Skip to main content

Full text of "DTIC ADA124290: Vitreous Enamel Damping Material Development."

See other formats


AO - A 124 290 


VITREOUS ENAMEL OAMPING MATERIAL DEVELOPMENT U) DAYTON 
UNI V OH RESEARCH INST 8 KUMAR NOV 82 UDR-TR-82 - 105 
AFWAL-TR-82-4 162 F33615-79-C-5108 


UNCLASSIFIED 


F/G 11/3 



























MICROCOPY RESOLUTION TEST CHART 

NATIONAL BUREAU OF STANDARDS-1963-A 




























ADA 124290 



AFWAL-TR-82-4162 


VITREOUS ENAMEL DAMPING MATERIAL DEVELOPMENT 




a: jh 




Binod Kumar 

i, University of Dayton Research Institute 

300 College Park 
Dayton, Ohio 45469 


November 1982 


Pinal Report For Period October 1979 - July 1982 


APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 


* 



CJ> MATERIALS LABORATORY 

. AIR FORCE WRIGHT AERONAUTICAL LABORATORIES 
*1 air FORCE SYSTEMS COMMAND 

rr* WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433 



DTIC 


ELECTE 
FEB 1 0 1983 






88 OlO 055 
















NOTICE 


When Government drawings, specifications, or other data are used for 
any purpose other than in connection with a definitely related Government 
procurement operation, the United states Government thereby incurs no 
responsibility nor an obligation whatsoever; and the fact that the 
government may have formulated, furnished, or in any way supplied the 
said drawings, specifications, or other data, is not to be regarded by 
implication or otherwise as in any manner licensing the holder or any 
other person or corporation, or conveying any rights or permission to 
manufacture use, or sell any patented invention that may in any way be ^ 
related thereto. 


This report has been reviewed by the Office of Public Affairs (ASD/PA) 
and is releasable to the National Technical Information Service (NTIS). 
At NTIS, it will be available to the general public, including foreign 
nations. 


This technical report has been reviewed and is approved for publication. 


~rl 


v / i 




DAVID I G JONES 
Project Engineer 
Metals Behavior Branch 


\JDflN P. HENDERSON 
Chief 

Metals Behavior Branch 


FOR THE COMMANDER 



Assistant Chief 

Metals and Ceramics Division 


i 

h 

"If you address has changed, if you wish to be removed from our mailing 
list, or if the addressee is no longer employed by your organization please 
notify AFWAL/MLLN , W-PAFB, OH 45433 to help us maintain a current 
mailing list. 

Copies of this report should not be returned unless return is required by 
security considerations, contractual obligations, or notice on a 
specific document. 













SECURITY CLASSIFICATION OF THIS PAGE (tlhm Dmo,Bn torod) 


REPORT DOCUMENTATION PAGE 



4. TITLE (ond Suhtltlo) 

VITREOUS ENAMEL DAMPING 
MATERIAL DEVELOPMENT 


7 . author^; 


Binod Kumar 


S. PERFORMING ORGANIZATION NAME ANO ADDRESS 

University of Dayton 
Research Institute 
Dayton, Ohio 45469 


II. CONTROLLING OFFICE NAME AND AODRESS 

Materials Laboratory (AFWAL/MLLN) 

Air Force Wright Laboratories (AFSC) 
Wright-Patterson AFB, Ohio 45433 


READ INSTRUCTIONS 
BEFORE COMPLETING FORM 


1. RECIPIENT'S CATALOG NUMBER 


S. TYPE OF REPORT 4 PERIOD COVEREO 

Final Technical Report 
October 1979 - July 1982 


6. PERFORMING ORO. REPORT NUMBER 

UDR-TR-82-105 


S. CONTRACT OR GRANT NUMBER/*.) 

F33615-79-C-5108 


10. PROGRAM ELEMENT. PROJECT, TASK 
AREA • WORK UNIT NUMBERS 

62102F 

24180312 


12. REPORT OATE 

November 1982 


13. NUMBER OF PAGES 


MONITORING AGENCY NAME 4 AOORESSfJf dlltoront Irom Controlling Otlleo) IS. SECURITY CLASS, (ol thlo roport) 

Unclassified 


ISa. DECLASSIFICATION/DOWNGRADING 

schedule 


16. DISTRIBUTION STATEMENT (ol thlo Roport) 


Approved for public release; distribution unlimited 


17. DISTRIBUTION STATEMENT (ot the mbatrect entered In Block 20, It dlilormnt from Roport) 



It. KEY WOROS (Continue on rarer ae aide it nocaaaery and Identity by block number) 


Damping 

Enamel 

Vitreous 


Glass 

Measurements 


20. ABSTRACT (Continue on rarer ae aide It nocoooory md Identify by block number) 

This report describes the results of several experimental investigations 
pertaining to the effects of composition, viscosity, microstructure, and 
constraining layer on the damping properties of vitreous enamels. New vitreous 
enamels such as mixed alkali silicate, lead silicate, and two phase fluoride 
composition have been characterized. The mixed alkali and lead silicate com¬ 
positions exhibits the characteristic, viscoelastic damping peak. The damping 
temperatures and the peak intensities are compositions dependent. The 








































FOREWORD 


The work described in this report was performed at the 
University of Dayton Research Institute for the Metals Behavior 
Branch, Metals and Ceramics Division, Materials Laboratory, Air 
Force Wright Aeronautical Laboratories (AFWAL/MLLN), under Contract 
number F33615-79-C-5108, "High Frequency Fatigue of Turbine Blade 
Material." The contract was administered under the direction of 
AFWAL by Dr. D. I. G. Jones (MLLN). The program was conducted by 
the Aerospace Mechanics Group, University of Dayton Research 
Institute, Dayton, Ohio with Mr. Michael L. Drake as the principal 
investigator. 

The investigations of the effects of composition, viscosity, 
microstructure and constraining layers on the deunping properties of 
vitreous enamels were conducted by Dr. Binod Kumar. Experimental 
evaluation and data reduction was accomplished by Mr. S. Hilton, 

Mr. W. Goddard, Mr. D. Hopkins, and Mr. P. Graf. This work was 
performed during the period October 1979 to July 1982. 


Accession For 

NTIS GFAM 

x 

DTJ.C T'\B 

TT 

U*:rir;3unceA 

□ 

! lent ioi 

— 

By... -• 

_ —— 

r’ 

/ 


•• r s 


. /or 

iai_ 

al 

_ 



Ilf 










TABLE OF CONTENTS 


SECTION 

1 

2 


3 


PAGE 


INTRODUCTION 1 

TECHNICAL PROCEDURES 3 

2.1. EXPERIMENTAL 3 

2.1.1. GLASS PREPARATION 3 

2.1.2. METHOD OF COATING APPLICATION 3 

2.1.3. VIBRATION DAMPING MEASUREMENTS 3 

2.2. CALCULATION OF DAMPING PROPERTIES 4 

RESULTS AND DISCUSSION 12 

3.1. DAMPING PROPERTIES OF NEW COMPOSITIONS 12 

3.1.1. MIXED ALKALI GLASSES 12 

3.1.2. FLUORIDE GLASS 24 

3.1.3. LEAD SILICATE COMPOSITIONS 24 

3.1.4. LOW TEMPERATURE GLASSES 44 

3.2. RELATIONSHIP BETWEEN THE DAMPING TEMPERATURE AND 

GLASS TRANSITION TEMPERATURE 60 

3.3 EFFECT OF NUCLEATION AND CRYSTALLIZATION 

ON THE VISCOELASTIC DAMPING 64 

3.4. CONSTRAINED LAYER DAMPING WITH VITREOUS ENAMEL 86 

CONCLUSIONS 98 

REFERENCES 99 


v 









LIST OF ILLUSTRATIONS 


Figure 


Page 

1 

Typical Cantilever Beam Specimen for High 
Temperature Deunping Material Evaluation. 

5 

2 

High Temperature Deunping Test Apparatus. 

6 

3 

Block Diagram of High-Temperature Test 

Apparatus. 

7 

4 

Schematic of High Temperature Damping Test 
Apparatus Cooling System. 

8 

5 

Coated Oberst Test Beam. 

9 

6 

Effect of KjO Substitution for LijO on the 

Thermal Expansion Coefficient. 

15 

7 

Appearance of the Glass Coatings After Deunping 
Measurements. Numbers on the Left Indicate 

Glass Composition. 

16 

8 

Reduced Frequency Nomogram Showing Loss Factor and 
Young's Modulus for Composition 2. 

17 

9 

Reduced Frequency Nomogram Showing Loss Factor and 
Young's Modulus for Composition 3. 

19 

10 

Reduced Temperature Nomogreun Showing Loss Factor and 21 
Young's Modulus for Composition 4. 

11 

Loss Factor at 100 Hz Versus Temperature for 

2, 3, and 4, Mixed Alkali Glasses. 

23 

12 

Modal Damping from Fluoride Material Number 
Superimposed on the Curves Indicate Mode Number. 

25 

13 

Modal Damping from Fluoride Material After Heat 
Treatment at 800°C for 20 hours. 

26 

14 

Reduced Nomogram for Composition III. 

27 

15 

Reduced Nomogram for Composition IV. 

29 

16 

Reduced Nomogram for Composition VII. 

31 

17 

Reduced Nomogram for Composition VIII. 

33 

18 

Reduced Nomogram for Composition IX. 

35 

19 

Reduced Nomogram for Composition X. 

38 

20 

Reduced Nomogreun for Composition XI. 

41 

21 

Reduced Nomogreun Displaying Loss Factor for LT-1. 

45 

22 

Reduced Nomogreun Displaying Loss Modulus for LT-1. 

46 

23 

Reduced Nomogreun Displaying Loss Factor for LT-3. 

48 

24 

Reduced Nomogram Displaying Loss Modulus for LT-3. 

49 











LIST OP ILLUSTRATIONS 
(continued) 


Figure Page 

25 Nomogram for LT-4 with Modulus and Loss Factor. 51 

26 Nomogram for LT-4 with Loss Modulus and Modulus. 52 

27 Reduced Nomogram Displaying Loss Factor for LT-5. 54 

28 Reduced Nomogram Displaying Loss Modulus for LT-5. 55 

29 Nomogram for LT-6 with Modulus and Loss Factor. 57 

30 Nomogram for LT-6 with Loss Modulus and Modulus. 58 

31 Maximum Loss Factor (rip) Temperature Versus the 61 

Glass Transition Temperature (T g ). 

32 Log Viscosity Versus 1/T for Corning 0010 Glass 63 

(viscosity in poise). 

33 Typical Viscosity Curve for Glass Showing Common 66 

Reference Points. 

34 Loss Factor as a Function of Temperature and Heat 67 

Treatment Time at 760°C for Composition A. 

35 Loss Factor as a Function of Temperature and Heat 68 

Treatment Time at 815°C for Composition B. 

36 Optical Micrographs: (a) As Fired Specimen (150X); 71 

(b) Heat Treated for 112 hours at 1,500°F (150X). 

37 Glass-Metal Interface for Composition "A" After 72 

Various Heat Treatments. 

38 Morphology of Vitreous Enamel Coating "A" After 7 5 

Heat Treatment of 100 hours. 

39 Microstructure of Vitreous Enamel "A" After 76 

314 Hours of Heat Treatment. 

40 Metal-Glass Interface for Composition "B" as a 78 

Function of Heat Treatment Time. 

41 Enamel Coating at Various Magnifications After 80 

Heat Treatment for 112 Hours. 

42 Enamel Coating at Various Magnifications After 82 

Heat Treatment for 309 Hours. 

43 Test Beams for Corning Composition 1990. 90 

44 (A) Vitreous Enamel Coated Iron Foil. 91 

(P) Spot Welded Iron Foil on Beam. 

45 Loss Factor Versus Temperature for Free and 

Constrained Layer Damping Treatments [Mode-2]. 92 

vii 









LIST OF ILLUSTRATIONS 
(concluded) 


F igure PAGE 

46 Typical Temperature Dependence of Polymer 

Viscoelasticity. 93 

47 Static Viscosity of Corning 1990 Glass. 94 

48 Shape of the Function Log ^ Versus Temperature. 97 


49 Structural Damping Versus Temperature for Free Layer, 

Iron-Constrained, and Steel-Constrained Damping [Mode 4]98 





LIST OF TABLES 


Table Page 


1 

GLASS COMPOSITIONS AND THEIR PROPERTIES 


14 

2 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSITION 

2 (AM2) 

18 

3 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSITION 

3 (AM3) 

20 

4 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSITION 

4 (AM4) 

22 

5 

COMPOSITIONS 

(PERCENT WEIGHT) 

OF 

LEAD SILICATE GLASSES 

24 

6 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSITION 

III (AMB3) 

28 

7 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSITION 

V (AMB5) 

30 

8 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSITION 

VII (AMB7) 

32 

9 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSITION 

VIII(AMB8) 

34 

10 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSITION 

IX (AMB9) 

36 

11 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSITION 

X (AMB10) 

39 

12 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSITION 

XI (AMB11) 

42 

13 

COMPOSITIONS 

OF LOW TEMPERATURE GLASSES 


44 

14 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSITION 

LT-1 

47 

15 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSITION 

LT-3 

50 

16 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSITION 

LT-4 

53 

17 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSITION 

LT-5 

56 

18 

EXPERIMENTAL 

AND 

REDUCED 

DATA 

OF 

COMPOSTTION 

LT-6 

59 

19 

GLASS TRANSITION TEMPERATURES 
GLASS COMPOSITIONS 

(T ) OF TEST MATRIX 

9 

62 

20 

COMPOSITIONS 

IN WEIGHT PERCENT 



65 

21 

CRYSTALLINE PHASES AFTER 

VARIOUS 

HEAT TREATMENTS 

84 

22 

EXPERIMENTAL 

TEST MATRIX 





88 

23 

£ AT VARIOUS TEMPERATURES 




96 




lx 



















SECTION I 
INTRODUCTION 

In order to control high cycle fatigue in vibrating 
structures at elevated temperatures, .itreous enamel coatings have 
been suggested and used [1,2,3]. The coatings dissipate vibratory 
energy due to their characteristic high mechanical loss in the 
viscoelastic range. The dissipation of vibratory energy by such 
treatment improves the performance, reliability, and reduces 
maintenance costs of the structure. At lower temperatures (<400°C), 
polymeric coatings are commonly used. Preliminary feasibility 
experiments and viscoelastic damping data for vitreous enamel 
coatings have been reported by Nashif [ 4 ] and Sridharan [ 5]. 

The University of Dayton has been engaged, in developing 
viscoelastic damping measurement techniques and vitreous enamel 
compositions for deunping applications in aircraft engines for 
approximately 10 years, under contracts funded by the Air Force 
Materials Laboratory, Wright-Patterson Air Force Base. Significant 
developments have been made in the measurement and application 
techniques. A better understanding has developed in regard to the 
effects of composition (6) on the damping properties. 

The primary objectives of the studies reported here were to 
further evaluate damping properties of new compositions, analyze 
previous data and develop a relationship between the structure 
and the damping properties, evaluate the constrained layer damping 
concept with the vitreous enamel, and analyze the difficulties 
associated with the utilization such as nucleation and crystal¬ 
lization of vitreous enamels as a vibration damping material. 

Vitreous enamel or inorganic silicate glasses exhibit 
damping peaks at various temperatures. For a frequency of 1 Hz 
a peak occurs at about -30*C, which is related to the alkali 
ion diffusion. A second peak at the same frequency occurs at about 
200°C. The damping (n) of the first peak is approximately 0.001, 
whereas the deunping of the second peak varies from 0.001 to 0.02, 
depending on the glass composition. For a single alkali glass, the 






damping intensity (n) of the second peak is approximately 0.001. 

The addition of a second alkali causes a large increase in the 
intensity of this peak to as high as 0.02. The damping peaks are 
also frequency dependent. Increasing frequency increases the peak 
temperature. For example, a decade increase in frequency shifts 
the peak toward a higher temperature by approximately 15 # C. These 
two peaks are the results of anelastic damping. Readers can refer 
to a recently published review paper (7) for the mechanisms and 
the related information concerning the two peaks. 

A third peak of significantly higher damping intensity (Q -1 =l) 
than the first two occurs at a higher temperature. Associated with 
this damping peak is a large change in the complex modulus. A 
change of about 40 percent in the modulus can be expected. This 
peak is frequently referred to as the viscoelastic peak. This is 
the peak of primary interest in dissipating the vibratory energy at 
elevated temperature and will be the main topic of discussion in 
this report. 


2 






SECTION II 


TECHNICAL PROCEDURES 


2.1 EXPERIMENTAL 

2.1.1 Glass Preparation 

All of the compositions, except the standard 
commercial compositions, were formulated and synthesized from the 
analytical grade raw materials. Required amounts of oxide and 
carbonate raw materials were weighed and mixed in a V-blender for 
approximately one hour. The weighed material was then melted in a 
platinum crucible at appropriate melting temperatures. The molten 
glass was quenched by pouring into a container of cold water. The 
quenched glass was then dry ball milled, using Al 2 0 3 grinding 
media, for 24 hours. The milled powder was then screened to obtain 
various particle size splits. The test beams were coated with 
vitreous enamels of particle sizes passing through a 100-mesh screen 
but not through a 150-mesh screen. 

2.1.2 Method of Coating Application 

Prior to spraying, the metal substrate was sandblasted 
using 36-mesh silicon carbide grit and an air pressure of 75 psi. 

