONDITIONS,...

A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC IMPEDANCE, ACOUSTIC PROPERTIES, DUCTS, FINITE...

A coordinated experimental and numerical simulation effort is carried out to improve our understanding of the physics of acoustic liners in a grazing flow as well our computational aeroacoustics (CAA) method prediction capability. A numerical simulation code based on advanced CAA methods is developed. In a parallel effort, experiments are performed using the Grazing Flow Impedance Tube at the NASA Langley Research Center. In the experiment, a liner is installed in the upper wall of a...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC RESONANCE, GRAZING FLOW, LININGS, COMPUTATIONAL...

As part of a cooperation between ONERA and NASA, the liner impedance eduction methods developed by the two research centers are compared. The NASA technique relies on an objective function built on acoustic pressure measurements located on the wall opposite the test liner, and the propagation code solves the convected Helmholtz equation in uniform ow using a finite element method that implements a continuous Galerkin discretization. The ONERA method uses an objective function based either on...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC VELOCITY, LININGS, IMPEDANCE, SOUND PRESSURE,...

A comparative study of four commonly used impedance eduction methods is presented for a range of liner structures and test conditions. Two of the methods are restricted to uniform flow while the other two accommodate both uniform and boundary layer flows. Measurements on five liner structures (a rigid-wall insert, a ceramic tubular liner, a wire mesh liner, a low porosity conventional liner, and a high porosity conventional liner) are obtained using the NASA Langley Grazing Flow Impedance Tube....

Topics: NASA Technical Reports Server (NTRS), GRAZING FLOW, ACOUSTIC IMPEDANCE, LININGS, UNIFORM FLOW,...

This paper presents results of an investigation of the effects of shear flow profile on impedance eduction processes employed at NASA Langley. Uniform and 1-D shear-flow propagation models are used to educe the acoustic impedance of three test liners based on aeroacoustic data acquired in the Langley Grazing Flow Impedance Tube, at source levels of 130, 140 and 150 dB, and at centerline Mach numbers of 0.0, 0.3 and 0.5. A ceramic tubular, calibration liner is used to evaluate the propagation...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC IMPEDANCE, AEROACOUSTICS, IMPEDANCE, UNIFORM FLOW,...

An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC IMPEDANCE, GRAZING FLOW, BOUNDARY CONDITIONS, DUCTS,...

A three-dimensional nacelle acoustics code that accounts for uniform mean flow and variable surface impedance liners is developed. The code is linked to a commercial version of the NASA-developed General Purpose Solver (for solution of linear systems of equations) in order to obtain the capability to study high frequency waves that may require millions of grid points for resolution. Detailed, single-processor statistics for the performance of the solver in rigid and soft-wall ducts are...

Topics: NASA Technical Reports Server (NTRS), AEROACOUSTICS, COMPUTATIONAL GRIDS, MULTIPROCESSING...

No abstract available

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC IMPEDANCE, SOUND FIELDS, LININGS, IMPEDANCE, THREE...

A number of methods have been developed at NASA Langley Research Center for eduction of the acoustic impedance of sound-absorbing liners mounted in the wall of a flow duct. This investigation uses methods based on the Pridmore-Brown and convected Helmholtz equations to study the acoustic behavior of a single-layer, conventional liner fabricated by the German Aerospace Center and tested in the NASA Langley Grazing Flow Impedance Tube. Two key assumptions are explored in this portion of the...

Topics: NASA Technical Reports Server (NTRS), GRAZING FLOW, ACOUSTIC IMPEDANCE, DUCTS, LININGS, UNIFORM...

Tests were conducted to validate a two-dimensional shear-flow analytical model for determining the acoustic impedance of a liner test specimen in a grazing-incidence, grazing-flow environment. The tests were limited to a test specimen chosen to exhibit minimal effects of grazing flow so that the results obtained by using the shear-flow analytical model would be expected to match those obtained from normal-incidence impedance measurements. Impedances for both downstream and upstream sound...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC IMPEDANCE, MODELS, SHEAR FLOW, TWO DIMENSIONAL FLOW,...

