175
175

May 23, 2011
05/11

by
Jackson, E. Bruc

texts

######
eye 175

######
favorite 0

######
comment 0

A ten-page questionnaire was mailed to members of the AIAA Flight Simulation Technical Committee in the spring of 1994. The survey inquired about various aspects of developing and maintaining flight simulation software, as well as a few questions dealing with characterization of each facility. As of this report, 19 completed surveys (out of 74 sent out) have been received. This paper summarizes those responses.

Topics: CRAY COMPUTERS, HISTORIES, DISTRIBUTED PROCESSING, APPLICATIONS PROGRAMS (COMPUTERS), SOFTWARE...

Recent developments at the NASA AMES Research Center's NAS Division have demonstrated that the new generation of NUMA based Symmetric Multi-Processing systems (SMPs), such as the Silicon Graphics Origin 2000, can successfully execute legacy vector oriented CFD production codes at sustained rates far exceeding processing rates possible on dedicated 16 CPU Cray C90 systems. This high level of performance is achieved via shared memory based Multi-Level Parallelism (MLP). This programming approach,...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, MEMORY (COMPUTERS), PARALLEL...

Significant advancements have been made in the last five years in the ability to model turbomachinery flows of engineering interest. This advancement can be directly attributed to the second generation of supercomputers like the Cray XMP and Cray 2 and advanced instrumentation techniques. Early on, the National Aeronautics and Space Administration Lewis Research Center recognized the potential gains in turbomachinery performance and life that could be achieved by taking advantage of this...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, COMPUTERIZED SIMULATION, FLUID...

The objective is to develop, demonstrate, and document a coupled flow analysis procedure for computing 3D aircraft flow fields with deflected subsonic and supersonic jet exhaust plumes. The PNS plume code was transferred to the Ames computer facility for execution on the Cray computer. No problems were encountered when installing this code. The Bower's test case is currently being run. This case is being used to fine tune the procedure for coupling the plume code to PANAIR.

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, FLOW DISTRIBUTION, JET...

118
118

May 28, 2011
05/11

by
Gorkavyi, Nick; Ozernoy, Leonid; Mather, John; Taidakova, Tany

texts

######
eye 118

######
favorite 0

######
comment 0

We develop a physical model of the zodiacal cloud incorporating the real dust sources of asteroidal, cometary, and kuiperoidal origin. Using the inferred distribution of the zodiacal dust, we compute its thermal emission and scattering at several wavelengths (1.25, 5, and 20 micron) as a function of NGST location assumed to be at 1 AU or 3 AU. Areas on the sky with a minimum of zodiacal light are determined.

Topics: AERODYNAMICS, CRAY COMPUTERS, COMPUTATIONAL FLUID DYNAMICS, HIGH RESOLUTION, ALGORITHMS, PARALLEL...

A series of efforts have been devoted to investigating methods of porting and parallelizing applications quickly and efficiently for new architectures, such as the SCSI Origin 2000 and Cray T3E. This report presents the parallelization of a CFD application, ARC3D, using the computer-aided tools, Cesspools. Steps of parallelizing this code and requirements of achieving better performance are discussed. The generated parallel version has achieved reasonably well performance, for example, having a...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, COMPUTER TECHNIQUES, CRAY...

A suite of thirteen large Fortran benchmark codes were run on Cray-2 and Cray X-MP supercomputers. These codes were a mix of compute-intensive scientific application programs (mostly Computational Fluid Dynamics) and some special vectorized computation exercise programs. For the general class of programs tested on the Cray-2, most of which were not specially tuned for speed, the floating point operation rates varied under a variety of system load configurations from 40 percent up to 125 percent...

Topics: NASA Technical Reports Server (NTRS), COMPARISON, CRAY COMPUTERS, PERFORMANCE TESTS,...

Discussed are the capabilities of NASA's Numerical Aerodynamic Simulation (NAS) Program and its application as an advanced supercomputing system for computational fluid dynamics (CFD) research. First, the paper describes the NAS computational system, called the NAS Processing System Network, and the advanced computational capabilities it offers as a consequence of carrying out the NAS pathfinder objective. Second, it presents examples of pioneering CFD research accomplished during NAS's first...