The powder material was applied to the metal substrate by plasma 
spraying. A Meteo 3MB plasma spray apparatus was operated at 400 amps 
DC, 75 volts DC at 30,000 watts setting with a gas flow of 15 scfh 
H 2 and 80 scfh Ar. A gas mixture of 84.2 percent Ar and 15.7 percent 
H 2 was used. The coated beam was then fired in a resistance-heated 

furnace for approximately three minutes or until the surface appeared 
to be smooth. 

2.1.3 Vibration Damping Measurements 

An apparatus and technique was developed to accurately 
and reliably excite, and measure the response of a beam specimen 
at temperatures exceeding 1,000°C. 

The specimen used was a cantilever beam coated on one 
side with an enamel or glass. A typical specimen is illustrated in 


3 













Figure 1. The specimen was clamped in the fixture as illustrated in 
Figure 2. The air cylinder insured that a constant clamping pressure 
was maintained on the root section of the specimen over the entire 
temperature range. This fixture also allowed for thermal expansion 
of the fixture and high temperature creep of the clamping bolts. 

The force gage, mounted in series with the clamping 
bolt and the air cylinder, was used to measure the response of the 
specimen. The force gage was well removed from the high temperature 
environment. 

An electromagnetic transducer was used to excite the 
specimen. This transducer was specially designed to operate from 
room temperature to at least 1,000°C. The design used a closed 
loop cooling system incorporating a modified room air conditioner. 

A block diagram of the apparatus and complete measuring system is 
shown in Figure 3, and Figure 4 is a schematic of the transducer 
cooling system. 

The specimen and fixture were placed in the furnace 
and heated to the desired temperature, usually above the annealing 
temperature of the enamel. The cantilever beam specimen was excited 
at its free end by a sinusoidally varying magnetic force induced 
by the electromagnetic transducer. A high Curie temperature cobalt 
disc was attached to the end of the beam to allow for excitation of 
the nonmagnetic specimens. The frequency of oscillation was varied 
until a resonance was detected. At resonance the shear force in 
the beam reached a maximum and was measured by the dynamic force 
gage. The force gage measured the variation of the shear force at 
the root of the cantilever beam specimen. 

2.2 CALCULATION OF DAMPING PROPERTIES 

The damping characteristics of the coatings were determined 
by measuring the vibration response of a composite cantilever beam 
at varying temperatures over the viscoelastic range. It is assumed 
that the enamel is a viscoelastic material; that is, the modulus 
of the enamel can be treated as a complex quantity 


4 


















F~r 


f. 






* UFTEO OFF BEAM WHEN 
MEASUREMENTS MADE; 
ONE FIXEO'IN ROOT 


Figure 2. High Temperature Damping Test Apparatus. 


6 


















































E£ (1 + itand) 


H - e d + iE D • 


tand 


Ed^d 


where E£ is the storage or Young's Modulus of the enamel and tand 
is the ratio of the dissipative modulus, E£, to the storage modulus. 

Consider the metal beam with an enamel coating on one side 
as shown in Figure 5. 



THICKNESS (h D ) 
DENSITY (/>□) ' 



I BEAM-'* 


THICKNESS (h,) 
DENSITY (/»,) 



Figure 5. Coated Oberst Test Beam 


The formulas developed by Oberst [8 ] and used by many other 
investigators were used to determine the damping properties of the 
enamel as a function of frequency and temperature. These formulas 
are: 


9 








(1) 


( V“ln > 2 ( 1 +h D p D /h l p l ) 


1 + 2(E d /E 1 ) (hp/h^A + (Ep/E^ 2 (hp/h^ 4 

1 + (Ej/E^ (hp/t^) 


and 

_ (Ep/E^ (hp/hj) [2A+2(E p /E 1 ) (hp/h^ 3 + (Ep/E^ 2 (hp/h^ 4 -1] 
n 2 [l+CEp/E^ (h D A 1 )][l+2A(Ep/E 1 ) (hp/hj^) + (Ep/E^ 2 (hp/h^ 4 ] (2) 

where: 


A = 2 + 3 0^/1^) + 2(hp/h 1 ) 2 . 


(3) 


<»> n = natural frequency of the nth mode of the composite beam, 
2Trf n , rad/sec 

to, ■ natural frequency of the nth mode of the metal beam, 
2Trf^ n# rad/sec 

hp = thickness of enamel coating applied to composite beam 
h^ * thickness of metal beam 
P D * density of enamel coating 
a density of metal beam 

Ep a real part of the modulus of enamel coating 
E^ a Young's modulus of metal beam 

tan 6 g = effective loss factor of composite beam (=n) 
tan 6 = loss factor of enamel coating (= n 2 ) 

The quantities of hp, h^, Pp, and p^ are known and are assumed 

to remain constant with temperature. The parameters, w , w. and 

n in f 

n are experimentally measured. The value of n is determined from 


n 


tan 6 

e 


Au 

n 




(4) 


10 









where Af R is the bandwidth at the half-power points of the response 
peak for the nth mode. The value of E^can be determined from the 
measured response of the uncoated metal beam using 

< - 1-1“ \n l4/e 1 Z 1 (5) 


where: 

* the eigen value corresponding to the nth mode and is a 
n constant, determined by the boundary conditions 

^1 = p i b ^i * the mass per unit length of the metal beam 
L = the length of the beam 

I = yj bh^ = the second moment of area of the metal beam 
about its centerline. 

The values of for beam with classical boundary conditions 
are well known and can be found in referenceT9l• Thus, from the 
measured resonant frequencies of the coated and bare beams and the 
measured composite loss factor, tan 6 , the damping properties of 
the enamel can be determined as a function of temperature and 
frequency. 

The resonant frequencies and modal damping of five to six 
modes of the coated beam, covering a frequency range of 100 Hz to 
1,500 Hz, can usually be measured for each temperature. Thus, the 
damping properties of the vitreous coating over a decade of frequency 
at a given temperature can be easily and quickly determined. 


11 






SECTION III 

RESULTS AND DISCUSSION 

During the development of high temperature vibration damping 
enamels, one of the primary goals has been to develop a better 
understanding -of the effects of structure, composition, and , 
physical properties on the damping behavior of vitreous enamels. 

In view of this goal, several experimental and theoretical investi¬ 
gations were conducted. Those investigations can be broadly class¬ 
ified as follows: 

e Damping properties of new compositions; 

• Relationship between the glass transition temperature 
and the damping temperature; 

e Effect of nucleation and crystallization on the 
viscoelastic damping; 

e Constrained layer damping with vitreous enamels. 

3.1 DAMPING PROPERTIES OF NEW COMPOSITIONS 

3.1.1 Mixed Alkali Glasses 

As indicated in Section I, mixed alkali glasses 
exhibit a characteristic damping peak at lower temperatures (100-200°C). 
It has also been noted that some commercial glasses containing 
mixed alkali exhibit intense and broad damping peaks. Therefore, 
it was hypothesized that there is a relationship between the 
viscoelastic damping and presence of mixed alkali in the composition. 

In order to verify the hypothesis, an experiment was designed in 
which alkali oxides were systematically varied. Properties of the 
glasses, i.e., the thermal expansion, damping behavior, and their 
thermal stability in the damping range were determined. This 
subsection describes the results of the experimental design on the 
mixed alkali glasses and also recommends the future course of the 
investigation. 

Molar composition of the glasses and their properties 
are summarized in Table 1. Compositions numbered 1 through 6 have 
been obtained from the L^O-I^O-SiC^ system. The coefficient of 


12 








thermal expansion shows a linear increase as LijO is replaced by 
the ^0, which is also graphically shown in Figure 6. The 
coefficients of thermal expansion of Li 2 0«3Si0 2 and K 2 *3Si0 2 
glasses are 53 x 10~ 7 /*C and 140 x lo” 7 /°c respectively. There 
is a slight variation in T^; however, the dialtomeric softening 
point exhibits a general decrease as the LijO is replaced by 
K 2 0. These glasses also exhibited varying degrees of thermal 
stability. For example, the composition 1 becomes opaque after 
the powdered frit was applied and vitrified on the metallic 
substrate. Compositions 2 and 2A became opaque during the damping 
measurements. Compositions 3, 3A, and 4 remained unchanged after 
the damping measurements. General appearance of the glass com¬ 
positions 2, 2A, 3, 3A, and 4 after damping measurements are shown 
in Figure 7. Compositions 5 and 6 could not be successfully 
applied on to the metallic substrate, possibly because of the 
extreme hygroscopic nature of these compositions. 

All compositions from the system Li 2 0-Na 2 0-Si0 2 
(7 through 11) exhibited unstable behavior during application and 
damping measurements and therefore were dropped 
experimental investigation. 

Reduced Temperature Nomograms for compositions 2, 3, and 
4 are shown in Figures 8, 9, and 10 respectively, with experimental and 
reduced data given in Tables 2, 3, and 4. Composition 2 shows a broad 
and relatively high loss factor as compared to compositions 3 and 4. In 
order to make a direct comparison of loss factor of the three compositions. 
Figure 11 exhibits a plot of the loss factor at 100 Hz versus temperature. 

It is obvious that only a narrow compositional range 

of the mixed alkali series exhibit stable glasses whose damping 
properties could be satisfactorily determined. It appears that 
the damping properties of these stable compositions are superior 
than other multicomponent commerical compositions. However, 
further investigations are needed to substantiate any relationship 
between the presence of mixed alkali and viscoelastic damping. 


13 







0 




O' 


P 




c 


•U 




•*H 


« 

0» 



CO & 


U 

c 

a 

4) 

4) g 


P 

P 

c 

A 

CO 4) 3 


*H 

s* 

0 


CO P v 


a 

s 

P 

P 

a A 


a 

(0 

4J 

0 

P (0 0V3 


a 

T5 

P 

C 

CPP c c 

ca 



CO 


cup (d 

JO 

cr 

P 

0 

T3 

4) C P CO 

u 

c 

4) w 

9* 

pH 

(0 3 3 C P 

(0 

P 

•u e 

6 

3 

4) 'O 0 C 

B 

U 

M-l 4) 

0 

0 'O 

A TJ P 4) 

4) 

3 

(d g 

0 

0 4) 

P 4) P P g 

06 

<0 

3 


P 

P 0 id 4) 



4) U 

4) 

P P 

P P P 0 P 


4) 

3 3 

pH 

4) P 

0 A > P 3 


S 

cr co 

x) 

T3 P 

fH flJ pH {Q 


O’ 

« ia 

A 

3 P 

p££ ao 


(0 

5*2 

p 

0 p 

p x d am 


$ 

o g 

CO 

CU > 

< <u ua a g 


o u 

a o 
o r- 
en «n 
vo m 


_ in P 
r* oo 


U CJ 
o o 
00 00 


ov ov 

VO VO 


pj 


O 

CQ 

CO 

p cn 

< 

z 

• 

e* 

o 

X CN 


M 

in 


VO O O 

I • ( 

p p a 

O CN TC 


3 • 

a <so 

8 0 CN 

P P 
CJ CO PI 

cn ao 

13 • • 

p O O 

0 (N « 

X P SO 

PJ CN 


(N CN 

O O 

P P 

co co 
m m 


O O 

CN CN 

3 3 

^ CN 
• • CN 

o o O 

• • 3 

OOP 
CN CN , 

SO so 

vo oo O 

• • CN 

Q O SO 


H I™ CN 


< _ < _ 

CN m ^ 


CN CN CN CN 

o o o o 

P P P P 

co co co co 

n n n a 


o o o o 

CN CN CN CN 
P P P P 

A PJ PJ PJ 

00 vo N> CN 

• • • • CN 

O O O O O 


O O O O cn 

CN CN CN CN . 

4J (0 fl <d 

z z z z o 

CN «T VO CO CN 
i • • • IQ 

o o o o z 


P* 00 ov o 





































































































Figure 7. Appearance of the Glass Coatings After 
Damping Measurements. Numbers on the 
Left Indicate Glass Composition. 















































<N 

Q 
W W 
►4 U 
03 D 
< Q 
Eh W 
« 


CN 


2 

O 

M 

Eh 

M 

w 

c 

CL. 

2 

O 

U 

&. W 
O Q.S 

< -?.w 

< s 3 

Q 

Ui 1.1 

0 - 5 - 
o 


9 

OJ 


UO 


Q « 

2 

S 2 


Eh 

2 

W 

2 

M 

(X 

w 

04 

X 

w 


* 

ru 

r- 


m 


• OKROtAOt<9O^9IOt0IOOO)OtCSOt AC*i 

+ ♦ ♦ ♦ ♦ 


_>0090~«4 
• ♦ ♦ • 


• 09AA00AAAC._ 



•(U(U 1 A^< 


o» t <0 m — ok r- u> m *« »* iu ru co oo ** m r* ru ai o» o m Ot ** ** •* r* r- co i>- oj m ru ru m at ** t- m m u> r* ▼ m 

cocomru^m^r- — rumr- mruooom-* &me-coruo ooooor- n«o>^«^Aor-(otAn*4T 

o ®<umr^(\jo>co«T to^t s -ajm99©^oooomr-rur r >moor^-40ooomor r > , r rnp^ajoaimoicoaorum^r^m 
ui 900 m-*r-c*r- 9 c**r-m meat- ruco* 4 mr.oo>f-r , '>ooo>^ '▼otooo^Mmocom'ucooaomruaooco'omA 
a: h^i/s^pi ai ot rum oo rumoo ru m oo -* aj m o» n Mfurn com -4 aj^Atn^ruinon 

U.M -« •• •< -» m •* _« 

X 

5 


oo 

O-J 






)«« UiUhlUJUiLlLJUILM UI Ui UlUlUiUlUiUlUibiUUIUIUJUmiWWUlWUJUilllWWUlliiUjyhlUIhlUIUIIilUUiiliJUl 

> «• r- o m o» «3 ^ <*5 i>- cy o» <p c- oo ig ru ^ m 5 n Jg <3 ▼ oo ▼ -* 3*5 9 in o m« j> oo in o 3 -* mm•*-* u> o o oo m m •* S aj 
lE^r-^tf^^^nMtAMr-MnTAtoiOMwAQowotnioioiTAaKnnoAjMTiflTnMntfioioOAA^ 
s m^mmomru** 'Tr^oimcomoQm*4$r^v0mm<U9ruomoo'«»MO>mrur-or'- “ 

: z » 9 oo o o rh rn ^ co r- r- ru oj <3 ** u> at m aj F- m u> —ru 9 <uvom m 9 00 n c* -4 *4 
f 00 co 00 com 00 cocor-r-r-r-r-r^r^r-F-mr-r-r-r-F-K coco woo 00 coco 00000000*0 


r-or^o ocooo 

__ . .A«««4n(nA)n^lAU)T|A(Or^ 
OOO 0009 OkOMAOtOkObOfeOCtOICn 


|^«inTww»vn^rtjnTinftinTU)«nu»aM>inTinwnTu»ainTui«fl«inTu>«ninTUkioiuoTu»« 

WA-ro»-or®u)«fy^t^ftifViOAA^miflO®(OOou><fl®or-®^U>M9<onoinonuiA'fi«-'^ 
• •••*••••••••••••*••*«•«*•••••••»••••*•••••••••• 

• mrur-r-—co^^mmr- »nm*4.* ^mOMUAJWC0«D-4u>r*r*ruW4--r M>ooruw«u9^r»*cowr~’*’ 

uin^ojiaat rum ojiaa AJineonaiflonj aim 00 niu>A*<(u<2AT«4niiooin^mv09u>«*n«oi<i 

QL Z *4 •« «4 •* * 4-4 *4 mm « 4«4 


^nnrnnAAA^-T -r 9 9099 oocoooAiniaiojf-f-f-r-•■•*■•*■• mm mm »o«®w«ooowaowooo 90 
• • • • ••• « • • • • • • • •••••••••••••••••••••••••••»*•••• 

W G cn <k>CO 00 ^ ^ ^ ^ O 099 9 ^ ^ QIQIAini^d 9 9 ' 4 > -• •• — — •« U> U>U*l/> 4 /Vf^ ^ 1 ^ ^00900 

4 aaaa® ▼ ▼ ▼ < t>^4<p(oioii<2«i«(0'04nMmmr-r*NMVni(urunJu)>i)>0«A<Am4*tnmfk«4*i«4*4 44 

wo 

‘-si 


9 rum 
c/>*»uj 

-CO 
- ia 

WIA^ 

2 « mo 
onj z 
o««- 

I H 

t- is^ 

MM <t •• 

aac u. c 

UIUI 3 —W 

an zax 

Aft «OI- 

wr c 3 o 


3 ^ 


ru -4 ru 


IU M ~ 4 M ~4 


222®282282S25S§SS83SSS8SSS2?.222255222222222222222 



(U-ruran^-ruoiNr* — ruruiof^-AaA——oiAioni^ni—nmmmtnmmmnnmnT 

’* wrww,,sp '* , *2 :: 222‘£2t22*saS58»J588*S»RS»*fcRR?^3?«t52| 


18 
























TEMPERATURE T DEG 














TABLE 3 

EXPERIMENTAL AND REDUCED DATA OF COMPOSITION 3 (AM3) 


O 9 O 9 OO<*>OOOO 0 »C*O 0 t<aoOOO 

««««««A**«««« 


• OO9a99OM7kC»9»OtOtOlO)OlDOlA0i9AO)O9M('UOM9OO0lOloaflO 

m» MuiiiiUitiiUy yyyyyuiyyyyyyyyyyiiiyyyujyyyyyui 

0C -*ru-«r\Jix» ^ u^uvr-cfcuw*- aiaii^nSooaj® <r ru^ 
u> n -«(/i9U)oa>r*n<rou)nttanTar>Tnoinoi(«)Ag 

orMU)uiggongttaoo < rg««ru««goim««r>^<ri««iAf-ATConj 
j r-g>«r»m^-r or-fur-iur-or-oj^——nj^-*co —ajoou>cowA<*r-^oo 

coTTTu>u>i/>T> v )g'Mvni(u^n^<«o««gg^(OAi«<tfifu(u^««nAi 

uH/ia»ajtooap*n>f-r>u)^u>«-<»ooaf'-'*u>wa»c/>^—oo 

ci ( 0 Nao^^M»<nu>gV(ooiTu!*«'r(UiATO)A<U 9 a^T«o»^<oV 
ui i/iggu)g«4Tgo«-4tN*ot«*u>«aMg9ftAjg$(^( 9 ihAgMU»eoai*4 
cl nj<v<vj<\iaunoo<u in<u iamai uvooas u>«m<U(i»o» rvjuxnru n 


mooOi/>o>co^ -* — •»** mm« 
ui -oi^cowr- ▼ruair-ounoo'voo 
KuonnTrumnTfiui^Mw- 

..... 

