Skip to main content

Full text of "DTIC ADA161801: KRASH 85 User's Guide - Input/Output Format."

See other formats


AD-A1S1 8*1 


KRRSH 85 USER'S GUIDE - INPUT/OUTPUT FORHRT(U) 
LOCKHEED-CALIFORNIR CO BURBRNK H fl GRHON ET RL. JUL 85 
LR-28777 DOT/FAR/CT-85-18 DTFR83-82-C-88884 


1/3 


UNCLASSIFIED 


F/G 1/3 


NL 








































































DOT/FAA/CT-85/10 

Technical Center 
Atlantic City Airport, 

N.J. 08405 


KRASH 85 User's Guide — 
Input/Output Format 



to 


< 

i 

o 

< 


Max Gamon 
Gil Wittlin 
Bill LaBarge 


Prepared by 

Lockheed-California Company 
Burbank, California 


July 1985 
Final Report 


DT1C 



This document is available to the U.S. public 
through the National Technical Information 
Service, Springfield, Virginia 22161. 



Uj 


lA_ 



U.S. Department of Transportation 
Federal Aviation Administration 











NOTICE 


This document is disseminated under the sponsorship of 
the Department of Transportation in the interest of 
information exchange. The United States Government 
assumes no liability for the contents or use thereof. 

The United States Government does not endorse products 
or manufacturers. Trade or manufacturer's names appear 
herein solely because they are considered essential to 
the object of this report. 





Hi*port No 

DOT/FAA/CT-85/10 


! Itie and Subtitle 


2 Government Accession No 

Al&uU 201 


3 


5 


Recipient's Catalog No 


Report Date 


RRASH85 USER’S GUIDE - INPUT/OUTPUT FORMAT 


Jul y 1985 _ 

6. Performing Otganization Code 


Authorls! 


8. Performing Organization Report No 


M. A. t.union, G. Witt 1 in, and W. L. LaBargo 

Z< Performing Organization Name and Address 

l.ockheed-California Company 


LR 30777 

10. Work Unit No. 


11. Contract or Grant No 


Burbank, CA. 91520 


Sixinsonng Agency Name and Address 

S. Department of Transportation 
Federal Aviation Administration, Technical Center 
Atlantic City Airport, NJ 08405 _ 


DTFA03-84-C-00004 


13. Type of Report and Period Covered 

FINAL 

Jan. 1984 - Sept. 1984 

14. Sponsoring Agency Code 


S Supplementary Notes 


i 


4 


Abstract 

This document describes program KRASH as modified under Contract DTFA03-84-C-00004. 
updated version is denoted KRASH85. This document is a User's Guide and defines 
r-put and output formats appropriate for KRASH85. 

natures that are incorporated into KRASH85 include: 

An improved plastic hinge moment algorithm 
Gear-oleo metering pin coding' 

t 

- I.ond-interaction curves 

J 

An expanded initial conditions subroutine (combined with NASTRAN) 

* A comprehensive energy balance j 

* Center of gravity (c.g.) displacement, velocity, acceleration and force time 
histories . 

* Revised vertical beam orientation coding^ 

* Provision to save data for post-processing i.e., acceleration, mass location 

and forces 

* Provisions Co input preprocessed data, 

» A corrected uncoupled KR curve unloading/reloading algorithm 

Provisions to define a tire spring (remains normal to the ground plane) 
Provisions to number the masses to an arbitrary sequence 
A:i option to compute section shear and moment distributions 


Key Words (Suggested by Authorls)) 

mpuii'r program, KRASH, crash dynamics, 
nonlinear analysis, hybrid approach, 
aircraft, transport airplanes, general 
rv Lit ion aircraft, rotary wing aircraft, 

NASTRAN 

Security Classif. (of this report) 

NCIASSIFIED 


18. Distribution Statement 

This document is available to the U.S. 
public through the National Technical 
Information Services, Springfield, 
Virginia 22161 


20. Security Classif. (of this page) 

UNCLASSIFIED 


21. No. of Pages 

223 


22 Puce" 


For sale by the National Technical Information Service, Springfield, Virginia 22161 












FOREWORD 


This report was prepared by the Lockheed-California Company under 
Contract DTFA03-84-C-00004. The report contains a description of the effort pe 
formed as part of Tasks II, III and IV and covers the period from January 1984 
t’ September 1984. The work was administered under the direction of the 
Federal Aviation Administration with L. Neri acting as Technical monitor. 

The program leader was Gil Wittlin of the Lockheed-California Company. 

M. A. Gamon and W. L. LaBarge of the Lockheed-California Company refined pro¬ 
gram KRASH. P. Rohrer of the Lockheed-California Company provided valuable 
computer programming support. The Lockheed effort was performed in the Flutter 
and Dynamics Department. 











TECHNICAL SUMMARY 


This document describes program KRASH as modified under Contract 
DTFA03-84-C-00004. The updated version is denoted KRASH35. This document is 
a User's Guide and defines the input and output formats appropriate for 
KRASH85. 

Features that are incorporated into KRASH85 include: 

• An improved plastic hinge moment algorithm 

• Gear-oleo metering pin coding 

• Load-interaction curves 

• An expanded initial conditions subroutine (combined with NASTRAN) 

• A comprehensive energy balance 

• Center of gravity (c.g.) displacement, velocity, acceleration 
and force time histories 

• Revised vertical beam orientation coding 

• Provision to save data for post-processing i.e., acceleration, 
mass location and forces 

• Provisions to input preprocessed data 

• A corrected uncoupled KR curve unloading/reloading algorithm 

• Provisions to define a tire spring (remains normal to the ground plane) 

• Provisions to number the masses in an arbitrary sequence 

• An option to compute section shear and moment distributions 












TABLE OF CONTENTS 


Sec tion 


Page 


FOREWORD 

i i i 


SUMMARY 

V 


LIST OF FIGURES 

ix 


LIST OF TABLES 

ix 

1 

INTRODUCTION 

1-1 

2 

USER'S GUIDE 

2-1 

2.1 

OVERALL KRASH85 ANALYSIS SYSTEM 

2-1 

2.2 

KRASH85 INPUT 

2-8 

2.3 

OUTPUT AND SAMPLE CASE 

2-93 

2.3.1 

KRASHIC Output 

2-93 

2.3.1.1 

Echo of Input Data 

2-93 

2.3.1. 2 

Formatted Print-Out of Input Data 

2-94 

2.3.1.3 

Miscellaneous Calculated Data 

2-122 

2.3.1.3.1 

Model Parameters 

2-123 

2.3.1.3.2 

Ream Loads and Deflections Corresponding 
to Yielding 

2-123 

2.3.1.3.3 

Overall Vehicle Forces/Accelerations at 

Time Zero 

2-123 

2 . 3 . 1 . 3 . 4 

Individual Mass Forces/Accelerations At 

Time Zero 

2-124 

2.3.2 

MSCTRAN Output 

2-125 

2.3.2.1 

Executive Control Deck Echo 

2-125 

2. 3 . 2 . 2 

Case Control Deck Echo 

2-125 

2.3.2.3 

Input Bulk Data Deck Echo 

2-125 

2.3.2.4 

Sorted Bulk Data Deck Echo 

2-144 

2 . 3 . 2 . 5 

Displacement Vector 

2-144 

2.3.2.6 

Load Vector 

2-145 


vii 









LIST OF FIGURES 


Overall KRASH85 Analysis System 
Sample KRASH85 Job Submittal 
KRASH85 Input Format 
KRASH85 Coordinate Systems 