Topics: NASA Technical Reports Server (NTRS), AERODYNAMICS, COMPUTATIONAL FLUID DYNAMICS, NASA PROGRAMS,...

NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers...

Topics: NASA Technical Reports Server (NTRS), AERODYNAMICS, AEROSPACE ENGINEERING, COMPUTATIONAL FLUID...

Cooperative efforts between the Lockheed-Huntsville Computational Mechanics Group and the NASA-MSFC Computational Fluid Dynamics staff has resulted in improved capabilities for numerically simulating incompressible flows generic to the Space Shuttle Main Engine (SSME). A well established and documented CFD code was obtained, modified, and applied to laminar and turbulent flows of the type occurring in the SSME Hot Gas Manifold. The INS3D code was installed on the NASA-MSFC CRAY-XMP computer...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, SPACE SHUTTLE MAIN ENGINE,...

162
162

May 23, 2011
05/11

by
NON

texts

######
eye 162

######
favorite 0

######
comment 0

Today, more than ever, aggressive leadership is required to ensure that our national investments in aeronautical research, technology, and facilities are shaped into a coordinated, and high-impact, strategy. Under the auspices of the National Science and Technology Council, and in conjunction with the domestic industry, universities, the Department of Defense, and the Federal Aviation Administration - our partners in aeronautics - we propose to provide that leadership, and this document is our...

Topics: NAVIER-STOKES EQUATION, WORKSTATIONS, TOPOLOGY, CONNECTORS, LIBRARIES, PARALLEL PROCESSING...

This paper presents a detailed performance analysis of a multi-block overset grid compu- tational fluid dynamics app!ication on multiple state-of-the-art computer architectures. The application is implemented using a hybrid MPI+OpenMP programming paradigm that exploits both coarse and fine-grain parallelism; the former via MPI message passing and the latter via OpenMP directives. The hybrid model also extends the applicability of multi-block programs to large clusters of SNIP nodes by...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, PARALLEL PROCESSING...

A procedure is outlined which utilizes parallel processing to solve the inviscid form of the average-passage equation system for multistage turbomachinery along with a description of its implementation in a FORTRAN computer code, MSTAGE. A scheme to reduce the central memory requirements of the program is also detailed. Both the multitasking and I/O routines referred to are specific to the Cray X-MP line of computers and its associated SSD (Solid-State Disk). Results are presented for a...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, INVISCID FLOW, PARALLEL...

Demands in computational power, particularly in the area of computational fluid dynamics (CFD), led NASA Ames Research Center to study advanced computer architectures. One architecture being studied is the static data flow architecture based on research done by Jack B. Dennis at MIT. To improve understanding of this architecture, a static data flow simulator, written in Pascal, has been implemented for use on a Cray X-MP/48. A matrix multiply and a two-dimensional fast Fourier transform (FFT),...

Topics: NASA Technical Reports Server (NTRS), ADDRESSING, ARCHITECTURE (COMPUTERS), ARRAYS, DATA FLOW...

The development of implicit upwind algorithms for the solution of the three-dimensional, time-dependent Euler equations on unstructured tetrahedral meshes is described. The implicit temporal discretization involves either a two-sweep Gauss-Seide relaxation procedure, a two-sweep Point-Jacobi relaxation procedure, or a single-sweep Point-Implicit procedure; the upwind spatial discretization is based on the flux-difference splitting of Roe. Detailed descriptions of the three implicit solution...

Topics: NASA Technical Reports Server (NTRS), ALGORITHMS, BOEING 747 AIRCRAFT, COMPUTATIONAL FLUID...

A finite difference code was implemented for the compressible Navier-Stokes equations on the Connection Machine, a massively parallel computer. The code is based on the ARC2D/ARC3D program and uses the implicit factored algorithm of Beam and Warming. The codes uses odd-even elimination to solve linear systems. Timings and computation rates are given for the code, and a comparison is made with a Cray XMP.