O 

a. (/> 
c/» 
oo 


oo«o«oo«o 9 oo«g«oo«o««««««oM«g««o 






c, ?S2S?!aSSt32^3S22S;3?5S^5;SS!SSSi2i2S2}Q 

5 zmu>r.-n(ynw>u)ga.^«-fy(vnTggg«j»gftiT^g*^ajng 
ip*,0<4> r*- r- c- r- r- r* c* r- oo aoooao aa oaaaco ao os oaoi oi<*c- aoooao eootoi 

® ainiaicuaiajttiajnjnjajrtiAjajfuajrtjAjflJAiajftjrticuAicurtjftinitticxiAiai 


9 .-nnruflnTuigajrg^' ^g(UTUjgAi<rtf»g<n^iAMm«ggoig 
vv 

r 4 Kd 9 «OOOnoor* 9 «« 9 -«i\igguiniAh 
* «ra»o»r- Lr>rj«0;O-^piruair^o •«4~«!£Q>'U 

o !flt*t'!^^^W 08 O>Al**ftmOkmftTO»T«T«g®U»Ql^nftngM 
yrt<\iiM<\iiM«vuiCOM j>n moon i/>nn«*u)^nMu»oi MM)axn««n 


fUTf-N<>fto»q»«^^nnnn'j)yyyoooooo«ninjnjnnnnnf\j(U 


tt 9 nu»notooog<») 

mo^<\jAi 9 ^n<«g *4 


-Z 2 

U.- 3 * 

Q I KhO 

z 

wg«- 

» n 

z** □«! 

** 


n 


822828888883888222222222228888222 

„.♦♦♦►♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 

-rf 2—C *0 S 2 !? !S r* • ^ -* t ru n r- u> •/» «n « r-<a S <*> r- ni ♦ u> e» u> e u> «*■o» a 

9 i «u—g « • » » 999» r> m ru in m • w ut rtj 0> u? a u> ♦ >5 * — m f - <* r- r» a. 
OZ(U90ttnr-ini«i«iQf-r- ->«miSM«»MA(uAiMamAaci«ei9Tn a, 

MiUri«iitnttnii!^aiMMMM«M«««aiicic! —-i—“ •§ 

OV. 


20 
















































TABLE 4 

EXPERIMENTAL AND REDUCED DATA OF COMPOSITION 4 (AM4) 


• GOC*O> 0 lCftC 7 t 9 t 0 >CncnC 9 >C»OC»O’ 0 tOn»C* 9 >< 7 kO»<*<»< 7 t<»<> 0 >C*QO< 7 »COeOOQOOa 0 CBa 9 CDe 0 O 9 


CS^wa>a)iArun(jto»Tu)'^^'^<i)iA**iAOS«f , »ooi-o8-H«f'"\JU;f^«o>r-nu»*«***ru« 

-j ▼ u»©*-<nr- i/nA^«oo(0d«(OO»n(n«(\ir^CBiAOBnmoBnj(n«4U»«N^«rvu>T(n 


j ▼voo*-o p >r-i/»tn<^««oou»a)-«®Oiomoof\i^^ooi/»op 
« — ajm^njT V -r mi/ir- rumootoruun ▼ mrurumru 


* ^ c> ^ r- u) (A (*i (*) ia w i*) 


®^©Oin®ooooo«i»c>»w^u»ai^-annfnNoi»NT» T ytf>-<i/>u)«o<u#«N««K« 


o co -r ip *> 09 '.o — *.o 
ui i7i f*~ (*> vi O' N ▼ Ol 
uc rucnco nimoi 

U. M 

f* 


^■irTPT-v>r_.T i 1 i ' T-.Tv»t_TPr r ir- 7 w 7 f^ 


c** ^c\ir-f\j«o>r-< 7 *r- 
u>rtJoo©aoiomoo©OkQor>« 
t/»c»^«-*/yju)CTn^0JM)0* *r 


nj c*- u*/ 01 ^ r- oo as «r oj m r? 
ui — ojujtDoowr-r- 

ho©H^(vi«rtjfnmnt^y) 

mu.. 

o 

£$ 

oo 


^U>-*TOU)CO<n-4T-«® 


0«»UiUJUiUiUiUiUiUiUiUi 

o • v 0 eor’*u>kft ^ ^ moo «r 
c £ <* oic* OJ t — -• — «*u cn 
• 'fl — -r -* m o cvo »\i -r 

5 ;nnftj*ru»iAtfufluiN 

oi co ui oo (*) c*i oo oo oo oa 


♦♦♦♦♦♦♦■ 


<♦♦♦♦♦♦♦♦♦♦ 
Ui biUiUitti 
onjTn« 




•D 0 »f- 0 >U» 
f^ocor-F- 
o»wwor* 

A .ruriTUnunTiniflnlnTuwijnTiflfijmTi/iiirtinTiAiinTwigniof'wiOftjnTuuo 

oo 


^f r )U>i&^-«( s -^wwow\)onnir.r.(*)^ w nu)r'^o.r-«nTr-o>(UT<*®«^^«- 


• U'iA(O 01 UO)(U(Oa 9 M\|«TA 
O <5»mcUf-C5'iJ tnuj©Olf* TO» 

uirs rum oo *ji/>o» 

OlX — 


iA«$ona 
-r * 4 nioo»v 


TTTfNr-{'M^ ( 7 U 3 io»o»^-i-«^annnniflifiiou>*i)«»)W<u»®oo® 0 ( 7 >w^^(> 

•o^t ^T'^«xfli 0 <floj«WPJ^^^w(n(nin(nmu»Miuu/>»/»fttt 4 ' 4 i«®® 2525 SS 
& ©QOOf'-f-r^r-r- -r-r-r-r<uajf\jfuoici<»o»oimmu#<jumcommn — 

uiO 

-z 


ian)iA 0 ^<^ ? iooo»OMM(AU«oji*^u) 9 nTU)U)«* 4 ^ 
-* m at m oo o>«s. r- «u ^ m r* air- •* »<© «*> # r-<f* *■ i/< *■ oo <* 
*^co(ynnjwoajo<\jT-^^u)iMT«noiTru»*TO»r* 
inoi/>o 9 inruu)^a»r-oonr*moo%u>^i»)n^^^rti^®o 


~eo 
- 'X 0 C 
*PUi 

uinor 
3 i mo 
o«v z 

o -r X — 

I ►“• 

-J-*XCk 
toou ui 

z 5 a© 

UJ«J HOi 
C<S U 3 ** 
1 '• 

aea w f* 

II ill 


SSSSS 22 ?S*S®SS 2 '** , ** 90 *** 04 '- 2222222222 J 2 S 

♦ ♦♦♦♦♦ ► ♦***■*♦♦*♦♦ » » ♦ ♦ 4 4 4 ♦ ♦♦♦♦♦♦♦♦♦♦♦♦♦• 


• 4 >inini«iiiiAuivuiVMnr>r>» 4 <«Mf 4 >aMM«a< 4 > 4 ra<a><iiinininiiuAlAixM«'<i« | 

2 -^»*«-^-»2 = 22;i22£258SaiSS*a!5aa*saSS*»RSR??|g 

V 























































3.1.2 Fluoride Glass 

This material was formulated and synthesized in our 
laboratory and is different from other materials in the sense that 
it develops two phase structure upon heat treatment. The beams 
were coated using the standard plasma spray technique. Damping 
data for the material before and after heat treatment are shown 
in Figures 12 and 13 respectively. Before heat treatment, the 
material exhibits a damping peak typical of many vitreous enamel 
compositions (Figure 12) . After heat treatment, the peak becomes 
broader and the peak intensity decreases. This interesting 
damping behavior of the material after heat treatment believed to 

have resulted from the two phase structure. 

3.1.3. Lead Silicate Compositions 

Damping properties of several compositions from the PbO- 
Si0 2 ~R 2 0 system were evaluated. Table 5 shows the compositions of the 
glasses as calculated from the batch ingredients. The table also shows 
general characteristics of the glasses. It is noted that the incor¬ 
poration of alkali oxide (R 2 0) in mixture rather than a single oxide 
helps in stabilizing the glass as evidenced by compositions III, V, 

VII, IX, X, and XI. 


Loss factors as a function of temperature of the seven 
stable compositions from Table 5 are ■shown in Figures 14 through 20, 
with experimental and reduced data g i ven in Tables 6,7,8,9,10,11,and 12. 

TABLE 5 


COMPOSITIONS (PERCENT WEIGHT) OF LEAD SILICATE GLASSES 



I 

II 

III 

IV 

V 

VI 



IX 

X 

XI 

si °2 

49.02 

B 

44.3 

49.02 

44.3 

44.3 

43.9 

43.9 

44.3 

44.3 

44.3 

PbO 

40.02 

KM 

44.3 

49.02 

44.3 

44.3 

43.9 

43.9 

44.3 

44.3 

44.3 

k 2 0 

1.96 


1.7 

— 

1.7 

— 

1.7 

3.3 

1.7 

3.4 

5.1 

Na 2 0 

— 

8.2 

8.0 

1.96 

9.7 

11.4 

7.2 

7.2 

6.3 

6.3 

6.3 

Li 2 0 

— 

— 

1.7 

— 

— 

— — 

3.3 

■ 

3.4 

H 

— “ 

Remarks 



in 


in 


in 

in 

in 

in 

in 


-a — 


in 

T3 

in 


in 

in 

in 

in 

in 


a) 'O 

0) 


<1) 

« 


IS 

(0 

ns 

(0 

(0 


•h a) 

•H 

rH 

•H 

rH 

•H 

rH 

rH 

rH 

rH 

rH 


MH *H 

MH 

u 

M-l 

u 

M-l 

u 

u 

o 

u 

u 


•H <4H 

•H 


•H 


•H 








p 

0) 

u 

<D 

p 

0 

0 

<D 

a) 

OJ 


•P O 

•p 

H 

■p 

rH 

+j 

r—i 

rH 

rH 

rH 

rH 


•H IT) 

•H 

X) 

•H 

S3 

•H 

XI 

Si 

J3 

Si 

Si 


> a 

> 

03 

> 

as 

> 

as 

m 

f0 

as 

as 


0 ) o 


■p 

0 

■P 

4) 

+) 

pi 

<P 

■P 

S 


Q — 

Q 

w 

Q 

US 

Q 

w 

Ui 

w 

w 

us 









































TEMPERATURE °C 

Modal Damping from Fluoride Materal 
(Number Superimposed on the Curves 
Indicate Mode Number) 















































EXPERIMENTAL AND REDUCED DATA OF COMPOSITION III (AMB3) 




O 

OOJ 

c — 


v* _ 

m V 

or 


O' Oi W (7> O CT W (7* Ot Ot CH C*> ft O* O* 9lC)A OOlOtOl 9OtOt90QC909 


M qj qj UJUiUiUi Ui Ui U UU Ui UibiUIUUJUIbJWUIWUJWhilUUmbiUiilJUJUiUlUiWUIUIlMU4 
— r- *ruu-(oaif“«wr-u'9)-*tf'^<55r'TUiC)^«^0cioun(uin-*nNft 
Ef -*<j»r^««**r-'4>0»caw-<£O><&«r’U>4fiC'»▼u5ruu>oor»<—<£<£•oro^u>r-f--.or , trunjco 


_ . -rvAruinoo^ —uj<fi»o<‘o^u>r-f--.o<' , ifunjoo 

r» u* ▼ oj r- <* — r- <n m di oa o m ** «j ui n r> oo ui 019 ni u> r» ▼ r* 00 so *r * m u> « 

u><*o*p>t —mno»—ecxur* or-<*umA to-* r-<© ▼i*>u>o*‘®^w©r»«i>m 

** uj r- oj «o o> — •< o» 00 o> o» r- -* «r 00 ia ^ m if* to to <n oj to -* aj -•** ^ «• •* go r- r- 

•r «ntA <0 «P <£ <0 c* o» r* o to o>u> u» < 4 > r» «*> o> *■• ^ to ia r- *r o o to ▼ r* <n r* n to u> toto o© 

© -u>ftj©«r- •r<o) M ^c>wuoonjAiojna>nu) 0 >(Ano 9 (/)TT^«'\iTVu)«ui(^« 4 O) 
laj oisiTOi<'©v'TOoO' j s>inao©i0motOv0f ,, >o© uj m © © *o ^^r-mojor-uin^r-'iin 
a. — u> c* 0 ^uxti t—u>o>t 


'fl‘flTaj«M<o<AC T »cooomon^oion/»nfi(*)(»f-p-r-Tnonoui^^nn-(/MM^ 
uj ••j^r-com—iU»m-rcoaj^T-u>ina3U>^rur w< 5»tof^C7»'4»«Xiu>'^T-T’T‘'TT r »nnmfur\jaj 
ho^fUfunjrunTTnftjfUf , >i'u^^fU-^^^*-0<»®444i®o®©©®©ooo© 
X90e«9«^<»«Q«Q«0«00«0««OQOO«0«««0««09«$90 
VJ* U. • • • *..... 

o 

Q. m 

52 

o-i 

o25aoionT^l«ifl 

r E. .0 «£• © aj © o» r- t r- r- ©> r- i/> m u> 00 © © to f^ to 00 m r- ia -r is> -+ u> © n © o» ai 01 ai t oa <0 

_W'S-CUU) 0 )CO'VU-)( 7 >C 0 ‘i)~. — 1 /#< 7 . TO — VOf- IS* CO TO 

r:o»»««<\)«O(\in*4U)^mnTuiVTU>r*uM0OBA«flB«Ai««nTnj(\jiAi«^Tr«9 

2 00 o»ojo>o»ojojojo»coctjo>ojo»ojojo»oiojwojo*cjojpj«>©©®o ©©©©©©<»©© 

Ui .... • • • .. 

o-cj-ruv.oru-ruv.Dfuf'j'U’Ttfj^fu-ruv^fUft/xaAJ-VLftuirufuv.aai^uxsnj-ruiO 

=S 

w^i/'wAiu»9(\jnofu-<Tf*>wn(uno9f**«inono9^^wiAW«/i^»u)tA09r‘m© 

• opajn-Qwucaoo^T -*TO^o»ruoom -*«nr>-* «ri/>oru-*uiu*©—'C^^r-TOi^^^TO 
o f?»T-*r-oti/>«aj©i/>oo© 4 )( , >$«i*<i)T -*©r-u>TO©oo«x>^ ©cof-iAOoor-uiocAcoc- 
uiri uiokfn 

Cl. X M V *^ Ma4 «i a4M ^«4 

U. 

rnnnr»)TTTTtouiy)r- ('•NMnoa 8 ooB©eoo(unjnjaiT*r ^ ^ r-r-r-r-c*<*aio* 

• o 50 £> r> not o> o» a o’* u> u» -« •* ••f* fs. r- r- fi * 9 ^ ^ ▼ «a 10 vo *i>cooo «a 00 

C •iAtf>(A^t/>a>i/»uumAii)(/)u>inu>i/'«/MAum)i 0 U)iA^^TTnnnn 
Ui<? 