Beam Element Coordi.ate System Orientations 

Standard Nonlinear Beam Element Stiffness Reduction 
Curves 

Large Transport Airplane Model - Sample Case 
Echo of the Input Data 
Formatted Printout of Input Data 
Miscellaneous Calculated Data 
MSC/NASTRAN Executive and Case Control Decks 
MSC/NASTRAN Input Bulk Data Deck Echo 
MSC/NASTRAN Sorted Bulk Deck 
MSC/NASTRAN Displacement Vector 
MSC/NASTRAN Load Vector 

MSC/NASTRAN Single-Point Constraint Forces 
MSC/NASTRAN Bar Element Forces 

Bar Element Force Sign Conventions, NASTRAN and KRASH 

MSC/NASTRAN Element Strain Energies 

MSC/NASTRAN Grid Point Force Balance 

KRASH85 Output, Initial Mass/Node Point Deflections 

KRASH85 Output, Additional Miscellaneous Calculated Data 

KRASH85 Time History Output 

KRASH85 Internal Beam Stress Data and Initial Mass 
Acceleration Error Output 

KRASH85 Summary Output Data 

KRASH85 Sample Output Time History Plots 











EXECUTIVE SUMMARY 


£ 




u 

c 


/ Program KRASH, originally developed under Federal Aviation Administration sponsor¬ 
ship for predicting the response of general aviation airplanes to an impact 
environment, has been enhanced to include features that would facilitate the 
modeling of transport category airplanes. This document is the User's Gvide which 
defines the input and output formats appropriate for this new version of,Program 
KRASH known as KRASH 85. / ' 

' / / 1 V A 'T 

<3 ' .-c \ - J /r ■■ 


/ 


Z' 


/ -r 


( 















r 


1 ' ■ ■ » ■ ' ■ y «'J-j « y . ■» « y .y - ■■ . » .’v-r."r;T ■ - y. ' \r. Tjy. lt. ■ - g - ; ~ • ? 


SECTION 1 
INTRODUCTION 

Program KRASH, developed under a previous Federal Aviation Administration 
(FAA) sponsored contract DOT-FA75-WA3707 has been in the public domain since 
1979. In subsequent years changes to enhance its usage have occurred. 

Recently, KRASH has been applied to modeling transport airplanes for impact 
conditions. Many of the recent program changes that have occurred are designed 
to facilitate modeling transport airplanes. The following modifications have 
been incorporated into KRASH85 and used recently to model transport category 
aircraft: 

• Improved plastic hinge moment algorithm 

• Gear oleo metering pin 

• Load interaction curves 

• Expanded Initial Condition Subroutine 

• Arbitrary numbering of lumped mass points 

Other modifications provide general enhancement capability and include: 

• Comprehensive energy balance 

• Computation of c.g. time histories 

• Revised vertical beam orientation coding 

• Post Processing of data, i.e., acceleration, mass location and forces 

• Corrected uncoupled KR curve unloading/reloading algorithm 

In addition, miscellaneous coding corrections have been made. The current 
version is denoted KRASH85. 

This document is the User's Guide and is limited to a description of the 
input-output format for KRASH85. 

1-1 








-V-V-V- 


»-■- 


* * » ® v *■ m 




SECTION 2 


USER'S GUIDE 

2.1 O VERALL KRASH85 ANALYSIS SYSTEM 

The overall KRASH85 analysis system consists of two separate KRASH programs 
called KRASHIC and KRASH85, plus a NASTRAN program denoted herein as MSCTRAN. 

The NASTRAN program used in this system is MSC/NASTRAN Version 63 (Aug 1, 1983). 
KRASHIC and MSCTRAN are used only if balanced initial conditions are required; 
KRASH85 is the normal KRASH time-history program. If KRASHIC and MSCTRAN are 
not used, then at time zero the beams in the analytical model will all have 
zero internal deflections and loads. The model will be located just above the 
ground and in the proper attitude, as specified in the input data. This initial 
balance is acceptable for certain types of problems, primarily those in which 
the aerodynamic loads on the vehicle are zero. For that situation, the lumped 
masses in the model are all accelerating downward at lg (free-falling), and 
the internal beam loads and deflections are actually zero. 

If nonzero aerodynamic forces are present, then the initial beam loads 
and deflections are not zero. Nevertheless, execution of KRASH85 by itself 
will automatically set the beam loads and deflections at zero. If this is 
done with nonzero aerodynamic forces, the system will be out of balance at 
time zero. In this situation, the dynamic response will be the result of 
two phenomena: 

• Dynamic response to the ground impact 

• Dynamic response to the initial imbalance 

The latter response is not desired, and can obscure the desired response 
or confuse the interpretation of the output data. The proper solution of this 
problem requires that the analytical model be in equilibrium at time zero with 
nonzero internal beam loads and compatible deflections. 


2-1 








This is essentially a straightforward static loads analysis problem. 
NASTRAN is used to solve the statics problem, and KRASIIIC is used to read 
KRASH85 input data and convert it into NASTRAN Executive Case Control and Bulk 
Data Decks. Figure 2-1 shows a flow diagram for the overall KRASH85 analysis 
system. The options available to the user include the following: 

1. Run step 1 onlv (program KRASIIIC) 

Iterate steps 1 and 2, N times (user-specified) 

3. Iterate steps 1 and 2, N times, then run step 3 (KRASH85) 

4. Run step 3 (KRASH85) only 

The most general case is option 3. The iterations are required for the 
i ol lowing, reasons. The static solution used in MSCTRAN is Rigid Format 24, 
which is a small deflection linear static analysis. This method actually 
assumes aero deflections for the purposes of calculating t ransl'o rma t ion 
matrices for transforming beam loads from beam element axes to the global 
axis system, which in this case are airplane axes. Therefore, if the deflec¬ 
tions from MSCTRAN are used to relocate the K.RASH85 mass points, the KRASH35 
calculated beam loads will bo proper in beam axes, but when resolved to mass 
axes will yield a system that is out of balance (since KRASH85 does not assume 
the deflections are zero when calculating the transformation matrices) 