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, COMPUTER PROGRAMS, FINITE...

Distributed-memory parallel computers dominate today's parallel computing arena. These machines, such as Intel Paragon, IBM SP2, and Cray Origin2OO, have successfully delivered high performance computing power for solving some of the so-called "grand-challenge" problems. Despite initial success, parallel machines have not been widely accepted in production engineering environments due to the complexity of parallel programming. On a parallel computing system, a task has to be...

Topics: NASA Technical Reports Server (NTRS), DISTRIBUTED MEMORY, PARALLEL COMPUTERS, PARALLEL PROCESSING...

The experiment was designed to assist the Numerical Aerodynamic Simulation (NAS) Project Office in the testing and evaluation of long haul communications for remote users. The objectives of this work were to: (1) use foreign workstations to remotely access the NAS system; (2) provide NAS with a link to a large university-based computing facility which can serve as a model for a regional node of the Long-Haul Communications Subsystem (LHCS); and (3) provide a tail circuit to the University of...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, COMPUTER GRAPHICS, COMPUTER...

Scientists at NASA Ames Research Center have been developing computational aeroscience applications on highly parallel architectures over the past ten years. During that same time period, a steady transition of hardware and system software also occurred, forcing us to expend great efforts into migrating and re-coding our applications. As applications and machine architectures become increasingly complex, the cost and time required for this process will become prohibitive. In this paper, we...

Topics: NASA Technical Reports Server (NTRS), ARCHITECTURE (COMPUTERS), COMPUTATIONAL FLUID DYNAMICS,...

NASA's Numerical Aerodynamic Simulation (NAS) Program has completed development of the initial operating configuration of the NAS Processing System Network (NPSN). This is the first milestone in the continuing and pathfinding effort to provide state-of-the-art supercomputing for aeronautics research and development. The NPSN, available to a nation-wide community of remote users, provides a uniform UNIX environment over a network of host computers ranging from the Cray-2 supercomputer to...

Topics: NASA Technical Reports Server (NTRS), AERODYNAMICS, COMPUTATIONAL FLUID DYNAMICS, COMPUTER...

Phase I is complete for the development of a Computational Fluid Dynamics parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D...

Topics: NASA Technical Reports Server (NTRS), RESEARCH AND DEVELOPMENT, PARALLEL PROCESSING (COMPUTERS),...

The development of aerospace vehicles, over the years, was an evolutionary process in which engineering progress in the aerospace community was based, generally, on prior experience and data bases obtained through wind tunnel and flight testing. Advances in the fundamental understanding of flow physics, wind tunnel and flight test capability, and mathematical insights into the governing flow equations were translated into improved air vehicle design. The modern day field of Computational Fluid...

Topics: NASA Technical Reports Server (NTRS), AERODYNAMIC CONFIGURATIONS, AIRCRAFT DESIGN, COMPUTATIONAL...

Improving the numerical linear algebra routines for use in new Navier-Stokes codes, specifically Tim Barth's unstructured grid code, with spin-offs to TRANAIR is reported. A fast distance calculation routine for Navier-Stokes codes using the new one-equation turbulence models is written. The primary focus of this work was devoted to improving matrix-iterative methods. New algorithms have been developed which activate the full potential of classical Cray-class computers as well as...

Topics: NASA Technical Reports Server (NTRS), NAVIER-STOKES EQUATION, UNSTRUCTURED GRIDS (MATHEMATICS),...

Aerodynamic loads on a multi-bladed helicopter rotor in forward flight at transonic tip conditions are calculated. The unsteady, three-dimensional, time-accurate compressible Reynolds-averaged thin layer Navier-Stokes equations are solved in a rotating coordinate system on a body-conformed, curvilinear grid of C-H topology. Detailed boundary layer and global numerical comparisons of NACA-0012 symmetrical and CAST7-158 supercritical airfoils are made under identical forward flight conditions....