© I 'A 
r%uj 
<u«o 


un« *• *z 

I h Ui 
^;2|- 

S« 03- 

MM -Z «• 

oca: w ft 

UlUi D^y 
OLH> r ft X 
X « JOK 
U1C C30 


«A 

Ui 

5 

►y 

0 

O 

<aS 

Ui 


1 - 

<z 

Z 4 4 

«o 

: 0 

u. 




i 


•♦♦♦♦♦ 



& s 


«xninixmnira*<nMniignnignnmnnnnnwt 

i 

«ninTUii4M»A4i-<Aiin«i(ii«r>aA«««un<rt 


:asas3sjc»jsj5sssj5{s5**sss|| 


28 


SUSF 



















































TABLE 7 

EXPERIMENTAL AND REDUCED DATA OF COMPOSITION V (AMB5) 


Q rt^00«0©«^«^-4(3000^05 1 'j^<i'5^<j®0«©00©®® 

OOI* ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ + +♦ + ♦♦♦♦♦♦♦ 
c wiiiuuwwwujuiujuj u^ujuyyu^wyuiUJUiUiuJuyyuiyuiuiuitMUiuiuuiuiuiuiwyutuijiiiiii 
*• -«< 7 »rw- —<r-r» rur-ocn<Afn(nr-AOiKOi£(*)'&^(OQ(Ain 9 oco< 0 «S 
u>co»u)r-f'M©oj» , ><sujnf-ft-4u>«j8eoTTO>'i)Mf-nrHny^T< , )inu)njM(\iro^ , f ^ ▼ t(\j<ouiooo 
w ^coooi^r-iMAtf^oor^nco 

oru>v/>o»o»r--*®M4>T — c* f cou>o*«Tntor •^(XKnnu}9<\j(7>^n(0(/iTO)-^«4MO)oi(ummu}^ a 
-j air-ajajw^'X^o—cor- T©nrajrucon^o«< 5 ^o»nf\iTOojoi/'*nj( 7 >yri(» < »Ai«p“(iiomoT 

i/* a* o\ t u> r- cn -*« i/i u?« -+ —• r- co oo a» *• — — •* -* <0 r- <0 so ir ^ ^ *r <*> ai ai ai 01 c* cocor- nj 

a) -r —uDcocn -r o u> i/> ajoj <4?® w>r*r- <00 «r r* oaicoai ootp ^ c*. o> <* ▼ -to o> 

o c*i«i'fiaH^a'<7'Wcooo<aoo>*-MO-*('* —waj ▼ r-m nj ro o ooair- ▼ i/> *■ -s-iuii/'-nui Vcdc* 
uj *>r- ▼ Oi/iO'r- ToinoC')T^y«u>a>otow-*roajuH\jM«nfl^(7»0(n^noo>r-T©c»kM/)iMC , < 
(L ruuio»n oju»'?»f r '«-'AjUic»in^a>n^aji/)o»n^(\juicjin-<u»piD-»roij)c»»-<i\iuJoi^(uu><3*T< t ' 


c-r-^cuiri^u3'rLni/)0-rCT>r-(7»'r^cwrgoo*va>f\H/>i\jT -*c0'.oioatTi/>oioo<\j-*c0Q<£is'>u>o<^u'CO 
u4 •r-onr-njoir»^fOuiu‘>f-( , u-t/'*- —oy▼ QOt^rvj^^yionj^^oof^atootrrtfiTmmnimfVio 
v-u-T'iTTOjnj^Tu.ojpTinuinTUJt’-r^i/j’r TiAnn<\jfUT<u-<-<*‘'--C"SO'5i»®®oooo 
•— <T'S'-'3 0 0 0QOOO00O®0'®00<»0«>0O0«<S>O00OO<X>O00Q0<S-00<S.^«5>'S>«S<®-?? 


q «• iai 1.1 t.i 1 fi 1.11 . 1 i.i 1.11.11.11 f 1 111 1.1 i.i i.i ^ ^ ^ qj 1.1 u u u u u 1.1 i.ii in .j ujujuuiuiuujujy u 

3 — '.or- — *jj-?■ «ij 1 /* — .cuun^oo cmm ud *5 »-*r-‘X/OHoric^ 03*i3 <\j c?>r* i/)Tnn(\ju)^i/»ornfuon*® 
zz coconjr- nr* •ca'ir «D»i,r- ^r-<cu. — <>jror-r-^-ro—ruto^“pr-roro--^r« 7 *a ^r'^<SiU'0» 

rnr — ojaicoorn-TLor-—«r*roQTOO<s>cn®aiH"'rucn'<rr-r- -*Ui~«ruruoornini/)<&'V’U><i>0»vum0«"Oi 
E;oj-funTnnr'TU-iTT‘ru>u)(ju»(or-rr«CTO»c7>oiorurufunT -r -r -r men0000 ct> ruajnjcot/JMJ 
r C0 0 V 0 <%lC 003 00^CJC0t0Cf>«0000 00«C0«C0C0 00 W* 0000 C 0 C*>CT>CT»< 7 »^( 7 »Cn< 7 »C 7 >-?M>O(?>C»»^^®«^ 0 l 




a .«i«V 

00 


u>'awnTtf>ywn-ru»y(\jT^aj^Ti/'«if'jn^y‘fiojTwynjnTuu\in^inrtinTtfiyy 


o o co <s» 'o w «i> ^ </3 • .0 1/1 o» ® •* o> ® oo i/> r- it <* co r- 00 aj r- © oa © ▼ ««e u> * r- r» m <n aa « u> 

* '£*^^ -<(\i^Ajoo(uajMP(ii)T<iKoninnooiOMunnr^ytfi^«yokoi)r'au>r>^^Yn(AnT 

yfj ixiwain ruen a. cn i*u 1 / 10*0 yn ruu\wr'^(uino»T-i»rc>^ 

OCX —• *4 *~k -* 

U. 

r> r-r- r- r- r*j r>iO)(ott0toi0ioiOk^^9-*^^««^r | >rin< T >fniiiy(oyflocQnor\iO)Ali\ir k> M^r ,a rflo 

• o * 0 10 « a *0 *.d rtj ai rtj a» ru oo 00 co <0 co v> cr> in •* r» run *n <n 1/1 u> u*. t/» r*- f - r- r- ai cu ai ru <0 mJ cou>u> r* 

ol r- r- r- r- r- *p vp sP jo <jd -t -r *r ▼Tr>m^ftj^Airurgi>«?'C»»0>wy«oyynnna«»»«<vniflmi«in 
C * , £ , 0 | i)'DU)yu) | i)io*O'D'a<fl««<fl(A(oyy«o«A^ i ou>tAtMAyifiim/upy(/tu>u>TTTT^T , t , fvy 
yo 


OJ (/*<t 

— z: ujuj 

f'J <C '-> 00 

- a 
*♦0 *-« 

uj -r oat 

w I '/>0 

on 3 
uni •« 
I K 


b- •• 

z 


UJ—» 

hQ 2 

c -x 

V 3 « 

OCQt 

UJ UJ 
(LH 

*5-2 

522 

£30 



run(\jr-uj^^air*r*n(\ic»>nno-*o»CH^U'"-'tf>^niA(MC’‘t <oo»nTy—r-(up*«*toai 

c-otnan—cur- n-.nc^a»wuieoovTrooiPBj^ Tnj^oi^okflo«ToirTU)Tna)T09yr*N«y(Uy 
aotoN^ioyoorwof-nn rt$r»on«(7><Mi/)TnT^y(X)M\jr4»-( 1 * , flU' , f 
•/>ou»«ju»y-*r“^^ii tojujuju - ! . J > l /»Tr>nTfuy-»-*fo^^ —— oo®o®©^o®oo®o 

Oo .. *fl 

^J<x < 


♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ •♦♦>♦♦♦♦ 
inniyyyy y yy yy yyy ujlj y yyiijy y uiuiujyuiuiujuiujiii 
«nr*©r-U)i\i(-rtjfoajnoaonTnft3»3njr* inTi/)n*-n 

sznotQrniAOM/inooy (/)»«n^ijiu> **r*Mu»^ 

o % T®oin»®OTor«uurco^(MooTTO<908Ai(oatyu>«<ii)u}n 
o z TP-OiT’^ H^nnooaflT c^r*i/>n^<ju»t>»y<MP»yo9To9f > * <ah 


♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
yyyyyyyyyyyyyyyyy 
uiyu»nu)(J»ai09nw5N5y'r55> 
,vi^^^n)^®ooT«o9iuyu>^®3 

u>ooTnjy®rt*4®0)*«r(\i®oia. 




m(vhtuu 0 •ma®«*oi(*>^t/iyr>aoi®«<AinTu>(oroaoi 


fUrtiftjftifuiuninirtjrtinmnnnnnnnnTTTTTTTv 


30 


KCOUC SUSP 


















































TABLE 8 

EXPERIMENTAL AND REDUCED DATA OF COMPOSITION VII (AMB7) 


©<u ♦♦♦♦♦♦♦«*♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦■*♦♦♦♦♦♦♦♦♦ ♦ 

y *+ wywuj ui lu ui ui ui m u uuiumyummjuiujmuwuiy ^i**^**/^!/*** *if ***‘^ 1 *** 1 /v* 
**u>u>\flo<nt^w^Of-' f 'i5<\i^ , tTwooo»N fuu>ofur“<^r^Lor-'ooMDir**\itr)Aji/)© 
uii:u>»/tfMC»)<rii)(aorurs»ooou>r'U0'A # i» , rr)n(j>nfl>®»>»Tr-nr-tf)cuN5k , rToi> 
i/» f^ionjfonuvi^Ar'O^^^^muimtiMAtAiAaiOkni 

ozoo^r-o>nc»iO(\j-«r , )p>nj( T 'o>-u)-«c*<joiiflr»inm(u<ufla(n-4f-»v < >j&>fon^ —u> 
— rnr-—a^r-t^-vruT-rnomr- r-ajoonnjo^co^aiOMUtioiACDmtA^^Tr^aj^ 

m'rojr*aiu><i>*T'e s -'.fl'7>oo<.ocnnoj —— — vocop-cofnuxijttfCMf’onjro—cunj—«o—<* 

u»'SNO©0'3T®ftjr'‘S* , jj^ii/»ui" , «M/)oooooo®®y)«-<r-i/'^^©®ooino 

o oa«i^-*®fuiflOT —u> •-cu t\j aj m cm7 # ^ •r r- ▼ 'uu>cft«.£<\jr-<\jnjmoou>oo Vrunjoo 
ui t —•c7iOJOLn-<«5’Ln«s»Lnaj'®‘X>cn©oou»^oo4/>ajcDooi/>ru^oo>X)f r *'»c»>'Drooa>r- ♦ 
a t wno» airi^9^iA«*^oi^u»o>-«(\iinO)AjuiOi^Ai(AO)««aju)o»^Oi(/iO»M«‘Ou>0» 
um 


r- ^Md(u#aotu)'ro3ooriOiv0(u<\SN<M<iK s *m9co^-«(^\Dr-coo>ooi>o«>jO)n 
Ui •f\j-«TU)cnTC?»r-.flC'(0‘S'flOw3®'iJU)ca<ja)TG-u^fnmi/>(^roT>x»'S«'%>r-inm^ 

M'X9'9 9<S90 0 0000900^<D < ^^O l 9<P<^d4)900000000®®0<9Q 

U7 u. ... • ....... 


• <\J ♦♦♦♦♦♦♦♦ 

o « UJUlUiUiUi LUUiUiCUUiUiUilXlUiUi^UiUiUiUiUiUiUiUAUiUiUiWlUiUiUiUiWUUiUJUiUiUJ 

▼ ®r»oo>«>t/»r^©r-i/»r-<uy <xi©©oo>ajoor-—u>u*o>f- 
cr* co 00 *.o o co 00 r- c* <\i r- *\i ▼ <r o uuj“> r- r- ▼ ® ™ oj <x> f\j 00 — to —• aj i/> <x> r- 


♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 


-•aiajnjajnjrurvi- 


« «\| cm «U <M ai CU O) m fU Al ru ru 


•— • y ui<MM»<U’^ , u>rM-TrM^u»cuy u>my u»*’urx^’u , *ajc w »^u»cun^m<xir>«ru» 

§$ 

r-ioo.nu'f (- c-xr- ®oouGoo-<n(i^t •jOvocuf'-aj—'oocrvcncoc- uxnoeo—tst«M 

oo—u> — ^oocor-ajooajcn^o^oa—uoa> — ooro—cooor*- Tf^«n<c®oocooTO>r> 
0 ^^ 22^ ^ ^ ^ ^ o ®o ve © o> c*» to r- u* © r*- • i) ^ <3> r- 00 <jo © 00 00 r* © 00 o* c»> 

^NIAW C7» LOCO u* tf'Ci — CD C* — rUl/J<*r\il/‘C» —OJI/M7* — OJU> <7» — AJU) C* — OJCPO* 
u. 

— — ruu5rnro<n-T*ruju)iiP<^<&^'T"T ^^■r-r'-r-cococo«©®©©»>jcu<\iair-r-r'-r- 

-rV —— —c-f^r-r-©®©©aj«\injnju>©u»<i> 

St ^ ^ ^ ^ c*» r- r- (o<ou>«---u*i/>u>inu»i/»i/»nnnrt-^«-*w»ooci)niai(\i(\J 

C^’i>'.ou>is>i/>UMS’t/'t/>u < >u»inM>«s>i/> < T^y^ ^ y y «r y y 

-2 

▼ 2 ju JJ f- to «i <n t ru -. rn ▼ <r. u>» 4 , t r- aa 9 e o* «n 10 in mruo <p ® o <u <»> u» r> r* 
c > r- ui U3 m .0 r>. i^i 1 - Ln 1 ^ -r us -r 1^1 <s. u> oj r- o ui — '*1 'M r- m tn r- -r -r r- c j oj nj 

a:r-^><i>r-piaan^nj9>—••>mxoitncanmnjr~ »<«>eorti®ni'*'®«e>niu>u'>*>«»•’’«> 
inonTnjmr.inTmwmi^Tm-'^^ ^^ootnnTT ruruiuivj — — 00 ® o ®® 


202 9 2 s ‘ > * e<9e **i , ^A««oie««nooo44i't««ses«»a 
O—— — — — — — — — — — — — — — O —— — — — — — — — — —— — — 

♦ ♦♦♦♦♦♦ +- + + + + + + + + +^ + 

UOOJUJUiUiUJUiUiUlUiUlUiUiUiUiUtUi UiUiUiUilMUiUiUiUilAiUiUiUiUiUJUitJUiUiUJUiUiUi 


3tri<rf®c7*r-'ficotOc*f\iyy_ __ , w „ .. ..._, 

— jyignimrtjcotgjg—i/jcoy —<ur»F-©F-oa® is»y r* u»c*©ooi/>i/»vpr-cu 

•• s: .. .....• • • • 

oo —coruc* — — — — — — curur^or}—mrovooioi —oooioiru—mnn—cnyicn—yy 


<* — 

—cur- F- c*r- c 


— ojn^uujr-cnoi® — oj^y meat* ooet© — cumy u»«Ar»co0i© — «vmy 

——— — — —————rtioirtirti wnioicxnv njomro cun miyfnm^g 

* 


32 


DUC 1 PAUSE 









































TABLE 9 

EXPERIMENTAL AND REDUCED DATA OF COMPOSITION VII (AMB8) 


M toiUJU KU UJ Lj UJUJ biUj iAH/iUiiiimAiuiUiiAiujtAitiniii*iUiuitiiuitiiiiiUiUii^i^i|/ij fi.u.ii.n.ii.ii.t ».»i.i 

m in co t& a) vfl c> *r © -* q» q» -t « to ^ rn ▼ r» «£» <d ^ oo -r c* ^ -r to rv 10 ▼ to q* u> m Ok ^ 9 to 


(/^c^rum»7*c^ir»ir> —ooou*'*-—•—«rnrutow<7> 

V»N" “ * . 

or 




10 ▼ to a. r- u> m <*1 a r- © u 


r-uiNeoi\i*«<fiO<xi(<) ( i)^v M<\jota)uiONur*«MAaB(uniTr^(AQ)TiP«Dmm(\]^9MMUi6akS 
— — - -- ---ru t /n/»*or 3 coruajrtju>©<^Oif^<*w©© 


ooou/>r-ruc*co©^ — u>o>oo- 4 i/>©©(\iroir»co**u/»o>tO'Tf__.__ _ _ .__ 

i/jf-fn^njr-r-nftjnj^rwn^fOT — ^itktvco^ -^o>u>o^o^Q>f>J^>^U•^f'- 

r- t to to if* 0> r- 00 c* -* — 00 -< co r- -• ©0 <d 00 -* r- u* to to o> to u> isi ▼ m <\j r\j ry <*> -. *4 «• «* ~ «« «« •* 


yjttr- ^Ci( r '«'»x i f\J , tu'»( y )u , )^vfliflC»ft«r-rtjCTftini/nfltor-^u , >Tnju»f-.'u^ ^<&r>u>najo 


o © — 
Ui 000 
a. «■* ru 

U.C I 
X 


aiiflOonjTMui-( v '«l>ai’rf- ■r*4*ro>r-ajio©©rurutfl<\jr'>cou*»a*t/>rn©ooi/»*r"cmT(d© 
10 -• r- © w to *h r- © co u> ru 09 u» ru © 00 u> to © eo *o m 01 © 0010 © 00 <0 no © © o to *r ^ © o» r* <0 <*i 
lo < 7 > '"o •^oju)oirn<N(uu)^(\ji/x^- 4 <\JU) 9 »« 4 (Vii^(^< v >^ru(ii^ojiAoiT«*i\juia , r^<\)U»A < t 



▼ -r co 00 © -* c* < 7 » r- ▼ •$ r- © r- ©» r- ▼ r* 00 r- ru ru o> ru n «• © <r ru ru r- co -* 03 ■* ▼ r~ cu u> ©<•> •* 

ui •nnj-^<o©r-©f\upruoor>tn-r©n^o»r-r*ajrtJfumr^r-<noor-©c 7 »io^fu , rir*a>a‘ 0 «XM>'«D»/»co 
h- 0 cn ▼ m to u> u> v/> r-r-u> »i> u> ^ *i) ^ n ^ f» ^ ro fo u> ru fu o-^ ^-^ ^ •■ •• © © © © © © © © 

k -*<XOOO©00©© < 3'©©©<V©©©©©©©©<S'<S’<S'©<S>©©©©©©©©©©©©©0©©©© 

........ 