The solution to this problem is to iterate steps 1 and 2, using the 
calculated deflections :rom MSCTRAN to relocate the mass and node points in 
KKASH at each step. Satisfactory convergence is achieved after about six 
iterations, and additional accuracy can be achieved by using up to ten itera- 
t ions. Beyond ten iterations, no further improvement in accuracy can he 
achieved duo to the I imitations in the number of digits that are written to 
tin' data sots that term the input and output of MSCIRAN. 

file KRAS!I analysis system shown in figure 2-1 is implemented through 
oh Centro I I .alienage (JCI.) . A job submittal using option 3 with six itera- 
t ions causes a total et 1 1 sequential jobs to be executed (b KRASIIIC, 6 MSCTRA! 
and 1 KRASH85). While tiiis may sound rather expensive, a typical case 








USER SPECIFIES WHICH OF 
FOLLOWING ANALYSIS STEPS TO 
PERFORM, OPTIONS ARE: 

• RUN STEP 1 ONLY 

• ITERATE STEPS 1 & 2 ONLY 

• ITERATE STEPS 1 & 2, 

THEN RUN STEP 3 

• RUN STEP 3 ONLY 


RUNPROG KRASHIC STEP 1 

• INPUT - XYZ.DATA (BASIC KRASH85 INPUT DATA SET, 

SPECIFIED BY USER) 

• OUTPUT - XYZ.NASBLK.DATA (NASTRAN EXECUTIVE, CASE CONTROL 

AND BULK DATA DECK GENERATED 
BY KRASHIC) 

• UPDATE 1 - USER SPECIFIED CHANGES TO KRASHIC CODING 


RUNPROG MSCTRAN 


• INPUT - XYZ.NASBLK.DATA (NASTRAN EXECUTIVE, CASE 

CONTROL AND BULK DATA DECKS, GENERATED IN 
STEP 1 BY KRASHIC) 

• OUTPUT - XYZ.NASOUT.OATA (DATA SET CONTAINING GRID POINT 

DISPLACEMENTS AND ROTATIONS, GENERATED BY MSCTRAN) 


RUNPROG KRASH85 STEP 3 

• INPUT 1 - XYZ.DATA (SAME AS IN STEP 1) 

2 - ACCEL INPUT DATA SET (OPTIONAL) 

3 - EITHER XYZ.NASOUT.DATA FROM STEP 2 

OR ABC.DATA IN USER'S FILE 
OR NOTHING 

• UPDATE 2 - USER SPECIFIED CHANGES TO KRASH84 CODING 


FIGURE 2-1. OVERALL KRASH85 ANALYSIS SYSTEM 


2-3 















(21 mass/27 beam, L airplane model) requires only about seven seconds per 
iteration on an IBM 370/3081, so that the iterated balanced loads can be 
determined in less than one minute. The .ICL is set up so that data a-ts 
NYZ . NASB1.K . DATA and XYZ. NASOUT. DATA are generated and named automatically, so 
the process is essentially invisible to the user. 

Step 3 (KRASH85) can be executed separately using option A. When this 
is done, the user has a choice of what to do for initial conditions. lie can 
specify any data set in his library, or use nothing at all. The latter 
corresponds to the mode of execution for prior versions of KUASI1. Once an 
initial condition data set (XYZ.NASOUT.DATA) has been generated, the user can 
execute .step 3 only while specifying XYZ. NASOUT. DATA for initial conditions. 
This will give a valid initial balance as long as modifications to the basic 
data set (XYZ.DATA) are restricted to items that do not affect the initial 
balance. 

The static loads problem could have been solved entirely within prop,ram 
KRASH, avoiding the complexity of achieving the system shown in figure 2-1 
with ICL. However, the technique chosen has the advantage of automatically 
generating a NASTRAN model from a given KRASH Model. Since XYZ.NASBLK.DATA, 
is a complete NASTRAN input data set in the user's library, the user can 
easily edit this data set to exercise other NASTRAN capabilities. Examples 
of other NASTRAN features that could prove useful include eigenvalue 
calculations and model plotting. 

Figure 2-2 is a copy of the informaton displayed on a computer terminal 
during an option 3 run submittal. The items enclosed in rectangular brackets 
are the user responses. These are now discussed in detail. Some of the 
comments are of necessity applicable only to the Lockheed IBM 370/3081 
installation, but are included to give some perspective on an actual appli- 
cation. 

User Response Description 

runprog krashi x(l) This is the initial command to invoke 

the Krash analysis system in Fig¬ 
ure 2-1 . 










ENTER TIME 
10 

ENTER LTNES 

CED 

WOULD YOU LIKE EXPRESS, STANDARD 
OR DEFERRED(VERNIGHT) T"RNAROUND 
FOR YOUR JOB? ENTER E, S UR D 

0 

Enter number 

1 run KRASHIC only 

2 iterate KRASHIC and MSCTRAN only 

3 iterate KRASHIC and MSCTRAN, then run KRASH83 

4 run KRASH85 only 


ut data 


of times to cycle through 
KRASHIC and MSCNASTRAN 


print execution results only for 
the last iteration? (Y/N) 

□ 

are you using B720.ICITER.NASOUT.DATA 

with the input data for the 1st iteration? (Y/N) 

0 

KRASHIC ITERATION #1 

If temporary source changes then enter name 
of PAN updata data set. 

If none hit enter. 



Suppress compile listing ? (Y/N) 

E 

KRASHMSC ITERATION // 1 
KRASHIC ITERATION # 2 
KRASHMSC ITERATION # 2 



FIGURE 2-2. SAMPLE KRASH85 JOB SUBMITTAL (SHEET 1 OF 2) 








KRASHIC 

KRASHMSC 

KRASHIC 

KRASHMSC 

KRASHIC 

KRASHMSC 

KRASHLC 

KRASHMSC 

KRASHIC 

KRASHMSC 

KRASHIC 

KRASHMSC 

KRASHIC 

KRASHMSC 

KRASHIC 

KRASHMSC 


ITERATION 

ITERATION 

ITERATION 

ITERATION 

ITERATION 

ITERATION 

ITERATION 

ITERATION 

ITERATION 

ITERATION 

ITERATION 

ITERATION 

ITERATION 

ITERATION 

ITERATION 

ITERATION 


// 3 
// 3 
// 4 

# 4 

# 5 
// 5 

# 6 

# 6 

# 7 
# 7 

# 8 
// 8 

// 9 
» 9 
// 10 
// 10 


KRASH84 


is this a checkpoint/restart run? (Y/N) 