Topics: NASA Technical Reports Server (NTRS), AERODYNAMIC LOADS, COMPUTATIONAL FLUID DYNAMICS,...

A directional implicit unstructured agglomeration multigrid solver is ported to shared and distributed memory massively parallel machines using the explicit domain-decomposition and message-passing approach. Because the algorithm operates on local implicit lines in the unstructured mesh, special care is required in partitioning the problem for parallel computing. A weighted partitioning strategy is described which avoids breaking the implicit lines across processor boundaries, while incurring...

Topics: NASA Technical Reports Server (NTRS), THREE DIMENSIONAL MODELS, ALGORITHMS, COMPUTATIONAL FLUID...

Ames Research Center has the lead role among NASA centers to conduct research in computational fluid dynamics. The past, the present, and the future prospects in this field are reviewed. Past accomplishments include pioneering computer simulations of fluid dynamics problems that have made computers valuable in complementing wind tunnels for aerodynamic research. The present facilities include the most powerful computers built in the United States. Three examples of viscous flow simulations are...

Topics: NASA Technical Reports Server (NTRS), AERODYNAMICS, COMPUTATIONAL FLUID DYNAMICS, FLOW...

This paper solves an 'incremental' form of the sensitivity equations derived by differentiating the discretized thin-layer Navier Stokes equations with respect to certain design variables of interest. The equations are solved with a parallel, preconditioned Generalized Minimal RESidual (GMRES) solver on a distributed-memory architecture. The 'serial' sensitivity analysis code is parallelized by using the Single Program Multiple Data (SPMD) programming model, domain decomposition techniques, and...

Topics: NASA Technical Reports Server (NTRS), AIRFOILS, COMPUTATIONAL FLUID DYNAMICS, DIFFERENTIAL...

The focus of the Research Institute for Advanced Computer Science (RIACS) is to explore matches between advanced computing architectures and the processes of scientific research. An architecture evaluation of the MIT static dataflow machine, specification of a graphical language for expressing distributed computations, and specification of an expert system for aiding in grid generation for two-dimensional flow problems was initiated. Research projects for 1984 and 1985 are summarized.

Topics: NASA Technical Reports Server (NTRS), ARCHITECTURE (COMPUTERS), COMPUTATIONAL FLUID DYNAMICS,...

The thin-layer Navier-Stokes equations are coupled with a zonal scheme (or domain-decomposition method) to develop the Transonic Navier-Stokes (TNS) wing-alone code. The TNS has a total of 4 zones and is extended to a total of 16 zones for the wing-fuselage version of the code. Results are compared on the Cray X-MP-48 and compared with experimental data.

Topics: NASA Technical Reports Server (NTRS), BODY-WING CONFIGURATIONS, COMPUTATIONAL FLUID DYNAMICS,...

Task 41 is composed of two parts: (1) analysis and design studies related to the Numerical Aerodynamic Simulation (NAS) Extended Operating Configuration (EOC) and (2) computational chemistry. During the first half of 1987, Dr. Levin served as a member of an advanced system planning team to establish the requirements, goals, and principal technical characteristics of the NAS EOC. A paper entitled 'Scaling of Data Communications for an Advanced Supercomputer Network' is included. The high...

Topics: NASA Technical Reports Server (NTRS), AEROTHERMODYNAMICS, ATOMIC COLLISIONS, COMPUTATIONAL...

This paper reports the performance of a parallel volume rendering algorithm for visualizing a large-scale, unstructured-grid dataset produced by a three-dimensional aerodynamics simulation. This dataset, containing over 18 million tetrahedra, allows us to extend our performance results to a problem which is more than 30 times larger than the one we examined previously. This high resolution dataset also allows us to see fine, three-dimensional features in the flow field. All our tests were...

Topics: NASA Technical Reports Server (NTRS), AERODYNAMICS, ALGORITHMS, PARALLEL PROCESSING (COMPUTERS),...