A 

d.u* 

£•/> 

©O 
O-J 

•**!♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 

£ £ o» -r ai © r- i/> m 00 -• <2 00 © © o> 01 r- r- to •* to r- ^ to r> to oo r- © r- m to oa cn r- to to «r vn © o* 01 ru ut 
^ ©«i)« v >mr*roo#-r cn-^ai-r ©cuajoo©c^fna»rn^f^^u>c»>r><?»*^'^)ajfu-^^r-4^n*jo©r-©'VT*o 

'Z OOaaaCi)O 9 OOnaOtUODft 999 OlOK»OIOtOtaOtO»&O» 0 )ak»Oi 9 tC»AOkAa 99 O«OOO 

Ui ..... 

9 ;«vjnTU)«p(MnTtf.iflnjn f iTi/>n^u)wnTUMunTUHO<unTwnTU - '^<M‘ , >Tuu«ftin»u«® 
sis 

i/» aj © m run u» ru ©© Ok © ai < 5 * r- co o» <p i/> 01 p- © ©©00 <j) oj ^ ^ in nip*» oo mqp 01«00 

O <?• r- m© 00 c*»r- ▼ -*r-<^f-u»tUcoui-r o»oo«j»u>C7>oor»inruoCTr-©—*oof-vi>©^o>c»oo©®©©© 
ujfj njw<r.i^ ru to cnm oj ui r7ioju»<?> aiuic »>iw»o»T^<\iu^- - nwvo»T**<n«jCTT*<^m©u> 
ill —< —^ •« 

La. 

M ^ M ^ M nj(Vjr\irunjmmr>n'r t- rto*«totor*r-r-r“r»oooooo©©©©©ruojnjrunjr-r-r-r^r> 

• c* ^r- r- r- (-f»nnnn«»OM/Ltf»«n/ t ^ — ©o©©©aj(\icururu<o«aa»«AUi 

*± Mj'U<ururu©©©o©v>r*oc*>r-r' r-^u^uiiftL/vLOinmnnn^^^- ^cooQoorammrurururu 

Ui 

»“ Ui 

o 

OLor- 1 - n«Tf- i 4 < 0 (%r , iAMjos«i t utat<#r> o« 0 i>i© 6 oom© *r 
^50-1/. ^-Troinm—•ru»u^© r U‘peo©Tmruooruo(\j^-t^r-ruunor^Lf>©—u>a»Lm/>r-©f"0>vo<» 
anu)^u)0>0‘Wftjw^»(flf u»r-1/>*■ ^^^m<ucun 

•/JOmtTn-A^i/untu'.ou'n^f rnnoniuaittnfunirum^ *-*««©©©©•& ©©©©o©©©^ 

</>k ..... 

C'V« «A M 

-i«x 

u. 

S2222 9 SSS2^^^^^ 09090< * 0 " A9e " 0d0 2^22SSSSSSSS 
♦ ♦♦♦♦♦♦♦♦♦♦♦♦♦<•♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
LOAJUJt.. . 

3«**C 
-J f# r- r 

S cc^oo'Dair^ u>©*4 idu>r«r^ «rr>r-<?»01 o»r ao^dirtujaonOMn^fi-t^mncKQO^r^wo^ 
oZ^ 9 Tr*(A«*nu|AArgAitnTM(«) 9 . 4 (ur* i<nmAnoNo»(QiuhhttO»d«< 4 U^^«Aj<yn M ^ 
^•A^-(\jpiJ«njrtloB^uni^ryolJnlrtin-ninjr>riftjwamu>mnnn(iVTTTtVW*!S 

««• 

• -^rurn^r c9CH©««<\ir>^L/t torsos 01 © •4Aim^iA<#r- eoot«^oim , vvi«(^aoi«<«Ai(*iTfig 

g ^^-A^^^^^^^fyruAifvftiftiftiiMftiftinnnnnnnmrtnTTT^Tua 


•M0 






























TEMPERATURE T DEG 



Reduced Nomogram for Composi tion TX 


































TABLE 10 

EXPERIMENTAL AND REDUCED DATA OF COMPOSITION IX (AMB9) 


«/» X 

or 


ooo90>c*cnoo 
999999 
♦ ♦♦♦♦♦ 

1.1 I.II.I U UJUi 

-«'ral©oai 
«r vx> u> co 
r- <rcou> 
& ojcor- >i>oo 


'KT)0iCAOOC , it7«C f ii?^(7*?*^(7kQt(lk0M7><>Ch^<7*^'7*9»9OOOlO)O)OtO»OIOkOkaOk9O»O»O»0kOI 
>9999099 oooooooooo 00999999990 99000000 oo 



__ = - ^ __ ____.. . roju)(/)OTU)r>oo-40lAj-«<f«A09n 

■»n>0' , ncoi/>o < sofVJini , >u)r'n(iji/)i/>r'oor*u>y)«fi(VU»^p-^f^Ofuu)nuunTU>T«UJU»f“ 


o 

ui 

a. 

U. M 


r-r*—> — ojaj«^Ajf r »<7»-«aj' v u/. — ▼*rr- «-rooau>u>ru^r-‘6i/n/>r->.0i0inr*v/>'r''r Tn<\iniAiniAi^^**«M 

ronu)®oiDr*-«o©oo-tfuOi /»—mojootqo os>r-nji/>®®Mn®9ooooA®nj®U(U>of-®u)Ooni 

inr- cxjoirtcoio^fxj^or- r*r~«fio 0<4>9*$ «*ooo in t^cu-r m nr- Vwo* co i/joiovoai o ni»T» 

o*jDi-uctja»a»«i)r^ujo<7>«jtoc-oa>nir- o^r-rur- — wo»r-mooaio»r- ooajcnr-▼wvo 

njinooaj AiuirtM njinoom i/ioon an/toon rumoon nj i/> co co r\j oo m mutoom ajt/> €*)<*> 


.^r-njriQTa»oow>(7»‘ficoooriwv-'T-*Aj<innp»«WAieHMh-»’r«r*oo^v«flL 
u j •ajojnTOoruro-r'i3cnaj”n/>oo^^icnoj-^u>'> , ri//r“r-co--4C-u^i/»a*r--^TOicnoo*-o 


...... _. _ . ... . . .. _ ____*OO(0(0l/tlAU>T^ T ^ 

•"•X99 9 9 0 0 0 0 03090000900000000000000009099099999000000 

.... 

o 

<k •>» 

r ■/» 

oo 

-J 

Q«»UIU4UJUJUJUiUJUJUiUJU4UJUJUJUJUJUJUiUiUJUJUJUJUJUiUJUiUJUJUJUJUIU4UJUJUjUJUJUJUJUiUJUiUJUJUJUJUJUJ 

o •— r- *t®'X)noAio^ruf- -* co r- , rr-a>i/>~*rvjmu>~*cooovoo^ruotunj»-ifu~r-i/ir“^«i>3u>or-t/>^’r , -r> 
= E 5r<£~ , '* , '~ 0 ^’ r “S2 Cf>0 *^ >c, » €M ' r > c »*£ ▼ ^9^^fo«i>^* ^si>roro,\i^r-f^^<xi(o<9«o—c-<owai*9-^v»aj 

oo — coruaiainjc?>romr- Ujp<i£90oc»ooi/><£0'J>c*'r — oojloujlt.▼ r-co^——ujnr-—< xico^o»oj 
EZ o»oo»o»*->®cn®®(u*<fl9-*<unA)funu)nn(o^wininTU>M , -f-f^r*o>o><7io>-^^^flinn<untin«» 
•x c*i «;<»•>? c*> c* co c* <?> cr> a> a* cn o> a> oo»o>o»o»o<*<»o>o»a»o>o>c»»o»o»oc»ooa>993ooooooooo 

Ul ..... ... , * 1 • . *. 

—^^^^^^^ftjrtKuiuwtunininiWftnu 


-* v/» 

O Ui 

itixo 

- MQ( 

WDU 

wior 
m£'AO 

o . z 
UOI x •• 

JEltt 
x<xoui 

si lit 

C>t 03 - 

X — 

ocar a; 

UiUI o»-»uj 
a. H> ZKX 
lai- 
ul£ C 30 


* >co^f lAtoftjnTi/HO(unTifi<AojT(/ivOiMmTir>a)ninTUiU)ivmTU)(fln]nin^oinTiou>oir)TtA(oni 

oo 

*<wU'U'OjTf- t 'jonCT>c7>cofvi»/in-»g^rncuLr*o—(T j^ocuc^oo-^-——••- cnnxir^maj—<r>D~cnj/>^uoo»<»—«o 

• '■•JOM-ftj—ajcjK7>u>«ijai>s—9f^n , rT<Mnnfl9PKnn'f — «o—(/>ro(^9—toai^inooi/>—^ oc^ooiaooiu® 

o 'jOcmjio-t x> c*co a- -* t/* <’j <* '.o irt c*> <?» so ru ‘.0 9 cd co nj oo cu cr> ro r- ▼ 3 ▼ c» r- -re^io o 

uj m aii/i cooj Aji/iWrtj ram corn cr> oo ru rvi i/> cooj aiu>aor> c\ji/»ajf> ruiroin ruiftftci — 

(XX —« -< M *• - — «4 •* 

u. 

oo90 < S' i S--^-(uojrvH\injmo>r>M*r t aocooooooo o oooaj tMAjcuaj-r 

• ° SC *£ 1 C «? yj T. T •* •* Iz f ” f - ^ f- <•* ri ri oi oi ot o o» io u> u> uJ u> r- o o o o <u <v nliu w ▼ ▼ ^ ▼ o 

9t ronmciCinAjAjryrvioo® 0 9C*0> c*»c»»r-r-r-r- f- co r^n «-•-» ~*~*0>ooo9co<mAui v>is>u>nj 

Uls? 
h- Ui 
fit 

u> ai o ^ o u i m 0» ^ r> r • m ^ «o«A cor* oory m « r -ia o ^ co r-^ ooia o <ncuo»«A « ai ^ «Ai#MU<a 

ror- £ ruo>r- njo)toouvx>oo t r» ouot —.ojrof-coi/ ' ^cnf-maioooonj — ooajvoair- <c o*ai< 7 »u>a>l^o 
a oooAjajo^rucc<c ot^r-ai aiu>o» ▼ r- moa> coooai o»r>u>i/>oruo> — o—or- ou>r-u)^ru*>^ 

/J® *7 °i *^®* -n J /T '* ,, «'^cU'f'^c\imrvuc\jmr^cg#\ir>fnrvo ^mai «*•*-*9909999000 

oo 

-J X 


0>Qt9OOC*O99 9C»O 09 99990Ct99099099999090999000900009990 
♦♦♦♦♦♦♦♦♦♦♦♦♦« *♦♦♦♦♦♦♦« ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 

' 9)OiAU>ochn(dr:OOTnJr*-^^ 


ui -i ** m - 


2? 2«®<^20w ^tnocor-ruru aimoin <ru)ai/i-$ oouv6ts>is»9'dw>99r-rx9u»9«?'*T9r-0>Ai99r>< 
o s m-• m o o u> <o «c aj ry in <m r-o o oo oi o o m ai cK o Ai «a ««o ^ <n *« o ^ o»o ^ or-oor-Aior^ 

▼wjojuajin^oruoj — cQ-.cn-*Oru-rc^c-iajcor- ruo<\jAAiTinO(Dm^niMA«**TiooiO(oSa<nTC 
r»oo«*— 4 ««r» 

-«ai m ^ aw r- oo o o -• oj t* ia or- o» o* o ••«! ** o ino r* oo at o •• «u c* + o o r- a# o O ^ u»o^ oo 
























TABLE 10 (continued) 


ssssssssss 
♦ ♦♦*♦♦ ♦ ♦ ♦ ♦ ♦ 
UlUMliUiWhibJUJUiUJ 
ftj 

~*<vnAr- ▼mo*oo 09 
®r-®r*«Tnn(ou» 


MU><U^©0-TO>r- 

ftlirtC^n*«iA^mruin 


m <n to i/> ru oo m c\> •£ t\) 

©COO-SpO^O- 

<© 000 'S>© 00 -^i' 


i.n.i i.i t.uuuii.i i.» i|i i.i 

•r<*cot.i* *ru> if. a-nj 
r- ruuaotoc- rruM/> 
lt« —-r—<?.«• t-ru-rr- 
i/><0u>ooco'2.«rvjf\jc» 

f\jajruruaiajajoj~-^ 


«r k/i<0Mi “r LOtom «r 


<s»—.ipoi—«cor-c**—«»/> 
ootn otnrxjco^r* 


r-r-f^r-——— — 
U)(oum)« 4 « 4 ^^n© 

rurururuf'-r-c-r-o.— 
tttt nnnni/>tfi 


r- •jjneDOOituauxxj 
fOf-Tf\J^VP>fi|^GOJ 


####o#a### 

♦♦♦♦♦♦♦♦♦♦ 
UiUMiiUJtalUIIOmUJIOiU 
ua^UH- i/i A f- co ® cn 

Ann#r»oft* Af^'pa. 

—ajw>r^«ru>oo«—# 


# «-• a* n <+ in <p r* eo a d 

IAI/)U)U)(AIA(AU)U>U>^ 


*oeo 













































EXPERIMENTAL AND REDUCED DATA OF COMPOSITION X (AMB10) 


'soooooc 
!♦♦♦♦♦♦« 
^UiUJUJUJUiUJi. 
m® t r- ru a> r- l 
: ooojair>o m • 
. p- rif r- r» — < 
-*<Drgc*i/> • 

~*(\)lO T^lDf 


* cn cr> o> c»» c*» co c*> c*i c*« c* c». C» c* «7* «7> c* * 
JU uj u UJ Ui UJ Ui Ui UJ Ul Ui Ui Ui Ui Ui Ui L 

3 t Oi <a 10 {/• o) oj nj co 40 uj uj r> u> c 

5 tuju}< 5—•»r*i/inTnru[\ji/>03cn* 
^ («■ f-f-\ 

• -r o ▼ i^ovoa'COior-oajcncoiOGoc 
v.OTOO*Ofir-UJ®«njrjaor-cnMfnr 


^njwTfUflnu>i/»'A t <S^oiMP<s®A)noopnMn(\ioc9 

r£ .£ 1/1 mot 


C*> u> u> T S> cmo r- TOP-rUOOCOiOOOlOOCOO-**®.— <£< 5 ,^/, 

o u)ru^u)Pu)v0^r-u>9Uwnu)*r^r)««i/»u)QOA(A^^««O)in 
uj (7>cPoo>7*r~cr*njr-a»r r >ooo»rtia>0»«Uu)C»i0^ai4i>«.<7»r-o*ppf^-* 
a. tf' co oo loco loco a* oo ujoocm iooom ao Looom 


-.piu>T'S--^r-no»*Nno(X)^ninn®^M«Hn-<i^oi 
ui •oQr-u»©r-iou>ujoo<7io>r' , »'.ocor''u>*.ruj^®—•lor-o^r-T 

•»t9««<S>0««0«<990®0««00000«0090< 
LOU..... 

o 

a. lo 

£*/• 

OO 


0«»UiUJUiUJUiUiUiUiU4UJUJ 

o^oo-rajajcOMUJOr-ioio 

v co © ut o* a. m iQ *-• —« u% oj 
213— airuo»ocoooo>romcu 
r 40 4/* i/i *r io *r -r -r u> to to 


UiUlUibiUiUiWUiteiUillihiMiUi 
‘£icou)oooo^)r-OLnooLoaoao 
<7>-»vflr“ ^*.o<^tc*m-u<mcu<\jt 
—• — CO -« -< OJ 09 O — m -* <M 40 
M/HAvor*r>r>oaoto>oioi«*«* 
T^TTTT'f«fTTTTlAU> 




******* 


**s* 


c. •i\iTuwui/)n)T(nnj^i/)njTi/kOjTU)U)iWu>ii)(Ul/J(U , f (/)•!) 

o o 


-r-n.^ ’>'' r n\jcor-oa-ru3Tru-*uJi/'»TConjooTr-<.Of-c , ’)r\4M 

* ui^-<7»Tt7»cn‘x>-rujcoooj#5>r-cucorofnairn®fori^rna'*rru 

o cT*rof - C7*u>i7>»-*40C , >rncT»c7> --t^ , £ 0 >M 4 ocoCMj 3 a»fUf s - •* 

UiM lOOO co 1/<M IT* CO to 00 l/IOIIM LOOOOJ CO 


oiuc>9«jj'£iPinnooo^«4^<y*s>OOAjfU(Vi(\iT , r , rr-p-t te 
•• <-■■ *-*- £r JO m <T *2 £2 ° ® ^ -* -• v* u» 40 tf> r- r- o> ^ a* •- m 

CL mnfnifl.^(y,i^p>^«^,r\jfy(ijmtnmnooO®PPPk/>U<ii' 
«| * 40 40 4010 LTi U* 4/* 40 4/- 4/lLOUJUJ UJUJUJCOU* <D f 0'0 ■*> 4/14040 (O 40 40 


"•ClAJUJ 

ruius 

.. *, 

.*3 M 

ui->oa 
A » oo 
or- O 

OP«» 
i *- 

-j -*<r c* 

t9ClU 4£ 
K — KhZ 

3 ZJtt© 

Ui_> 1-0 3 

C 1 o o - 

MM <1 »• 

a: a: u. Qc 

UiUi OM Ui 

a. ►- zaz 

x 'X ion 

ui C £30 


lAoinajnj*r u’jruLOLnrnMMajrvjmnjfofucuru'T t ^ntni/xua) 

*/•►—•••.* • • . . . . • • . • 

oo 


®®«C»'5(7l'SOOOOftC7HTiO.(%(i|p|£»rtK>®oioo»ooo 

uxubiuiuihiyuiuiuiiiiuiuiijijujyyiiiiij'. 