If temporary source changes then enter name of 
update data set 
If not then hit enter 

k83.icrc.data I 


HIT "RETURN" KEY IF NO DATA SET: 

(A) enter name of 2nd input data set of MASS ACCELERATIONS 


(b) enter name of output data set of MASS ACCELERATIONS 


(c) enter name of MASS and/or NODE POINT DISPLACEMENTS 
jU^Tj (GRAPHICS POST PROCESSOR DATA) 


How many copies of the printed output do you want? 
1 

SUPPRESS COMPILE LISTING ? (Y/N) 

y 

JOB E434367L SUBMITTED BY USER E434367 
READY 


FIGURE 2-2. SAMPLE KRASH85 JOB SUBMITTAL (SHEET 2 OF 2) 


2-6 








User Response 

10 

50 

d 

3 

B720.ICITER.DATA 

10 

y 

n 

kic .kvb.data 


Description 

Time limit for run = 10 minutes (actual 
execution time was less than three 
minutes) 

Output print limited to 50000 lines 
(actual output is 21000 lines, about 
1.5 inches thick). 

Overnight (deferred) turnaround 
requested. (For runs less than 10 
minutes, express turnaround is 
allowed. Results available within one 
to two hours). 

Option 3 is chosen. 

Basic KRASH85 input data set. This 
corresponds to XYZ.DATA in figure 2-1. 

Number of iterations of steps 1 and 2. 

Printout of KRASHIC and MSCTRAN is 
suppressed for the first nine itera¬ 
tions. Only the results for the last 
iteration are printed. Considerable 
output print will be generated if the 
results for all iterations are printed, 
(y = yes) 

It is possible to start the first 
iteration with an existing data set 
of NASTRAN output deflections. For 
example, five iterations could be run 
at one time, and five more at a later 
time. This option was not invoked for 
this example, (n = no) 

This is the name of a PANVALET update 
data set which is used to revise the 
source code for KRASHIC. If no revi¬ 
sions are specified, then hit carriage 
return (CR). 

A compiled listing of the subroutines 
changed in the previous step can be 
obtained. In the example, the listing 
is suppressed, (y = yes) 

The terminal displays KRASHMSC ITERA¬ 
TION it 1, etc., as the JCL for the 
sequential runs is being generated. 

The checkpoint/restart capability of 
KRASH85 is not used for this run. 

(n = no) 









User Response 


Descript ion 


k8S.iere.data 


This is the name of a PANVALET update 
data set which is used to revise the 
source code for KRASH85. if no revi¬ 
sions are specified, then hit carriage 
return (CR). 

In the exampLe shown, the CR was hit 
for each of these, so no data sets 
were specified. DSA, DSB, and DSC 
are indicated here to illustrate 
where these are specified in the 
input. DSA, DSB, and DSC are des¬ 
cribed in the input format description. 

One copy of the output pr : nt requested. 

A compiled listing of the subroutines 
of KRASH85 that are revised can be 
obtained. In this example, the list¬ 
ing is suppressed, (v = yes) 


The KRASI185 analysis system described herein is capable of achieving a 
balanced set of initial conditions only for the situation where the airplane 
starts completely off the ground. If any part of the airplane is initially 
in contact with the ground (any external springs initially del looted), the 
current code cannot balance the airplane. 


.2 1 MV i 

I he input data format is dc T'Ced in detail in this section and is 
shown in table 2-1 and figure 2-3. Table 2-1 gives a quick overview of the 
input data sequence, while figure 2-3 is a complete layout of the input data 
tormat. The data discussed in this section correspond to XYZ.DATA in Sec¬ 
tion 2.1. I’nless otherwise specified, all quantities are input to inch, 
pound, second, and radian units. Two formats are used for the majority of 
the data; 7KI0.0 lor lixed-point and sc ientific-notation input, and 15 for 
integers. As an exmaple of the former, the number 126.08 can be input in 
t iie loll ow i ng wavs: 








TABLE 2-1. KRASH INPUT FORMAT SEQUENCE 


Card 

Sequence 

No.(s) 

Required (R) 
or 

Optional (O) 


Identifier is 
Specified on 
Card No. 

General Description of Data 

10-170 

R 

- 

- 

Title, case control, initial conditions 

200 

R 

NM 

40 

Mass data 

300 

0 

NNP 

40 

Node point data 

400 

0 

NTAB 

70 

Acceleration transfer correspondence data 

500 

O 

NMSAV 

80 

Mass acceleration save data 

600 

O 

NNPSAV 

80 

Node point acceleration save data 

700800 

O 

NSP 

40 

External spring data 

900 

R 

NB 

40 

Internal beam data 

1000 

O 

NMTL 

40 

Material data 

1100 

O 

NPIN 

40 

Beam pinned-end and plastic hinge data 

1200 

O 

NUB 

40 

Unsymmetrical beam data (axial only) 

1290-1500 

O 

NOLED 

40 

Oleo type beam element data 

1600 

R 

- 

- 

Internal beam damping ratio 

1700 

O 

NO 

40 

Non-standard internal beam damping ratios 

1800-1900 

O 

NLB 

40 

Nonlinear beam data (KR tables) 

2000 

O 

MVP 

40 

Mass penetration volume definition 

2100 

O 

NORI 

40 

Dynamic Response Index (DRI) definitions 

E 

O 

NVCH 

40 

Volume change data 


O 

NVBM 

50 

Non-standard maximum positive beam deflections. 

2400 

O 

NVBMN 

50 

Non-standard maximum negative beam deflections. 