The goal of NASA's Numerical Aerodynamic Simulation (NAS) Program is to provide a powerful computational environment for advanced research and development in aeronautics and related disciplines. The present NAS system consists of a Cray 2 supercomputer connected by a data network to a large mass storage system, to sophisticated local graphics workstations and by remote communication to researchers throughout the United States. The program plan is to continue acquiring the most powerful...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, COMPUTER NETWORKS, COMPUTER...

A new Lagrangian formulation of the Euler equation is adopted for the calculation of 2-D supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, EULER EQUATIONS OF MOTION, FLOW...

Given here are selected scientific results from the Numerical Aerodynamic Simulation (NAS) Program's third year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP supercomputer. Topics covered include flow field analysis of fighter wing configurations, large-scale ocean modeling, the Space Shuttle flow field, advanced computational fluid dynamics (CFD) codes for rotary-wing airloads and performance prediction, turbulence modeling of separated...

Topics: NASA Technical Reports Server (NTRS), ACOUSTICS, COMPUTATIONAL FLUID DYNAMICS, COMPUTERIZED...

We study the computational, communication, and scalability characteristics of a Computational Fluid Dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architectural platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), distributed memory multiprocessors with different topologies-the IBM...

Topics: NASA Technical Reports Server (NTRS), NAVIER-STOKES EQUATION, PARALLEL PROCESSING (COMPUTERS),...

We consider the performance of the finite element method on a vector supercomputer. The computationally intensive parts of the finite element method are typically the individual element forms and the solution of the global stiffness matrix both of which are vectorized in high performance codes. To further increase throughput, new algorithms are needed. We compare a multifrontal sparse solver to a traditional skyline solver in a finite element code on a vector supercomputer. The multifrontal...

Topics: NASA Technical Reports Server (NTRS), COMPUTER PROGRAMS, CRAY COMPUTERS, FINITE ELEMENT METHOD,...

A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. Difference equations are derived for...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, COMPUTER PROGRAMS, FINITE...

Representative examples are presented of applications and development of advanced Computational Fluid Dynamics (CFD) codes for aerodynamic design at the McDonnell Douglas Corporation (MDC). Transonic potential and Euler codes, interactively coupled with boundary layer computation, and solutions of slender-layer Navier-Stokes approximation are applied to aircraft wing/body calculations. An optimization procedure using evolution theory is described in the context of transonic wing design. Euler...

Topics: NASA Technical Reports Server (NTRS), AERODYNAMIC CHARACTERISTICS, BOUNDARY VALUE PROBLEMS,...

The results of the implementation of a Navier-Stokes algorithm on three parallel/vector computers are presented. The object of this research is to determine how well, or poorly, a single numerical algorithm would map onto three different architectures. The algorithm is a compact difference scheme for the solution of the incompressible, two-dimensional, time-dependent Navier-Stokes equations. The computers were chosen so as to encompass a variety of architectures. They are the following: the...

Topics: NASA Technical Reports Server (NTRS), ALGORITHMS, ARCHITECTURE (COMPUTERS), NAVIER-STOKES EQUATION,...

The development and testing of a parallel unstructured agglomeration multigrid algorithm for steady-state aerodynamic flows is discussed. The agglomeration multigrid strategy uses a graph algorithm to construct the coarse multigrid levels from the given fine grid, similar to an algebraic multigrid approach, but operates directly on the non-linear system using the FAS (Full Approximation Scheme) approach. The scalability and convergence rate of the multigrid algorithm are examined on the SGI...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, NAVIER-STOKES EQUATION,...

The accurate calculation of three-dimensional internal flowfields for application towards aerospace propulsion systems requires computational resources available only on supercomputers. A survey is presented of three-dimensional calculations of hypersonic, transonic, and subsonic internal flowfields conducted at the Lewis Research Center. A steady state Parabolized Navier-Stokes (PNS) solution of flow in a Mach 5.0, mixed compression inlet, a Navier-Stokes solution of flow in the vicinity of a...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, CRAY COMPUTERS, HYPERSONIC...