3#«oo-Tf-n55u)n«p®nnwrl!? 

-J**LDO00 4A«C0n0000TM»Wwnp TIM 




3C9tfti<A9U)OiU)Otoooiu>r< runifuftjr 

O V CO (M 40 0> UJ M aj D Ui CO m MM«airu40^>C0MT oJoiOOJ' 
OZOOAl«-*r-‘4OO(9OtCOnjU*^r-l\JUJOOlT(MUJTUIT40 

— ru air- t O'OO t vooiaa t cooimiomuio] 

MAjnT4OU>r^009»4»^AJ«OT4OUir 


*KMj 


li 


ItKlttt 


<1 

















































































































TABLE 11 (continued) 


0*99 


UiUiUi 
coaj — 
"TOO oo 
UJP-® 

nu)o» 

oamm 


(fiOOl/k 
■J3 «M7» 
curnaj 


r^-a) — 
coTn 
©o — 

•VO® 


uiiuui 
® — r*> 
o>tm 
—«© © 
r- —oo 

▼ IAT 


T COtO 
(OrUAj 


Ajr-ai 

<* tf> 'D 


ojn© 

C*ru© 

ajmnj 

r*> —u> 

•© 

© 

© 

«- 

9®Ok 

9-0 
* ♦ 

UJUlUiUi 

9999 

u>SSi 

-990. 
9010) a. 

• • »*«9 

®-« 3 

O® 

i/iuwiwg 

* 


40 








TEMPERtfH5(te U ¥ DEG. 



Reduced Nomogram for Composition XT 














EXPERIMENAL AND REDUCED DATA OF COMPOSITION XI (AMB11) 


1^1 Li! hi Li! Lti UJ LfJ 1 UJ Ui Ul tli UJ Lli I a! lit ill ill lijliiLlI Lill.l l.l lillUl.l Nll^lUil.l i .l tt/tJlllimii 111 

^ <&—c-n r^u*u>ojr- mr-rnr- 3> 

t- ^*mr - or*- un©u>cOLn—c- ^n«nojfvjnTT 00 -T'ruNT^fa^r-t'uj® 0 B 09 ^««T 


W0lO(7‘C>ty0'Ol0'(y»C»ff»Cii?»P'(7‘^^0' < 5'niQkO9 | C ,, C , '^ , 7>'?>C»<7iff*C»0>0»0Ky»®0»0»0>0> OAOtAAOlOt 
A ®t90(9 0(S0<S(SS<S00'9<30<SQ0MO«^O0O0O®<5®0‘S'S>9900<9S0«0««^««« 
ofli + ^ 

JT t+UJUJLJUJUJUJUJOJLUUJUJLULiJUJUJUJL . 

wcu»ujoir»®waifUf-*-^f*'_._ . ___ ___ . ___ „ 

</t' r-t?»AjAJi/i(7kn«rur-Qan/'U'^6 , fl'5i;N(AOtr^ai^^^ui^i/xTjutMTaiai^otN 
oz^<7>ooujr- — — ar-<y»co la r-^vp cou> — cnrAujoor«-^ ajo^^onn^iDainiAut^in^mtnu)** 

~j o» ——o* —— or**v&UiAjr- ininooo-r TOrur- wOf'i)ru3»wO‘t<fif\joj«u)rtJMfl'flno*4U»u»v^®r-N 

co^(\jnjn-(\jninn^«i^TUW'Juv^f---n-<uvf-<fit/ui)r>N«nu>TruNU)mm<««)vp>rtMun(inI^«* 

rj aju>o*»c- 7<fiooo(\ju>u> i &f-<»^<90^'uu)«OT^9^rooQi/iooTU)^QnMrf4^A(uoou)0 

o nHfuooA^^b'nuiTniotoOTi/i^^^TrN^YtfKnnoDuiaMntovafOXfi^r-ooaiTr^niriniM 
m c*mp — «rr^-pi«.o—Lr>r-c»a» — ir>ooc7<sijruu>CAcrHfl—tfioociiruvOOiOxotur-oonorur- -^c»»(-^f*^o»p*naKu 
“ njuiojai ojinooaj aur»co<\j iuu>or\i au/>oaru tncoru aj u.wn ajuicon ajuvwm nju>cofn 


c 

X 


•ii 


. f J 

X 


ojijukac* womujaiLDcor^moto^f- o —<\l<\lt/>oou>ruu»u>®>r-i/>r- c*muu- 'X><\jfnir>o ——o*—o» 

Ui -fATr-©® <r I s -ovruoj to>i/»i/w- a* coo mo‘proi/* cow*-*o>oo>fU r-uwu con u>—or-<oajOkr-r-<&f-«/»u>'c 
UoOOO^'^'S'5®♦Q-<fn»i(\JfU^OJ®< , U —-'*^<&<\]<-i*i^O*^^000-<0\i«S 4 y 
«■! 0£>C ,i ^‘S'0'JO<5tO®00 0 000 00®0®©0®©0<S>©0‘^QO'Si;w'S'S‘S<S''5®®'S)<5)0000 

.*. 

o 

a. a 
mZ ‘A 

oo 

EC^roc».r,ijw^(X>^-f-ninof(»®u)wnrtj^f u>AJ^(-<uto®«cnu>o>«9^^conNnr*^Nft)u>^-oo 

c X-rtinjrtTn-r *r coco to csiuxpf'-ttr- «<7»©<4><o<or-a>©© — m/nmfn^w ▼ ▼ ^i/>i0»4i>u>or»o»r-t^aao> 
X mOO)COCOOOCOa)aOOOQOOO«OBQSOO8attQBOtOOOOOOO9aOIOlOlOlO)OlOl0)OtOOlOlO)OOOOOtC>AOaOC>k 


A .aj r>«rinaifun-ri/*<p<um^i/tAinwi/itoiur>^u*rtj^in»d*‘U rn ^UJ«tfaim*'«/>u>«*•**■ u>«i>Aimru><^ 

o c 

^ y 

>fi'>H'n>ii>oiAnoi(nr>cou)C99'dTe9^<AO»r-<OfU(O««uvu/vP(V(0*4Oooai^«^M<u«o«9(0niMniA 

• ©-r©cr»n©4/»ajr r >i7>—'.o^e*>’rruo»*r©co—r-mairAai—rocrt *r coo^ujoju^o ai«o~*m’nj>r- <rcomov 

o a.vr "0<Mtoa'onTO>u-.^mnftin-u)AO>u)OTU>o>ru4)CiC^'flnjr* —o»u»ncoi\i«f-^coAi<7>r-(no»n 
ujm rvtf'Cnnj ruwHO(i) ruuioonj rgy- coaj Ali/>fO<\l uxoai ruu>oom Aju^oon ajinoon wtACOD 

CL X — —• — — mm >4 « m •« 

u. 

’r t-O' ocousujr-r-r*f-r-otaoto»cr> cocoa*oooo««« 4 m« 4 o**>m*▼>▼ ▼ «r*e< 0 < 0 < 0 < 0 <A 0000 coooqd 

“•'*r o®-5«s4 uj'jxoto <0 oa 0900 coconjnjnj njnj — — — — no mm in <y*oo» ctu/>i/> in minr-r-f-f'-r- 
a. O^o^'SOKTHhOx^Af-f'f- r-T*r^ , T'T«fl<fl»fl»flu»AjniniA)P»aiO(7kO*r- r*r^^r^va<d‘i)»fly>n(nnrnn 
S. * r- r» f-r-f* 


■ O *— */• 

AJ*— UJ 

fuxu 

— UJ UL 
•X3UJ 
UiCOZ 

A *r*n 

-JC jot 
•tfOU UJ 
>- M ftM£ 


z 

3«Q 

UJ«J 

»- oz 

EX 

- 

MM 

X •• 

osoc 

u a 

UJUJ 

5 —UJ 

QL*- 

zac x 

X X 

<XOh 

UJS 

too 


u>4|«r>vo^r«^<4 0 »akmo* 4 <«« —or- oor>r- -(uoi^Tonr- tA'A*4^<pa 
• rcnmrur-®— coajujooo* —© —<.i‘uTmmr»©'5u>r-vOco^*>'\jf r *c-m^a9m©u)r- 
a: cocuo — m cTKooc- Orti-4n«(UA <2 t u , ''o(-v 0 f-r>nj.onf/>«.coos mco —c*j— 

•no © <» — rofunj — njruru — n|ru\jMnjnt mm — rvirnm ■*• m f\J ru — m rvi — — 

....... 

J<Z 

u. 

ptM*4.4y9>4«<M^«4*4«4<4«4«4«4y«4»tA«4«4«4f4*4*4yy««*4y«4*4H««4Mf4«4 44«4««*4«4«4a4<M«l 

d%nJuJUJUJUJUIUiUJUJUJUiUJUJUiUJUJiAiUiUiUiUiUJUiUi »-n.n .i«»n.i i«h««««i ».h»i i»i»«h.i ut iAiUUtit»il»i>AliAji.n«iui 1.1 ui 

3~ona>ui<J>fVijrxi-r<a-r ajr?”<3-«<3® “iS“Wu?“fu“u>ojnjo*«Br- ffi^oo-•▼SPJ 

J H Sfi £ “> ** ▼ k> ▼ <M i/» <*) >» © ■£ t r- m nu w «r m—oo * — — a ui — ▼ r> « oo <0 00 t t «a » r- u> aa r- «n r» • •• •• o» 
Z’*roo<?it/>t/t(>t<50t/>ooCTcontrn^Sr^^t7nnf^ ©p- Tfu^v(09(A««ntAM4l^(V 

-«i»(m<v >r (\>«n»*oi<u^ruu>fUf4omj — natnia»m« 9 «a«iA 0 tA<D<n<n 
ronjnm»5)(un)nu'«pojnij)i/>oT •*2rtfotm«a<srv>4u>tn3ieor^9 

—<\))\jrvio>-' •»-»*. -.ftjojnj—<M<»i (nr'nin»m«n<*»«««n«mr»p»rt«n<^r» 

• —r\jm*ru>*or*oow®^ojrn'^i/>tor^oort«--ai^^ui*^r-«'>®—•rurn^i/>u»r*-oo^«*-a»n«rii»u>f- jioi 
o «MMMMMMM»xiuniiunii<ininininininnnnnmnnnn'rTTT« v«t v t 


42 

























TABLE 12 (continued) 


C* 0» C* Ol 00 « a» 09 CO CO « ov 


♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
ymiimiiuuiu juiuiumhi 1,1 
<0f*nrmoo^-<5njr-f^f*>oofu<0 
o in <0 <* <®<0 c* r- r- r* in tn in <0 

▼ ^OD^nji/uflwnau/uflAi 
r'xsTinooxM^utu^A^oio) 
funaiT««oiN —• oo —• <0 to -• 

v*«4Q] CO *-*C0^( s - >H fU 


tocooooo^coru^-coua-^r-^r- 
mo^rucnr-mcnr^^r- «r CO I s - C* 
ixi uj m ru \s, co m ru in co ru 


< 0 r- u> —ocui/> -r i"Uu»i/i-»(orn 
nnriT^oj'MfynojnjfUTia 
0<S'V-^000'^0000'S*0 

0000^«-S'«S««^-S- 


Ul Ui Ui UJ UJ Ul Ui (ftj ui Ui UJ UJ UJ UJ 

nj^-f - -&~Mur- U.njr-r\|ro^.r- 
'TOir'-ir — — mtn-»f-*rr*'X)cy> 
<* co -• *> to to *0 oa -* l/i —• m r* < 7 » 

a.OOjoj — — r\jm-r ,*«•, *r -s, . 7 * *7» 

cnooooo<5oooo®£T»cn 
ru oj ru f\J oj nj o j rj r\j .\| ru —, —. 




•fluiOfui/i^'X^OTi/icor-i/) 
«f<7i"i*j)*j)09a>ooojmw 
m o* aiLOCD m anna' aj 


^oonjojainioif^TTOO 
o©oai(\jnjajf\j«f t t t oo 

^^xucocooanmtf'iAU*^^ 

UHntf)TttTTTTTT|/i|n 


(UAnv^t/)«u>^oo(*ir« ai©co 
Tuai'S^r- t -4 

nnnnajajajajaj(\jaj-*Tu) 


© 

© 

© 

♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
UJUJUJUJUiUJUJUJUJUJUJUJUJUJUJ 
^OBO)«a(0Tinan5S9iT(n 
cu <0 oj © r- ▼®co«rtir-D*-^aizj 
aiM«inoa«4T©r-v©^njnj3 
u>Tma<noiau>r«u)©«4©a)a 
0 )©^‘flO)©H(n«^aj®com a. 
..— <n 

rtTTnnTTT(nv*r«>Hn 3 

M </» 

o 

intn i/> in in i/umn 1010<0<0<0<0UJ ? 


43 




















3.1.4. Low Temperature Glasses 

Six low melting materials were formulated for damping 
measurements. Compositions of these materials are shown in Table 13. 
Reduced nomograms for loss factor and loss modulus are shown in 
Figure 21 through 30, with experimental and reduced data in Tables 
12,13,14,15, and 16. As expected, these compositions exhibit peak 
damping in the range of 600°F to 800°F (315°C to 427°C) All these 
compositions exhibited slight tendency towards devitrification; 
nonetheless, composition LT-3 appears to be the most stable composition. 
Contrary to expectation, composition LT-5 shows decreased loss factor 
and increased peak damping temperature as compared to LT-1 and LT-3. 

It is most probable that there has been a greater degree of devitri¬ 
fication in composition LT-5. 

TABLE 13 

COMPOSITIONS OF LOW TEMPERATURE GLASSES. 


Ident. No. 

Pbo 

PbF 2 

B 2°3 

2.0 

LT-1 

84.0 

— 

9.0 

7.0 

LT-2 

80.4 

3.6 

9.0 

7.0 

LT-3 

76.4 

7.2 

9.0 

7.0 

LT-4 

73.2 

10.8 

9.0 

7.0 

LT-5 

69.6 

14.4 

9.0 

7.0 

LT-6 

66.0 

18.0 

9.0 

7.0 

The 

composition LT-2 

exhibited 

flat loss factor vs 

frequency and temperature 

curves 

indicating 

that the composition 


has completely crystallized during the measurement. 

These low temperature compositions were designed to 
cover the damping temperature range of 600°F to 800°F, which is 
normally considered to be the range of high temperature polymers. 


44 





























TEMPERATURE T DEG 



REDUCED FREQUENCY FR 


























































































































































































TEMPERATURE T DEG 



REDUCED FREQUENCY FR HZ 

Figure 23. Reduced Nomogram Displaying Loss Factor for LT- 















































TEMPERATURE T DEG 













TABLE 15 

EXPERIMENTAL AND REDUCED DATA OP COMPOSITION LT- 































































































































































































TABLE 16 

EXPERIMENTAL AND REDUCED DATA OF COMPOSITION LT- 



ow** ♦♦ + ♦♦♦♦♦♦♦■♦•♦ 4* ♦♦♦♦*♦♦♦♦ < 
C «• UMUUJUUUliJUUU/UUiUiUUWUUW^Uiyi 


00 09 00 00 00 00 00 00 00 <0*0 00 00 09 
If0009000990«« 


nonifltoNoco-r o»<otu>*>^ 


*3 to-ro>iroooou>~r- -.*ou>«\i^u>o*r^ uv?-* 
ui otr'-mc’irtc’tr^^O'^’^r- TO»TO»r*T9|/> 
a njujaom rutncon mutnn ruui^'*' 

U.fi +* *m -4 wm 

X 

5 


*o y> <v ^ a> oi r* ui ♦ •• » r* u> ▼ m oo r- oo r- ^ co « « © © 01 o> nin 
▼ ^r* -r ©-Toir- ▼©i/*d»f^^#ihon s - ▼ ©*not*-▼««<££*» ^*4© 
n nit/tnn Mu)A(*) aiiAOtn« 4 iuuk^n 


ca -•cor-ruor- -*r- -^/ur-co wm««o»<anj 
ui •'flS , vwr^oiooo9r-dlNwp-<oio , rrtn 

H^O^OOOHOMOOfiOQA&iOAA 

Hio090099««999i999999 


0090 

oo«o 


•«’lJ* + 4- + * + + + + 


■♦♦♦♦♦♦’ 


■♦♦♦♦♦♦♦♦♦♦« 


x £ru-’>£<M'«(^o<~uuA««nai/ir«o»««0»r**r»r»*’in£'r»<yr-«r'i0ao<ur*«*o*»n<'rou> 
—'Pajr-oom*» ^<^r- TOtiAinAuth ^©ooiai/*^©©^^^*^ ^r-r-r-m^cou) 

^=5SSSS«S8Si§X«5§2l585=582232§^22222!232r2i!£ 


9 j'unTU)iowrnTu>«i»(\jr)Ti/t^(uf , »^tfnoiunTu>«OftinTU»<owc , »Ti/MO»\un^ii»« 
££ 

T^ui^oouiflB(noo«ovoj9^<on^ftiiAiuiAOB(or>o»<u^iAT(n«\iv0«(OOOiniv« 


o c*u> -• «r r-a>«ijAjt9C7»<7>r-roooojo»r- ©ia©ootA~«<dOcou>*-'f s ’©C9ift~«r-©a9u>aJ09 
wn nuf»w»vj Ajinosru ruutMn <uiA9n**O)iodk«n««o)i/>c^o«4(\jiA0tn^(Uutan 
Ct X 