2500 

O 

NFBM 

50 

Non-standard maximum positive beam loads 

2600 

O 

NFBMN 

50 

Non-standard maximum negative beam loads 

2700 

O 

NSCV 

60 

Sign convention vectors for load-interaction curves 

28003000 

O 

NUC 

60 

Load-interaction curve data 

3100 

O 

NHI 

50 

Non-zero mass angular momenta, lift constant, or 
inertia cross products 

3200 

O 

NPH 

50 

Non-zero initial mass orientation Euler angles 

3300 

O 

NAERO 

50 

Mass aerodynamic data 

3400-3500 

O 

NACC 

40 

Mass acceleration or load input time-histories 

3600 

0 

NKM 

50 

Direct input of beam stiffness matrices 

3700-3800 

0 

NPLT 

140 

Position plot data 

3900 

0 

NMEP 

140 

Mass point printer plot data 

4000 

0 

NNEP 

140 

Node point printer plot data 

4100 

0 

NBFP 

140 

Beam loads printer plot data 

4200 

0 

NBDP 

140 

Beam deflection printer plot data 

4300 

0 

NSTP 

140 

Beam stress ratio printer plot data 

4400 

0 

NSEP 

140 

External spring load/deflection printer plot data 

4500 

0 

NENP 

140 

Beam strain/damping energy printer plot data 

4600 

0 

NDRP 

140 

DRI printer plot data 

4700 

R 

- 

- 

End of data set card 





















FIGURE 2-3. KRASH85 INPUT FORMAT (SHEET 

























LOCKHEED-CALIFORNIA COMPANY ' |- 

A DIVISION OF LOCKHEED CORPORATION I PAGE 


L « 




imam 


l&siE]r:i 


IKZ/ll 


IPHn 

iuaal 

icaaui 

uwu, 


IM 


I15JI 


s^KVJwal 

■ I 


IMI 


imi 




ifcii 


IdPkHI 


ir-n 


Heibnii 
lie >«i 


■3BCJF C 

riropi^ 

I^TOEil griW 

VIHL3HH 


^Inia 


■■his 

|Mi» 111 ii l 


■ikibb.i 
IKEIM 
piniiKjn 

nnineiga 

VIE3HPM 

SriMnl 

Imp— 

■i IW KCT 

fmmmmmErt] 


isib&i 

151 

5« 

m 

H 

■■1 

m 

■Ml 

Bi 

■n 

BB 

BBI 

BB 

^B 

BB 

■B 

191 

I^H 

BB 

BB 

■ 

^b 

^B 

■1 

bb 

BI 

■ 

■i 

B 


^B 

■ 

■ 

bi 

^B 

■ 

BB 

IB 

■ 


IB 

■ 


BB 

■ | 


BB 

■ 

■1 

B 

BB 

^B 

^B 

■ 

B 


■ 

mm\ 

■ 

■Bi 

■ 

9 

IB 


■ 

B* 

n 


BI 

113 


119 

M 


H 

M 


ez 

fgp*i 


n 

■HI 


PK1 

■n 


1*3 



1-i 

^B 


Cl 

bh 


C! 

BA 


BI 



H 

Ei 



u 


EJ 




PH 


BI 

119 


a 

M 


ii 



EJ 

■PM 


BI 

BI 


ru 

in 



iK’JPXIfcrJI 

IU 

■i 

Ul 

19* 

IM 

BUS 


—■■■—m>a 

jlPHfc— 
Bid 


|WI 


til 

MCJR 
Pi^Jri 
nn»>iP]i 
vn»^JK9l 
nMiii 


mnni 

pnrai 

PCtLlI 
WMEII 

muni 

HfiRUI 

■ Ml II 


BfelMSiEI 

B4»*4*1P?IBH 

Sti \ c* m| 
Pejmcjbibb 

■«^9B 

fi9 


[ jh$: 

bi—^rjgBga^^a Eia] 

■hivafjrrnr^ln i^muh 
|Z^S^I^R^I£y|iMlL9fc3l 


KIPKII 

ifikicii 

Mil II II 

Kn»n 

iviiai.ii 




FIGURE 2-3. KRASH85 INPUT FORMAT (SHEET 2 OF 7) 

























GENERAL' vRPOSE DATA SHEET lockheed-caufornia company 'j- 

A DIVISION OF LOCKHEED CORPORATION I PAGE 



o g o o 
o <r o 


A... S_ o 

o _o 


V-.-VV.-V'vW- • 


FIGURE 2-3. KRASH85 INPUT FORMAT (SHEET 3 OF 7) 
















PREPARED BY f DATE j CHECKED BY I DATE I job NO GROUP 



FIGURE 2-3. KRASH85 INPUT FORMAT (SHEET 4 OF 7) 




























PREPARED BY f DATE [ CHECKED BY I DATE 


il K. O 

o r- » 


1LO 5 


—rtirv 

luanii 

irwn*icjn 


u.im 

it'-ic’ii 

nrw.ii 

ihui 

iai‘j 




HEJHrl 

IIUC1 


IK» 
IKM5M 

IftHPCM 

IMBcll 


IMI 


IF1I 


IKilTI 


l>il 


IKII 




. &, 


i^huhes 


■ K1K3B * s'.s 

tt4Cn»BME3jl 

ssssslas 


sail 


BSS 51 

lE3|g |gi 
'IE.? . 
nitsifil 
JpaiKinl 
■ESimnal 
■MjnPAnl 




Il7 


teiESKPgEl 


IlKwZSI 


IESI 


iKrr^lHidi 


KfiRI 


ICWIIII 


id 


IfcJII 


MTCll 

iitaial 

iinrj 

lanSul 

tllTK 

wi! 


yaaiczii 


nrAHE^M! 


peitoj! 
PlUl 
KiM 


IVU1I 


... 

K*iac£i 

maul 

|F WI!II 

r« 

OIWP-I 

iao>’ 

Kjjgg iani 

■Hprara 

gL2H 


■I ■1(7' I 


ivai 


IL'll 


■mn 
»?*«H 


lorslsi 


i^i 


iii;i 

uni 


1^1 






IB 1 


^■j 


BB| 


■HI 


imaai 


IHHI 


■i 


IMI 


IHHI 

Ian 

hi 


HI 

jri 

!■■! 



\ma 

'HI 


aii 


iaai 



a 

hi 

Si 

FJ 

HI 

It 

HI 

u 

HI 


I^HI 

Ian 

HI 


H! 


HI 


HI 


HI 


I^BI 


HI 

1* 

HI 

n 

SI 

In 

Ira 

HI 




IHHI 


SI 


rS 

51 

H 

HI 

M 

HI 

■a 

HI 

in 

8 

| H 

IflK 

■■1 




mi 

!■ 


n 

■HI 

Cl 

^■j 

ara 

HI 

In 

HI 

lin 


■■a* 

HI 

tmm 

^■1 


■■1 


■| 


Mil 

|l Zi 


lia 

wmi 

k( 

■1 



law 


MM 





HI 


!ni 


l f Ak v 



1^M\ 


i^HI 

lei 

m\ 

|^HI 

HI 

a— 

—1 









































LOCKHEED* CALIFORNIA COME ANY «—— 
A DIVISION OF LOCKHEED CORPORATION I PACE 



FIGURE 2-3. KRASH85 INPUT FORMAT 


























H ' V'J */* 


r 


Blank i •. > 1 u:;sns arc treated as zeros. When the F. format is used, the exponent 
oust he ri,;ht justi; ieJ in tile field. With the 15 integer lormat, the number 
r.;i i s t lie right just ified. The sequence numbers shown in columns 77 through 80 
are onl\ tor re! ei'eiH'e purposes within this document. The actual data cards 
can have anv numbering scheme, or no numbers at all, as lone as the cards are 
in the proper order. 