The GMRES method is parallelized, and combined with local preconditioning to construct an implicit parallel solver to obtain steady-state solutions for the Navier-Stokes equations of fluid flow on distributed-memory machines. The new implicit parallel solver is designed to preserve the convergence rate of the equivalent 'serial' solver. A static domain-decomposition is used to partition the computational domain amongst the available processing nodes of the parallel machine. The SPMD...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, COMPUTATIONAL GRIDS, CRAY...

We study the computational, communication, and scalability characteristics of a computational fluid dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architecture platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and distributed memory multiprocessors with different topologies -...

Topics: NASA Technical Reports Server (NTRS), ARCHITECTURE (COMPUTERS), COMPUTATIONAL FLUID DYNAMICS,...

199
199

Jun 15, 2011
06/11

by
NON

texts

######
eye 199

######
favorite 0

######
comment 0

This invention relates to a vapor fragrancer for continuously, uniformly, and economically odorizing or deodorizing an environment. Homes, offices, automobiles, and space stations require either odorizing or deodorizing of the atmosphere to create pleasant conditions for work or leisure. A vapor fragrancer is provided to accomplish these goals. A supplier continuously supplies a predetermined amount of desired liquid fragrance from a container to a retaining material, which is positioned in the...

Topics: AERODYNAMICS, COMPUTER SYSTEMS PROGRAMS, CRAY COMPUTERS, DATA STORAGE, HUMAN-COMPUTER INTERFACE,...

An overview is given of computational mechanics and physics at NASA Langley Research Center. Computational analysis is a major component and tool in many of Langley's diverse research disciplines, as well as in the interdisciplinary research. Examples are given for algorithm development and advanced applications in aerodynamics, transition to turbulence and turbulence simulation, hypersonics, structures, and interdisciplinary optimization.

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, COMPUTERIZED SIMULATION, CRAY...

Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need...

Topics: NASA Technical Reports Server (NTRS), APPLICATIONS PROGRAMS (COMPUTERS), COMPUTATIONAL FLUID...

The methodology is described for converting a large, long-running applications code that executed on a single processor of a CRAY-2 supercomputer to a version that executed efficiently on multiple processors. Although the conversion of every application is different, a discussion of the types of modification used to achieve gigaflop performance is included to assist others in the parallelization of applications for CRAY computers, especially those that were developed for other computers. An...

Topics: NASA Technical Reports Server (NTRS), APPLICATIONS PROGRAMS (COMPUTERS), COMPUTATIONAL FLUID...

The success of any solution methodology for studying gas-turbine combustor flows depends a great deal on how well it can model various complex, rate-controlling processes associated with turbulent transport, mixing, chemical kinetics, evaporation and spreading rates of the spray, convective and radiative heat transfer, and other phenomena. These phenomena often strongly interact with each other at disparate time and length scales. In particular, turbulence plays an important role in determining...

Topics: NASA Technical Reports Server (NTRS), COMBUSTION CHAMBERS, COMPUTATIONAL FLUID DYNAMICS, MONTE...

The purpose of this study is to investigate the performance of the integral equation computations using numerical source field-panel method in a massively parallel processing (MPP) environment. A comparative study of computational performance of the MPP CM-5 computer and conventional Cray-YMP supercomputer for a three-dimensional flow problem is made. A serial FORTRAN code is converted into a parallel CM-FORTRAN code. Some performance results are obtained on CM-5 with 32, 62, 128 nodes along...

Topics: NASA Technical Reports Server (NTRS), APPLICATIONS PROGRAMS (COMPUTERS), ARCHITECTURE (COMPUTERS),...

The opportunity to reflect on the computational fluid dynamics (CFD) progam at the NASA Ames Research Center (its beginning, its present state, and its direction for the future) is afforded. Essential elements of the research program during each period are reviewed, including people, facilities, and research problems. The burgeoning role that CFD is playing in the aerospace business is discussed, as is the necessity for validated CFD tools. The current aeronautical position of this country is...

Topics: NASA Technical Reports Server (NTRS), AEROSPACE INDUSTRY, ARTIFICIAL INTELLIGENCE, COMPUTATIONAL...