* wwootwfvooj'O^'O^nfnnpiftOD 
•2* cma-• *r f** at aiaj u> c»<J> r-r»i co aj <* r»-r 
wn •'itf'W'VJ AJinooai ruutMn ruut 


Ut*«OOaU)^AOC9Ut^r*OMUt<VM 


^ ^ t (£<4<4<j><£r-T-f^r-A-a* oiotototQ* AJAjrvjnj'U'nfnmno 

'Vtttfrooio 
& UtU*U*U'UtTTT-T 


^ 'A (/to 

n ui (AH 

r»j o — C’V 

** a © ^*<x 


r- -n< 3 MMotr^funi<vr\j 
uiruMnutnAaruotTUt 
(!<0^ntjun9««^f'>Mio 

O —4 ^ J ^ ^ ^ 


o —Soodioi 

SSS??2 


•• a. o 

Ui 


o#-x — j .♦ ♦ ♦ 4 ♦♦♦♦♦■*♦♦♦ ♦ ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦< ♦♦♦♦♦♦♦♦ 

O lu (AruUlliiUiUUitolllimULiuiLibiiJiiiiijittiuiuiitiuiiiiUibiitiUiuitoiuiuiuiiii iiiitiuiUiiAi uiitiuii 

jq 'tat 00 3«<5ot©ut<**<y<n**© 

'ISAUift I -J** r» C*»0I0»© ON 


22*££<J> 3£5$SSS?Ssra»?S??3!g^5y£saR?Sl:S2Sfxas|85;S8t3 

ui-* nan © rco*® *r « — crtf^r-f-oo<niAwf>uttfUf»<o^ Jtvor-cor- v 0 obo»c* 9 »©a»©»*b>oi©©*«©ot© 

Ct ‘JW M c ..... •••••• 

z - jv.o»a»-*--^«^^iurunj(\iAinnnpinn<nnnnnnnnnT , mn , rTT^n^ 


aa w at 

UI Ui JHU 

it- zax • 

£2 lis 2 


—aj n *■ u* <« r» « o»© »«a* m ia 10 r. oo 9# ••iyi* © 1 


£ 



SUSf 























TEMPERATURE T DEG 



REDUCED FREQUENCY FR HZ 

Figure 27. Reduced Nomogram Displaying Loss Factor for LT- 







































































TEMPERATURE T DEG 



REDUCED FREQUENCY FR HZ 

Figure 29. Nomogram for LT-6 with Modulus and Loss Factor 






























TEMPERATURE T DEG 



REDUCED FREQUENCY FR HZ 

Figure 30. Nomogram for LT-6 wiAh Loss Modulus and Modulus 




































TABLE 18 

EXPERIMENTAL AND REDUCED DATA OF COMPOSITIONS LT- 


VO 


• 00000000CO00 OO COO)OO CO 0009 CO00 09COU) 09COOOOO09 000000OOOO00 09GOOD 

o«u + ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ + •*♦♦♦ ♦ 

Y »m^UlUIUM(9m^WUihJyuiUiUlUihiU<h Hil hi4IUl uihjiliuii.hiii*il.i i.i 

* -• 09 oo o* ct> aj rti ** n c- aj 3 vp 5 a* <© 3 ^ Si to 3 co o ▼ 3 oo ▼ p- <n 

ci n ooii>ooaa>r\)njr*unoioo«4rio^r^oouir- ♦T^Tiinotnu)©ftTD 
o ar r* ▼ <pvo o> oo ts>«-««-• «♦ a «r ▼ r- <*>u> r- o w id a- 3 ▼ u> w> u» u> r*» 
-j co---^cotn<»r-'or-<\j^rcoAjoj^f\Ko^-^'^rofunj^<><ii<fl^fnT^T 

Vrnriuiui Vm^ooo»r- r^r-u>t/>V i/!r?^r r *VAjAjftjAj^^^Aj^^ — 

ir>©©©Mnn©o»u>uiu>^©©©nAinj©Tu>©©9)u)©©^u)u>© 

o wfUTto)r'a)«WTW*<o»w**UiOic ncoaoo^MO)©niN©(\i©<\j 
UJ At 9<^0>Y(^^0l , rCKU)0>T©U)9>T©l/>^t©(AOl0^©©IA(Ur' 
ft u>oam loco m laooca u>c* n voovco morn hAc7><*>-*i/>©»r) 


oocooH^r^r>-^cor-a>c7»*^<x><x)r^»-»oor-p^r-a^^aj’roooor^ **r-r-r- 

ui •(U^^oi(nruni(V]T'rm^nAlA)<\}(U^-«« 4 M^«'^^<&4)©^©oo 

KO'I»OO®^®-S’0C'S®'S-©«5C'0®0®©Q-5©<5^«.- , &©®-S©® 

>-<'r i S < 9 l S0 l S<9O | S0<SOOOOO(9O0O$O0OOO09O09®'$ 

•/•w...* • • • .. 

o 

CLUi 

C^A 

oo 

'-J-J 

o «» lt»aj iu©coi/> -r *r cnAi©<oco©!nMOn«8(^>rT(3c>!A(nlnMii«aKo 
c e c*»a» r- • i3 aj <© oo co v> oo -• ai r- u> rn a ©> r- aj ou*> m t/> p- ^ & oo m oo 
N <Mfn«rajruu>iP^oocuin^f- ▼uxMi/imr-oj—Ava»-*M>a)r-*oo<nr^iA 
x z <n ▼ n to -r u> «r oo -r u> in ©> u> r- so © to oo r* — a- oi oo <v ca a -« ^ <\i if* uv 

't •* ©o©©©©*> ^aoooo a ^©©©^ooo^Z •,.« o-J-4— 
UJ .- * • .. 

a Airu AjAirurururu ajajajaj ai Aim aiajaiai <U<U<VI<V1 <vi<\x\i<\i fa futurofu 

f ■ni'ru!ifl<UTuiianiTuiiiiiuVuiisnlTu!'injTi/!i«a!Tu>i«MTuii« 
c * 

oi-*'OOCo^AJAj'Tf'-ooAjooAioo — rA V ,r»>r-r^-ru»AJAjAj»s»o»c-cu^u> 

• rooi/HoniAT ooloia — ▼<-r-c>Aiooa>rnr^oo^vOAjai^ — oocAloiala 
^ -* ▼ *p o u> £■ o> Air- o <* <*> to m co « m o> «r o> -r o> «r « ^ *jt *r © in 

wn tnooai in co aj iao)h u>«n uuo^ i/xoca i/-cr»m ioo>n 


AJ 

•A 

“T 

UJ 

AJ 

o —• 


ft o 
3UJ I 

UJ 

oznj 

a 

u>ooo 

o 

A Z. 1 

»-»*- i-r* 


-JC**I GCCD 

isauai 

5 " IIS 

^•j K3n 
fttt 


OW~ 

ig* 

£30 


<d lo <x> 4 i> (- r** r-p'Oonoooaoov^c^^o^OM^^^nnnnvA'fiuxD 

• o ^ ©©-© iOujuxoaj aj aj mwcoooooi/x/timn —«-*r9 mm a*i/>»/» ton* 
& 2^<uc*j<uoj-«~~*««o»a>cfta»atoooooor^r-cc ▼ *r ▼ 


1*1*9 

I— UJ 

a 




U)c- ^o*-^#v«u(r>or- a 

ocipoi/nMDnwf u>u>r»«r - 

IAO©- 

‘Al- 

oy 


)G©9©©^©000© 


c©©<9<5Mfun^tQw© 

Ajruru-»AJ^^- 

««©^©©©©©oo© 


M(Af< 
IA1AIA 

©©©©©III 


a>5®0,0-5»®9®000®-V9-»900««000000©900 

♦.* .♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ ♦♦ 

S2J^K!!J^a^asi^U{g^t}4iH>eSJ«^U{»>esa^!««»>e}e<aJ<j!JI 

j 3 F 2 SS 2 2 J 2 • 2 ! rt °* C ^ ? *■ ^ ® n «\i (u «u o> •* eo — «u o> f* t» • (*> r- r» 3 

£r"n9co*4«4ni««r>r*Ar*(0iA(AiAr*4^ttatfr>tf 
n<a<>ao«x«.aMMMMntnininjiuniiun)niiun)ninini<iiivnninini 

• xn)nTinist>>an«Mium<riA(fr>«tfli9«Ain«waMtai««<«^ 
g MMMMM^MMMxnifunininiAiiSivAiAinnn^ 


59 


oi»ee 


















3.2 RELATIONSHIP BETWEEN THE DAMPING TEMPERATURE AND 
GLASS TRANSITION TEMPERATURE 

Figure 31 shows a plot of the maximum loss factor at 100 Hz 
versus the glass transition temperature (T g ) of test matrix glasses 
whose damping properties were reported earlier (10). The glass 
transition temperatures for the compositions are also shown in 
Table 19. It is obvious from the figure that there is a linear 
relationship between the loss factor peak temperature and T g . 
Regression analysis of the data provided a relationship between the 
damping peak temperature, T^ at 100 Hz and the glass transition 
temperature as expressed by equation (6). The correlation coefficient 
for this relationship is 0.96. 

T^ = 166.02 + 1.10T g (6) 

where: T and T are in °C. 

o g 

The relationship is useful in predicting the damping peak 

temperature if the glass transition temperature is known. This 

suggests that the loss factor peak temperature T^ is determined 

by the viscosity of the glass just as T corresponds to a given 

13 = 

viscosity (approximately 10 poise). Also, increasing T indicates 

y 

general stiffening of the glass structure and, therefore, one can 
expect a decrease in the n D peak height. However, an attempt to 
correlate the n D peak height with the glass transition temperature 
was not successful. 

An estimate of the viscosity corresponding to the n D 
peak temperature can be made because the viscosity-temperature 
relationship of the Corning 0010 glass is known. Figure 32 shows 
the viscosity-temperature relationship of the glass. The loss 
factor peak temperature for the glass at 100 Hz is 650°C, which 
corresponds to a viscosity of 10^ poise. Similarly, at 1000 Hz, 
the loss factor peak corresponds to a viscosity of 10®*^ poise. 

It is, therefore, noted that the observed damping occurs when the 
glass temperature is near the softening point (viscosity =10 ). 

Also, the damping temperature is about 200°C above the glass 
transition temperature. The glass transition temperature of the 


60 





























I/T X !0 3 ,(T IN ®C) 


Figure 32. Log Viscosity Versus 1/T for Corning 0010 Glass 
(viscosity in poise). 


63 











Corning 0010 glass is approximately 430°C. At the damping 
temperature, the glass can be characterized as a viscous, 
rather than a viscoelastic, material. 

3.3 EFFECT OF NUCLEATION AND CRYSTALLIZATION ON THE 
VISCOELASTIC DAMPING 

In the previous section, it has been shown that the 
viscosity of the vitreous enamel ranges from 10® to 10 7 poise in 
the damping range. The viscosity range is favorable for processes 
like nucleation and crystallization. It has also been observed 
that when a vitreous enamel is aged in the damping range, generally 
there is a reduction in the loss factor (Q~*). The structural 
mechanisms leading to the reduction are not understood. It has 
been hypothesized that the reductions is related to the devitri¬ 
fication, but no experimental data exist to support this hypothesis. 
In view of this lack of understanding of the effects of thermal 
aging on the damping properties, this work was undertaken. 

Figure 33 illustrates a typical viscosity versus temperature 
relationship for silicate glasses. The viscoelastice damping 
range is indicated by a shaded area in the figure. Included 
schematically in the figure are nucleation and growth rate curves 
for silicate glasses. It should be noted that the damping range 
approximately coincides with the crystal growth range. A glass 
coating containing nucleating sites would be expected to 
crystallize in the damping range. This assumption can be justified 
if the real situation is examined. These vitreous enamel coatings 
are generally applied on superalloys substrates. Diffusion of the 
metallic ions into the coating can enhance the nucleation and 
growth processes. Prolonged exposure of the coating in the 
damping range would be expected to transform the vitreous enamel 
coating into a crystalline coating. A consequence of the trans¬ 
formation would be a significant change in the damping properties. 

In view of the background provided above, two glass compo¬ 
sitions were thermally aged in the damping temperature range. 

Their damping properties and microstructural development were 


64 













characterized as a function of heat treatment time. Optical 
microscope, scanning electron microscope (SEM), and x-ray 
diffraction were the primary analytical tools for microstructural 
characterization. 

Compositions of the two glasses designated as A and B with 
the heat treatment conditions are shown in Table 20.. Composition 
A is A1 2 0 3 free, whereas composition B contains 5.70 percent A^O^. 
Heat treatment temperatures approximately correspond to the 
respective peak deunping temperatures. Heat treatment times were 
arbitrarily chosen. 


TABLE 20 

COMPOSTIONS IN WEIGHT PERCENT 



A 

Heat Treatment 
Conditions 

B 

Heat Treatment 
Conditions 

Si0 2 

74.65 

at 760°C 

70.40 

at 815°C 

Al 2 °3 

— 

I no heat treatment 

5.70 

I no heat treatment 

Na 2 0 

12.78 

II 100 hours 

12.05 

II 112 hours 

CaO 

10.77 

III 314 hours 

10.15 

III 309 hours 

CoO 

1.80 


1.70 



The loss factor of these glasses as a function of temperature 
and heat treatment are shown in Figures 34 and 35. The loss factor 
decreased with increasing heat treatment time near the peak damping 
for both compositions. Composition B, in general, has a lower loss 
factor them composition A. This can be explained on the basis of 
the concentration in the glass. It has been shown that the 

addition of AlgO^ decreases the loss factor (6) significantly. 


65 
































Figure 34. Loss Factor as a Function of Temperature and Heat 
Treatment Time at 760°C for Composition A. 


67 











at 815°C for Compo 













Figure 36 shows the optical micrographs of the ename1-metal 
interface of "as-fired" and "heat treated" (112 hours at 815°F 
or 435°C) specimens obtained from composition B. Both specimens 
exhibited seeds and bubbles at the interface. No crystalline phase 
or microstructure was present in the as-fired enamel coating. 

However, after the heat treatment, a crystalline phase in the 
vitreous enamel coating appeared. The crystalline phase was 
noted to originate from the seeds and bubbles in most instances, 
and appears in the micrograph as elongated needles. There was 
also a marked variation in the grain sized distribution of the 
metal at the interface. It appears that the metallic grains at 
the interface have been fragmented into smaller sizes due to 
chemical reaction with the vitreous enamel coating. The fragmen¬ 
tation of the metallic grain is much more pronounced after heat 
treatment (Figure 36b). 

The evidence of crystallization from the optical micro¬ 
scopy and possibility of glass-metal interaction at the interface 
promoted further microscopic examination. Several specimens were 
examined under SEM and the observations are decribed in the 
following paragraphs. 

Figures 37 shows the glass-metal interface for composition A 
after various heat treatments. All these micrographs have similar 
magnification. It should be noted that the fragmentation of the 
metallic grains at the interface increases with increasing heat 
treatment time. Also the degree of crystallization of the vitreous 
enamel coating increases with progressive heat treatment. No 
change in the size and distribution of the pores at the interface 
was noted. 

Figure 38 shows morphology of the vitreous enamel coating "A" 
at varying magnifications after a heat treatment of 100 hours. The 
appearance of crystals of hexagonal habit can be noted in 
micrographs 38b and 38c. 

Figure 39 demonstrates the microstructure of the vitreous 
enamel coating "A" at varying magnifications after 314 hours of 
heat treatment. As expected, the degree of crystallinity has 
increased when compared to the 100 hour specimen (Figure 38a, 38b, 38c). 


69 










Figure 40 shows the metal-glass interface for composition 
"B" as a function of heat treatment time. Fragmentation of the 
metallic grains at the interface is similar to the one observed in 
Figure 37. There is no evidence of crystallinity in the vitreous 
enamel coating in the as-fired specimen (Figure 40a). After heat 
treatment the coating crystallized as evidenced by micrographs 
40b and 40c. 

Figure 41 shows the enamel coating for the composition "B" 
at various magnifications after heat treatment for 112 hours. 

All three micrographs show the existence of a predominately glassy 
phase. After heat treatment for 309 hours, there is a significant 
increase in the degree of crystallinity, as shown in Figure 42. 
However, in this case, characteristics of the crystals appear to 
be different from those of the composition "A" for similar heat 
treatment (Figure 39). The crystalline phase is present as 
elongated needles rather than in a hexagonal habit. 

The crystalline phases for both compositions which appeared 
after heat treatment were identified by x-ray diffraction. Table 21 
summarizes the x-ray diffraction results. After heat treatment, 
composition "A" developed a-quartz and devitrite (Na 2 0*3CaO*6Si0 2 ) 
crystals; a-quartz being the major crystalline phase. The hexa¬ 
gonal crystals shown in Figures 38 and 39 can now be identified as 
a-quartz. After heat treatments of composition "B", a-cristobalite 
and devitrite (Na 2 0*3CaO*6Si0 2 ) appear as crystalline phases; 
a-cristobalite being the major crystalline phase. The elongated 
crystals observed in Figure 42 are therefore a-cristobalite. 