I lie tel low in,', coordinate systems (figure 2-4) are establ ished to lac i 1 i - 
Lata the derivation of equations for the mathematical model. The input data 
description specifies the appropriate coordinate systems to be used. 

• (.round Coordinate System . - This is a right-handed coordinate system 
fixed in the ground with the origin at point 0 in figure 2-4. The 
x-axis is positive forward, the v-axis is positive to the right, and 
the /-axis is positive downward. The xy-plane (z = 0) corresponds to 
the ground surface. The ground coordinate system is considered an 
inertial coordinate system for writing the dynamic equations of motion. 

• Slope Coordinate System . - This is a right-handed coordinate system 
fixed in the ground with the origin at point 0 as shown in figure 2-4. 

The x-axis is positive forward up the slope, the y-axis is positive 

to the right, and the z-axis is positive downward and perpendicular 
to the slope. This coordinate system is the same as the ground coor¬ 
dinate system rotated through an angle 'beta', positive clockwise 
about the ground y-axis. The xy-plane represents a plane inclined 
at an angle 'beta' with respect to the horizontal ground plane. 

'Beta' is a constant input angle that can range from zero to ninety 
degrees. 

• Airplane Coordinate System. - This is a left-handed coordinate system 
fixed with relation to the airplane with the origin at point H in fig¬ 
ure ,'-i. The x-axis is positive aft, the y-axis is positive to the left 
when looking forward, and the z-axis is positive upv T ard. The origin at 
point H corresponds to zero fuselage station (FS = 0) , zero buttline 

(BL = 0), and zero waterline (WL = 0) . This coordinate system is used 
only to input the location coordinates of the mass points and massless 
node points since the coordinates of the points are usually available 
in terms of fuselage station, buttline, and waterline. 

• Center-of-Gravitv Coordinate System . - This is a right-handed coordinate 
system fixed with relation to the airplane with the origin at the ve- 
hic'o c.g. , point 0. The x-axis is positive forward, the y-axis is positive 
to the right when looking forward, and the z-axis is positive downward. 

These axes are parallel to the airplane coordinate system axes. 


2-17 












• Mass Point Coordinate System . - Each mass point lias its own right-handed 
coordinate system fixed with relation to the mass point. The initial 
orientation of each of these coordinate systems is arbitrary and is 
specified by means of three input Euler angles for each mass point 
relating its initial orientation to the center-of-gravitv coordinate 
system since the inertia data are generally available about these axes 
and the three input Euler angles are zero. The mass point coordinate 
system is the system used to write Euler's equations of motion for each 
mass point. 

• Beam Element Coordinate System . - This is a right-handed coordinate 
system with the beam element x-axis along a straight line from the 
mass point at end '1' to the mass point at end "j". As the mass 
points move, the beam element coordinate system changes orientation 
so that the x-axis is always pointing from the mass point at end 'I' 
to the mass point at end '.I'. If the beam element connects massless 
node points which are offset from the mass points, then the beam ele¬ 
ment x-axis always points from the massless node point rigidly 
attached to the mass point at end * I.' to the massless node point 
rigidly attached to the mass point at end 'J'. 

The beam element y-axis and z-axis are mutually perpendicular. The 
direction of each is arbitrary and is defined internally within the 
program. The input data are prepared according to the beam element 
coordinate systems shown in figure 2-5 (page 2-46). 

The following is a detailed description of all the input data 


requirements. 







COORDINATE SYSTEM 



FIGURE 2-4. KRASH85 COORDINATE SYSTEMS 







KRASH* INPUT DATA 


CARD 0010: TITLE CARD # 1 

DESCRIPTION : Defines an alphanumeric label which will appear as the first line of heading on each page of 

KRASH* printed output. 

FORMAT AND EXAMPLE: 


01 2345678 

1234567890123456789012345678901234567890123456789012345678901234567890I234567890 

TITLE 1 


SUBSTRUCTURE SECTION IMPACT STUDY 

0010 


FIELD CONTENTS 

Title 1 Alphanumeric Character String 

REMARKS: (1) Required data card; however, it may be blank. 

‘ ' (2) All text material on this card is reproduced at the top of every output page and on every 

plot. 


CARD 0020 . TITLE CARD /2 

DESCRIPTION: Defines an alphanumeric label which will appear as the second line of heading on each page 

_ ~~ of KRASH printed output. 


FORMAT AND EXAMPLE: 


0 1 2 3 4 5 6 7 

1 --34 567890123456789012345678901234 5678901 234 5678901234567890123456789012 

8 

34567890 

TITLE2 


INITIAL CONDITIONS: 27.5 FPS VERTICAL IMPACT ON RIGID SURFACE 

0020 


FIELD CONTENTS 

Title2 Alphanumeric Character String 

REMARKS: (1) Required data card; however, it may be blank. 

‘ (2) All text material on this card is reproduced at the top of every output page and on every 

plot. 


*KRASH refers to KRASH85 in all subsequent input data sheets 


2-20 












KRASH INPUT DATA 


CARD 0030 : DUMMY CARD 

DESCRIPTION: Defines a numeric heading which will appear on each page of the KRASH printout of the 

— ~ input data deck echo. 

FORMAT AND EXAMPLE : 

01 2345678 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

DUMMY 

123456789012345678901234567890123456789012345678901234567890123456789012 0030 

FIELD CONTENTS 

Dummy Numeric String 

REMARKS: (1) Required data card; however, it may be blank. 

" ' (2) Intent of this data card is to aid the user in verifying the field placement of the input 

data. 


2-21 









KRASH INPUT DATA 


CARD 0040 : KRASH MODEL SIZE PARAMETERS 

DESCRIPTION Defines the sizes of the various input parameter data sets for the KRASH model. 
FORMAT AND EXAMPLE: 


01 2345678 

I 234 5678901234 567890123456789012345678901234567890123456789012 3456789012 34 567890 



FIELD 


CONTENTS 


NDRI 

NOLLO 

NACC 


NVCI1 


Number of Mass Points Per 0200-Series Cards (Maximum Allowed is 80) 

Number of External Crushing Springs Per 0700/0800-Series Cards (Maximum Allowed is 40) 
Number of Beam Elements Per 0900-Series Cards (Maximum Allowed is 150) 

Number of Beam Element Nonlinear Degrees-of-Freedom Per 1800-Series Cards (Maximum 
Allowed is 180) 

Number of Massless Node Points Per 0300-Series Cards (Maximum Allowed is 50) 

Number of Beam Elements Having at Least One Degree-of-Freedom Pinned Per 1 100-Series 
Cards (Maximum Allowed is 150) 

Number of Axially Unsymmetric Beam Elements Per 1200-Series Cards (Maximum Allowed 
is 1 50) 

Number of DRI Beam Elements Per 2100-Series Cards (Maximum Allowed is 150) 

Number of Shock Strut Elements Per 1300 and 1400-Series Cards (Maximum Allowed is 20) 
Number of Enforced Acceleration Time History Tables Per 3400/3500-Series Cards (Maximum 
Allowed is 100 Input Tables. With a Total of 5000 Time Points) 

Reference Mass Point For Volume Penetration Calculations Per 2000-Series Cards (Maximum 
Allowed is I ) 

Number of Volumes For Occupiable Volume Change Calculations Per 2200-Series Cards 
(Maximum Allowed is 5 ) 

Number of Non-Standard Beam Element Materials Per 1000-Series Cards (Maximum Allowed 

IS 10) 

Number ol Beam Elements With Non-Standard Damping Ratios Per I 700-Series Cards 
(Maximum Allowed is 150) 


Requited data card. 