Implementation of a pressure gradient method of impedance eduction in two NASA Langley flow ducts is described. The Grazing Flow Impedance Tube only supports plane-wave sources, while the Curved Duct Test Rig supports sources that contain higher-order modes. Multiple exercises are used to validate this new impedance eduction method. First, synthesized data for a hard wall insert and a conventional liner mounted in the Grazing Flow Impedance Tube are used as input to the two impedance eduction...

Topics: NASA Technical Reports Server (NTRS), IMPEDANCE, PRESSURE GRADIENTS, GRAZING FLOW, DUCTS, PLANE...

Acoustic liners in aircraft engine nacelles suppress radiated noise. Therefore, as air travel increases, increasingly sophisticated tools are needed to maximize noise suppression. During the last 30 years, NASA has invested significant effort in development of experimental and computational acoustic liner evaluation tools. The Curved Duct Test Rig is a 152-mm by 381- mm curved duct that supports liner evaluation at Mach numbers up to 0.3 and source SPLs up to 140 dB, in the presence of...

Topics: NASA Technical Reports Server (NTRS), AEROACOUSTICS, LININGS, NACELLES, NOISE REDUCTION, ENGINE...

Results from impedance eduction methods developed by NASA Langley Research Center are used throughout the acoustic liner community. In spite of recent enhancements, occasional anomalies persist with these methods, generally at frequencies where the liner produces minimal attenuation. This investigation demonstrates an experimental approach to educe impedance with increased confidence over a desired frequency range, by combining results from successive tests with different cavity depths. A...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC IMPEDANCE, FREQUENCY RANGES, LININGS, AEROACOUSTICS,...

In a previous work by the present authors, a computational and experimental investigation of the acoustic properties of two-dimensional slit resonators was carried out. The present paper reports the results of a study extending the previous work to three dimensions. This investigation has two basic objectives. The first is to validate the computed results from direct numerical simulations of the flow and acoustic fields of slit resonators in three dimensions by comparing with experimental...

Topics: NASA Technical Reports Server (NTRS), SLITS, RESONATORS, TWO DIMENSIONAL MODELS, ACOUSTIC...

Of several iterative and direct equation solvers evaluated previously for computations in aeroacoustics, the most promising was the NASA-developed General-Purpose Solver (winner of NASA's 1999 software of the year award). This paper presents detailed, single-processor statistics of the performance of this solver, which has been tailored and optimized for large-scale aeroacoustic computations. The statistics, compiled using an SGI ORIGIN 2000 computer with 12 Gb available memory (RAM) and eight...

Topics: NASA Technical Reports Server (NTRS), AEROACOUSTICS, COMPUTATION, NUMERICAL ANALYSIS, NOISE...

Current aircraft engine nacelles typically contain acoustic liners consisting of perforated sheets bonded onto honeycomb cavities. Numerous models have been developed to predict the acoustic impedance of these liners in the presence of grazing flow, and to use that information with aeroacoustic propagation codes to assess nacelle liner noise suppression. Recent efforts have provided advances in impedance education methodologies that offer more accurate determinations of acoustic liner...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC IMPEDANCE, NACELLES, AEROACOUSTICS, LININGS, HOLE...

The need to minimize fan noise radiation from commercial aircraft engine nacelles continues to provide an impetus for developing new acoustic liner concepts. If the full value of such concepts is to be attained, an understanding of grazing flow effects is crucial. Because of this need for improved understanding of grazing flow effects, the NASA Langley Research Center Liner Physics Group has invested a large effort over the past decade into the development of a 2-D finite element method that...

Topics: NASA Technical Reports Server (NTRS), ACOUSTIC IMPEDANCE, DESIGN ANALYSIS, EVALUATION, NOISE...

An impedance eduction technique, previously validated for ducts with plane waves at the source and duct termination planes, has been extended to support higher-order modes at these locations. Inputs for this method are the acoustic pressures along the source and duct termination planes, and along a microphone array located in a wall either adjacent or opposite to the test liner. A second impedance eduction technique is then presented that eliminates the need for the microphone array. The...

Topics: NASA Technical Reports Server (NTRS), DUCTS, IMPEDANCE, SOUND PRESSURE, PLANE WAVES, MACH NUMBER,...