Prolonged heat treatment of the vitreous enamel coatings 
"A" and "B" in the viscoelastic range progressively reduced the 
loss factors as shown in Figures 2 and 3. Microstructural analysis 
by optical microscopy, SEM, and x-ray diffraction revealed 
crystallization of the coatings. The degree of crystallinity for 
both compositions was related to the heat treatment time. It is 
suggested that the crystallization of the glass coatings is 
primarily responsible for the reduced loss factor. This suggestion 
can further be justified by considering the fundamental origin of 























(a) As Fired 
(1000X) 


(continued) 








(c) At 314 Hours 
(1000X) 



Glass-Metal Interface for Composition "A" 
After Various Heat Treatments (concluded) . 










Figure 38. Morphology of Vitreous Enamel Coating "A" 

After Heat Treatment of 100 Hours (continued). 



74 

























1000X 


Figure 38. Morphology of Vitreous Enamel Coating "A" 

After Heat Treatment of 100 Hours (concluded) 












(a) 100X 


(b) 300X 


Microstructure of Vitreous Enamel "A After 
314 Hours of Heat Treatment (continued). 











1000X 


Figure 39. Microstructure of Vitreous Enamel "A" After 
314 Hours of Heat Treatment (concluded). 


77 













(a) As Fired 
(1000X) 




(b) At 112 Hours 
(1000X) 


Figure 40. Metal-Glass Interface for Composition "B" 

as a Function of Heat Treatment Time (continued) 










Figure 40. Metal-Glass Interface for Composition "B" 

as a Function of HEat Treatment Time (concluded). 







































(a) 100X 




Cb) 300X 


Figure 42. Enamel Coating "B" at Various Magnification 

After Heat Treatment for 309 Hours (continued) 














Figure 42. Enamel Coating "B" at Various Magnifications 

After Heat Treatment for 309 Hours (concluded) 























TABLE 21 


CRYSTALLINE PHASES AFTER VARIOUS HEAT TREATMENTS 


Compositions 

Heat Treatment 

Crystalline Phases 

A 

I as fired 

no crystalline phase 


II heat treated at 
760°C for 100 
hours 

major. - a-quartz 
minor - devitrite 


III heat treated at 
760°C for 314 
hours 

major - a-quartz 
minor - devitrite 

B 

1 as fired 

no crystalline phase 


II heat treated at 
815°C for 112 
hours 

major - a-cristobalite 
minor - possibly 
devitrite and mullite 


III heat treated at 
815 8 C for 309 
h^urs 

major - a-cristobalite 
minor - possibly 
devitrite 


a-quartz - hexagonal 


a-cristobalite - tetragonal 


84 
















the viscoelastic damping. The viscoelastic damping originates 
from the vitreous nature of a material in the proper viscosity 
range. Any deviation from the vitreous nature would affect the 
damping properties. Crystallization of the coating is such a 
deviation where the amount of a vitreous material is progressively 
reduced. Number of relaxation units and sites which give rise 
to the damping are directly proportional to the amount of vitreous 
material in the coating. Crystallization reduces the number of 
relaxation units and sites and therefore the loss factor. 

One would expect a shift in the loss factor peak temperatures 
of Figures 34 and 35 with progressive crystallization. With 
crystallization the viscosity of the residual glass would change 
and therefore shift the damping peak. No shift in the peak 
temperatures would indicate that the viscosity of the residual 
glass was similar to the parent glass. Compositions used in this 
investigation provide such a situation. During crystallization 
crystalline Si0 2 (a-quartz and cristobalite were major phases for 
both compositions) precipitate thereby making the residual glass 
richer in Na 2 0 and CaO. Na 2 0 would make the glass softer whereas 
CaO has the opposite effect and the overall effect being neutral. 

No shift in the loss factor peak temperatures (Figures 33 and 34) 
suggest a neutral effect of the crystallization on the viscosity. 

The general observation on the microstructural development 
suggests that increasing heat treatment or aging time leads to a 
progressive increase in the crystallinity of the vitreous enamel 
coating. There is also a significant microstructural change of 
the metallic substrate microstructure. These two processes 
independently or in combination alter the damping properties. 
However, it is well known that metals have much lower damping than 
the vitreous enamel at these temperatures, and any microstructural 
change ’in the metallic substrate would not be expected to influence 
the damping properties significantly. Therefore, the variations 
in the damping data (as shown in Figures 34 and 35) must be related 
to the microstructural change in the vitreous enamel coating. This 
leads to the conclusion that the reduction in damping capacity of 




85 









the enamel coating is related to the increasing degree of crystal¬ 
linity. This does not mean that vitreous enamel coatings cannot 
be used as a vibration damping material. However, care must be 
taken when developing and utilizing enamel compositions in view of 
the fact that the conditions during the viscoelastic damping are 
favorable for nucleation and growth processes. 

3.4. CONSTRAINED LAYER DAMPING WITH VITREOUS ENAMEL 

For many years, vitreous enamels have been known to exhibit 
high loss modulus in the transition range. As a result, many of the 
research and application efforts to date that have utilized vitreous 
enamels as vibration damping materials have been directed toward 
free layer damping designs. In previous publications (6, 11, and 12), 
the viscosity temperature relationship of a vitreous enamel in the 
damping range and its influence on the damping properties had been 
discussed. Areas of concern have developed after consideration of 
viscosity within the damping range and practical application. Some 
areas of condern are; flow under gravity and centrifugal force, 
weathering and reaction with atmospheric gases, and volatilization 
of components from the vitreous enamel. All of these potential 
problems can be controlled by applying a protective layer over the 
damping material. A protective layer over an enamel damping layer 
has been used successfully in several applications (2, 3, and 13). 

In cases where a protective layer was needed, an interesting phenomenon 
was recorded. Enamel damping materials in a constrained layer damping 
design exhibited an increased temperature range of effective system 
damping in contrast to a free layer damping system. In addition to 
this gain, the handling of vitreous enamel constraining layer damping 
designs would be less cumbersome as the enamel could be coated onto 
a constraining layer of desired size and shape. The enamel could 
then be soldered or spot welded into place. Several constrained 
layer vitreous enamel treatments were evaluated both to better view 
their advantages and to determine the mechanism involved. This section 
discusses the results and mechanisms involved in the vitreous enamel 
constrained layer damping treatment. 


86 





AO At24 290 


VITREOUS ENAMEL DAMPING MATERIAL DEVELOPMENT{U) DAYTON 
UNIV OH RESEARCH INST 6 KUMAR NOV 82 UDR-TR-82 - 105 
AFWAL-TR-82’4162 F33615 - 79-C-5108 


UNCLASSIFIED 


F/G 11/3 . 










MICROCOPY RESOLUTION TEST CHART 

NATIONAL BUREAU OF STANDARDS-1963-A 










The damping material used in this experiment was Corning 
composition 1990*. The 1990 was applied to: 1) test beams in 
partial and full coverage (see Figure 43); and 2) iron and stainless 
steel foils. All foil applications were done using the plasma 
spray technique. The coated constraining layers were welded onto 
cantilever beams. A photograph of the coated iron foil and the 
composite beam is shown in Figure 44. The damping of the four 
composite beams was determined using the standard resonant beam 
technique described in Reference . The experimental results are 
presented in Table 22. Modal loss factors were determined by the 
half power bandwidth method. Verification test measurements were 
carried out on the free layer and iron constrained specimens. 
Reproducibility was excellent at lower temperatures. At high temp¬ 
eratures (above 700 # C), there were minor discrepancies which are 
believed to be related to the devitrification of the vitreous enamel. 
Oxidation of the iron foil was noted during the damping tests at 
elevated temperature. The stainless steel foil exhibited little or 
no oxidation under similar conditions. 

The modal loss factor versus temperature plots for a free 
layer damping treatment, a constrained layer damping treatment, and 
the bare beam itself, are shown in Figure 45. The free layer 
treatment shows a loss factor of .018 at 480°C, whereas the 
constrained layer treatment exhibits a loss factor of .0318 at 710°C. 
The temperature range where the modal loss factor (n g ) is above .01 
for the free layer treatment is 440°C to 525®C. The constrained layer 
treatment has n of .01 from 475°C to 850°C where the experiment was 
terminated. The temperature range of effective damping for the 
constrained layer treatment is of significant interest. Although a 
broadening of the modal damping peak with the constrained layer 
polymer materials is anticipated, a peak broadening which extends 
several hundred degrees centigrade is unusual. Analysis of the 
origin of broadness will be discussed in detail in the following 
paragraphs. 

Like the polymeric materials, vitreous enamels span three 
distinct modulus regions with increasing temperature. However, 
unlike the polymeric materials which have a rubbery region above 

*Si0 2 -41, Li 2 0-2, Na 2 0-5, K 2 0-12, PbO-40 


87 



TABLE 22 

EXPERIMENTAL TEST MATRIX 


3aam Configuration 

Damping 

Material 

Thickness 

Fraa layar beam 
full coatad 

.031 cm 

Fraa layar baam 
partially coatad 

.031 cm 

Iron constrained 
layar baam 

.023 cm 

Stainless steal 
constrainad 
layar baam 

.028 cm 


System |Range Whare 


025 427 , -538*C 


,019 432*-524*C 


.013 cm .032 480*->840*C 


.013 cm .055 470*->850*C 

































1 


Tg, the vitreous enamel becomes a liquid when heated above Tq. a 
typical modulus and loss factor versus temperature plot for a 
viscoelastic material is illustrated in Figure 46. Region I is 
the design range for a free layer damping treatment. Region II is 
the design range for a constrained layer damping treatment. The 
mechanisms of deunping for these two regions are well understood. 

In polymeric materials. Region III is the rubbery region and is the 
design region for tuned viscoelastic dampers. A proposed mechanism 
in enamels above Tg follows. 

The broad deunping peak of the constrained layer system shown 
in Figure 45 covers all three regions. The addition of a constraining 
layer to a free layer damping material should result in a decreased 
effectiveness of the damping system in the temperature region of 
Figure 46 as a result of the reduction in extensional deformation 
in the deunping material. This is demonstrated in the test results 
in Figure 45. The free layer effectivenees is reduced, but the 
materila loss modulus is sufficiently high to contribute significant 
damping at approximately 475 6 C. As the temperature continues to 
increase, the material loss factor and modulus begin to decrease. 
Ordinarily, this would result in decreased system damping as shown 
in the free layer curve in Figure 45; however, a new phenomenon now 
takes control of the damping. As the modulus begins to drop, signif¬ 
icant shear caused by the constraining layer begins to be established 
in the damping layer. As a result, the system damping continues to 
increase with temperature to a peak value. This damping trend 
continues throughout the temperature range of the experiment. A 
review of the characteristics of vitreous enamels above Tg sheds 
light on this phenomenon. 

Most of the vitreous enamels behave like Newtonian liquid 
at temperature beyond the glass transition range. The static 
viscosity of the enamel decreases continuously as the temperature 
is increased. The static viscosity for the Corning 1990 glass in 
the temperature range of interest exhibits typical behavior and is 
shown in Figure 47. The rate of decrease is higher at lower temper¬ 
atures than those at the high temperatures. 



89 








































TEMPERATURE 


Figure 46. Typical Temperature Dependence of Polymer 
Viscoelasticity. 


| 

























Plots of log x and experimentally determined log n are 

7 S 

shown in Figure 48. There is a good correlation between the 
measured n g and the calculated ^ for the constrained system at 
lower temperatures (up to 700 0 C). Table 23 gives values of I at 
various temperatures. 

A minimum for the modal loss factor of the constrained 
layer system that is centered around 790®C can be seen in Figure 45. 
The second measurement of a similar constrained layer specimen did 
not reproduce the minimum. Only speculative explanation can be 
provided for this behavior as further characterization continues. 

Two possible explanations for the behavior are possible. Any 
defect arising from the spot welding of the enamel coated iron 
foil could contribute to the unexpected damping behavior. Also, 
it is known that the crystallization of the vitreous enamel coating 
decreases the loss factor (3). The temperature at which the 
minimum occurs might correspond to the liquidus temperature of the 
enamel. The rate and degree of crystallization of a vitreous 
material increase as the liquidus temperature is reached and the 
increased crystallization rate would adversely affect the loss 
factor. Beyond the liquidus temperature, the crystallites 
redissolve and the enamel becomes again a homogeneous liquid giving 
rise to an increased damping. It is hoped that further studies 
would clarify this high temperature behavior of the vitreous enamel. 

The damping effectiveness and the temperature profile of 
a constrained layer damping system are dependent on the damping 
material thickness and the constraining layer stiffness. These 
typical effects are shown for enamel constrained layer systems 
in Figure 49 for the iron-constrained and steel-constrained layer 
damping treatments. At lower temperatures (400-700°C), both the 
iron- and steel-constrained specimens exhibit similar damping 
trends which agree with the proposed theory. Nonetheless, at 
temperatures beyond 700°C, a difference in the damping behavior is 
noted. Whether to attribute this behavior to the differences in 
the elastic properties of the two constraining layers or to other 
conditions including crystallization of the vitreous enamel 
discussed earlier remains a matter for further investigation. 


95 









TABLE 23 



|> AT VARIOUS TEMPERATURES 


Twnp«ratur« *C 


• i 

? 


(Poia#* 1 ) 


io< ? 5 * 


400 

4.61 

X 

10- 14 

-13.34 

450 

3.83 

X 

10" 12 

-11.05 

500 

3.19 

X 

10 “ L0 

-9.50 

550 

13.06 

X 

io- 10 

-8.88 

600 

3.33 

X 

10~ 9 

-8.48 

650 

11.91 

X 

10~ 9 

-7.92 

700 

4.12 

X 

10~ 8 

-7.39 

750 

10.69 

X 

10- 8 

-6.97 

800 

18.23 

X 

10" 8 

-6.74 











Figure 48. Shape of the Function Log 4 Versus 





















CONCLUSIONS 


From the results presented in the previous section, the 
following conclusions can be drawn. 

Cl) New compositions such as mixed alkali, lead silicate and 
low temperature glasses exhibited the characteristic damping 
properties in the viscoelastic range. The deunping temperatures 
and the peak intensities were composition dependent. The fluoride 
composition initially showed a typical vitreous enamel deunping 
peak; however, after a heat treatment significant broadening of 
the damping was noted. It was suggested that the broadening of 
the deunping peak appears to be related to a precipitation phenomenon 
of a second phase during the heat treatment. 

(2) It has been shown that there is a linear relationship 
between the glass transition temperature and the damping temperature. 
This suggests that the damping temperature is directly related to 
the viscosity. The viscoelastic damping occurs at a temperature 
near the softening point and corresponds to a viscosity range of 

10** - 10 7 poise. 

6 7 

(3) The viscosity range 10 - 10 was found to be favorable 

for processes like nucleation and crystallization. Effects of 
nucleation and crystallization on the damping properties were 
studied for two soda-lime-silica type of composition. Progressive 
increase in the crystallinity decreased the loss factor of the 
two compositions and it was determined that the nucleation and 
crystallization have an adverse effect on the loss factor. 

(4) It has been demonstrated that the concept of constrained 
layer damping is feasible and promising. The constraining layer 
smeared the free layer damping peak in such a fashion that the 
structural damping increased from a low value to a peak with 
increasing temperature and remained at the peak value even at 
temperatures over 800 # C. 









! 


REFERENCES 

1. "Development of High Temperature Vibration Damping Coatings," 
AiResearch Technical Report, U.S. Army Contract DA-44-009- 
AMC 838 (T), AiResearch Manufacturing Company of Arizona, 
Phoenix, February, 1966. 

2. "High Temperature Damping System Development for the J-85- 

21 Afterburner Liner," University of Dayton Research Institute, 
UDR-TR-80-79, August, 1980. 

3. "Evaluation of High Temperature Damping Applications to 
Increase Fatigue Life in Rotating Jet Engine Components," 
University of Dayton Research Institute, UDR-TR-80-82. 

4. A. D. Nashif, "Enamel Coatings for High Temperature Deunping 
Materials," Am. Ceram. Soc. Bull. , 52 (12) 846-49, 1974. 

5. P. I. Sridharan, "Damping in Porcelain Enamel Coatings," 
AFML-TR-74-191, 53 (12), 1976. 

6. B. Kumar, C. A. Cannon, and G. A. Graves, Jr., "Effect of 
Composition on the Vibration Damping Properties of Glass 
(Vitreous Enamel) Coatings," Glass Technology, April, 1981. 

7. W. A. Zdanieswski, G. E. Rindone, D. E. Day, "Review - The 
internal friction of glasses," J. Mat. Sci., 14, 763-75 
(1979). 

8. H. Oberst, Acoustics (Akustiche Berhefte), £, 181 (1952). 

9. R. E. D. Bishop and D. C. Johnson, The Mechanics of Vibration , 

Cambridge Press, (1960). - 

10. "A Study to Determine the Effect of Glass Compositional 
Variations on Vibration Damping Properties," AFWAL-TR-80-4061. 

11. B. Kumar, G. A. Graves, Jr. "Vitreous Enamel as a Vibration 
Damping Material," Amer. Ceram. Soc. Bull . 61 (4), 480-83, 1982. 

12. B. Kumar, G. A. Graves, Jr., D. M. Hopkins, and M. L. Drake, 
"Nucleation, Crystallization, and Viscoelastic Damping in 
Vitreous Enamel," Advances in Ceramics , Vol. 4, Edited by 

J. H. Simmons, Dr. Uhlman, and G. H. Beall., Amer. Cer. Soc., 
1982. 

13. D. I. G. Jones, and C. M. Cannon, "Control of Gas Turbine Stator 
Blade Vibrations by Means of Enamel Coatings," J. of Aircraft, 

12 (4), 226-230, 1975.