All entries are tight lustttied integers 
'NM' and 'NB' must be nonzero 
Blank entiles are lead as zero 

See fable 2-1 lot a stnnmaiv ol model si/e parameters, 
format tot this card is 1415 


REMARKS 


































TABLE 2-2. PROGRAM SIZING CONSTANTS 


CONSTANT 

MAXIMUM VALUE 

DESCRIPTION 

NM 

80 

NUMBER OF MASSES 

NSP 

40 

NUMBER OF EXTERNAL SPRINGS 

NB 

150 

NUMBER OF INTERNAL BEAMS 

NLB 

180 

NUMBER OF NONLINEAR BEAM-DIRECTION 

COMBINATIONS (KR TABLES) 

NHI 

80 

NUMBER OF MASSES HAVING NON ZERO Hev,. 

Hey,. He z ,. I xyj . I yZj . I XZj . OR Fq 1 

MVP 


REFERENCE MASS NUMBER FOR VOLUME PENETRATION 
CALCULATIONS 

NVCH 

5 

NUMBER OF VOLUMES FOR OCCUPIABLE VOLUME 

CHANGE CALCULATIONS 

NDRI 

150 

NUMBER OF DR1 BEAM ELEMENTS 

NMTL 

10 

NUMBER OF NON-STANDARD BEAM MATERIALS 

NACC 

100 

NUMBER OF INPUT ACCELERATION TIME-HISTORY TABLES 
(TOTAL NUMBER OF TIME POINTS = 5000) 

NVBM 

150 

NUMBER OF INTERNAL BEAMS HAVING NON-STANDARD 
MAXIMUM POSITIVE (NVBM) OR NEGATIVE (NVBMN) 

N’VBMN 

150 

DEFLECTIONS FOR BEAM RUPTURE. STANDARD 

VALUE = 100 (inches OF DEFLECTION AND radians OF 
ROTATION) 

NFBM 

150 

NUMBER OF INTERNAL BEAMS HAVING NON-STANDARD 
MAXIMUM POSITIVE (NFBM) OR NEGATIVE (NFBMN) 

M BMN 

150 

FORCES FOR BEAM RUPTURE. STANDARD VALUE = 1 E10 

NPII 

80 

NUMBER OF MASSES HAVING NON-ZERO EULER 

ANGLES 4>, "■ e f- V 

M) 

150 

NUMBER OF INTERNAL BEAMS HAVING DAMPING RATIOS 
DIFFERENT FROM THAT SPECIFIED ON CARD 1600 

NKM 

150 

NUMBER OF INTERNAL BEAMS FOR WHICH THE FULL 

6x6 STIFFNESS MATRIX IS DIRECTLY INPUT 

NPIN 

150 

NUMBER OF INTERNAL BEAMS HAVING OTHER TH \\ 
FIXED-FIXED END CONDITIONS 

NNP 

50 

NUMBER OF MASSLESS NODE POINTS 

NUB 

150 

NUMBER OF UNSYMMETRICAL BEAMS 

NOLI 0 

20 

NUMBER OF SHOCK STRUTS 







KRASH INPUT DATA 


CARD OOSO : KRASH MODEL SIZE PARAMETERS AND CALCULATION FLAGS 

DESCRIPTION: Defines the sizes of the various input parameter data sets for the KRASH model and provides 

for beam element stress and/or failure data calculations. 

FORMAT .AND EXAMPLE: 



FIELD CONTENTS 

NVBM Number of Beam Elements Having Non-Standard Rupture Positive Deflections Per 2300-Series 

Cards (Maximum Allowed is 150) 

NFBM Number of Beam Elements Having Non-Standard Rupture Positive Forces Per 2500-Series Card 

(Maximum Allowed is 150) 

NVBMN Number of Beam Elements Having Non-Standard Rupture Negative Deflections Per 2400-Series 

Card (Maximum Allowed is 1 50) 

NFBMN Number of Beam Elements Having Non-Standard Rupture Negative Forces Per 2600-Series 

Cards (Maximum Allowed is 150) 

NKM Number of Beam Elements For Which 6x6 Stiffness Matrix is Directl) Input Per 3600 Series 

Cards (Maximum Allowed is 150) 

Mil Number of Mass Points Having Nonzero Aerodynamic Lift Constant. Angular Momenta, or Cross 

Products of Inertia Per 3100-Series Card (Maximum Allowed is 80) 

NPI1 Number of Mass Points Having Nonzero Euler Angles For Rotating the Mass Point or Body 

Coordinate System Relative to The Ccnter-of-Gravity Coordinate System Per 3200-Series Cards 
(Maximum Allowed is 80) 

NTOL1 Percent Allowable Total Energy Growth Above 100 Percent (Default Value is One (1) Percent) 

NTOL2 Percent Allowable Individual Negative Strain. Damping. Crushing and Friction Terms of Respec¬ 

tive Totals (Default V'alue is Ten (10) Percent) 

NTOL3 Percent Allowable Individual Mass Energy Deviation Above Zero Percent (Default Value 

Thirty (30) Percent 

NSC Flag For Beam Element Stress Calculation: 0 = No 1 = Yes 

NIC Flag For Preliminary Beam Element Failure Load and Deflection Calculations: 0 = No 

1 = Yes 

NAI KO Number of Masses Having Aerodynamic Data Input Per 3300-Series Card (Maximum 

Allowed is 80) 

NBOMB Any Nonzero Input Will Override all Energy Growth Error Checks. Run Will Execute 

to Completion Regardless of Energy Calculations. 

REMARKS (1) Required data card, however it may be blank. 

(2) All entries are right justified mtegers. 

(3) Blank entries arc read as zero. 

(4) If any of the allowable errors in energy are exceeded, the analysis terminates automatically 
at that time, and summary tables and printer plots are generated. 

(5) Default values for NVBM and NVBMN are 100 inches or radians. Default values for NFBM 
and NFBMN are 1E10, lbs or in-lbs. 

( 0 ) See Table 2-1 for a summary of mode! size parameters. 

(7) It is recommended that NIC = 1 be used each time if complete beam properties are input 
(0600-series cards). 

(8) Format for this card is 1415. 


2-24 








KRASH INPUT DATA 


CARD 0060 : KRASH MODF.L SIZE AND PROGRAM CONTROL PARAMETERS 

DESCRIPTION: Defines the si/.es of input parameter data sets for the KRASH model and controls the 

output of graphics information and specifies the type of initial conditions to be used 

FORMAT AND EXAMPLE: 


01 2 3 45678 

12345678901234567890123456789012345678901234S67890123456789012345678901234567890 

NSCV 

NLIC I 

NWRGRA 

NBAL 

ICD 

ICITF.R 



1 

16 

0 

5 

1 

1 


0060 


FIELD CONTENTS 


NSCV 

NLIC 

NWRGRA 


NBAL 

ICD 


ICITER 


Number of User-Specified Sign Convention Vectors,Per 2700-Series Cards. To Be Used 
in Conjunction With Load-Interaction Curve Data. (Maximum Allowed is 10) NSCV 
May be Zero. 

Number of Load-Interaction Curves Per 2800/3000-Series Cards (Maximum Allowed is 40) 
Parameter Which Governs Whether Graphics Data For Postprocessing is Written to The 
User’s Data File. NWRGRA = 0 Results in No Data Being Written to The User's File. 

Any Nonzero Input Will Result in Mass and Node Point Displacement Time-History Data. 

Plus Load-Interaction Time-History Data (if NLIC /= 0). being written to the user's data file, in data 
set DSC. Defined in JCL. 

If MSC/NASTRAN is To Be Used For a Static Solution. Then NBAL is The Mass Number 
That is Constrained to Have Zero Deflections and Rotations. 

Parameter Which Determines Whether an Additional Data Set of Mass and Node Point 
Static Deflections is To Be Read Following the Basic Input Data Set. ICD = 0 Means 
That The Additional Data Set is Not Read. Any Nonzero Input Causes The Program to 
Read The Initial Deflection Data. 

Parameter Which Determines Whether The Initial Mass and Node Point Deflection Data 
(ICD £0) is Used To Modify The Input Airplane Coordinates For The Mass and Node 
Points. ICITER = 0 Means The Initial Static Deflection Data is Not Used to Modify The 
Mass Coordinates: i.c.. The Airplane is Left in Its Undeformed Position. Any Nonzero 
Value of ICITF.R Results in The Input Mass Coordinates Being Modified to Reflect The 
Initial Static Deflections, i.e.. The Airplane Assumes The Deformed Shape Corresponding 
to The Initial Static Load Condition. 


REMARKS: 


(1) Required data card , however, it may be blank. 

(2) All entries are right justified integers. 

(3) See Section 3 1 for a discussion of the load-interaction curve data; Section 2.1 for 
a discussion of initial conditions. 

(4) Format for this card is 615. 


2-25 


















KRASH INPUT DATA 


CARD 0070: ACC LLP RATI ON TRANSFER CONTROL PARAMETERS 

DESCRIPTION: Defines number of time-history tables of mass accelerations to be used. 

FORMAT AND EXAMPLE: 


01 2345678 

I 23456 78901234S678901234567890123456789012345678901 2345678901 2345678901 234 567890 



FIELD CONTENTS 

(C’SIN > Not Used 

(RNIN) Not Used 

NTAB Number of Acceleration Time-History Tables to Be Used From Previous Run. Using Data 

Set Identified as DSA in JCL. Maximum Allowed is 100. 

REMARKS: (1) Required data card; however, it may be blank. 

.. ^ 2 ) NTAB is input as a right justified integer. 

(3) See Section 3.2 for a discussion of acceleration transfer procedures. 

(4) Format for this card is(A6, 4X, A10, 5X, 15). 













KRASH INPUT DATA 


C ARD 0080: ACCELERATION TRANSFER CONTROL PARAMETLRS 

DESCRIPTION Defines data for saving mass and mode point accelerations for later use as input data in 
another run. 

FORMAT AND EXAMPLE: 


0 1 2 3 4 5 6 

123456789012345678901234567890123456789012345678901234567890 

7 8 

12345678901234567890 

B23BS3 

(RNOl'T) 

NMSAV 

NNPSAV 

NDTSAV 

NWRFLG 

NDTGRA 





6 

3 

10 

1 

20 


0080 


HELD CONTENTS 


(CSOUT) 

(RNOUT) 
NMSAV 

NNPSAV 

NDTSAV 

NWRFLG 


NDTGRA 


Not Used 
Not Used 

Number of Masses For Which Selected Acceleration Data Will he Saved in Data Set DSB 
(Identified in JCL), as Specified on 500-Series Cards (Maximum allowed is SO) See Remark (5). 
Number of Node Points For Which Selected Acceleration Data Will be Saved in Data Set DSB 
(Identified in JCL). as Specified on 600-Series Cards (Maximum Allowed is 50) See Remark (5) 
Multiple of Integration Time Interval DT at Which Acceleration Data Will be Saved. See 
Remark (4) 

Parameter Governing Whether Selected Acceleration Data Will be written to User's Data File 
as Data Set DSB. Any Nonzero Value Will Cause The Data to be Written: NWRFLG = 0 Will 
Cause The Data Not to be Written. Regardless of The Remaining Input Parameters on This 
Card. 

Multiple of Integration Time Interval DT at Which Mass and Node Point Displacement Data 
Will be Written to User's Data File as Data Set DSC (Identified in JCL). This Data is Used 
For Graphics Postprocessing. NWRGRA on Card 0600 Must be Nonzero For This Data to be 
Written as DSC in User’s Data File. NDTGRA Also Defines The Time Interval For Saving 
Load-Interaction Data. For The Load Interaction Data, if NWRGRA on Card 0060 is Zero. 

The Print Output Will Still Contain Time-Histories of All Load Interaction Output Data. If 
it is Desired to Save This Data in Data Set DSC For Postprocessing. Then NWRGRA Must be 
Input Nonzero. See Remark (4). 


REMARKS: 


(1) Required data card; however, it may be blank. 

(2) All entries are right justified integers. 

(3) See Sections 3 • I and 3 2 for discussions of load-interaction curve data and 
acceleration transfer control and graphics data. 

(4) Both NDTSAV and NDTGRA must be chosen so that less than 100 time cuts are 
saved for each response quantity. This is satisfied if 

NDTSAV \ _. IAV 
i L TMAX 

' int ^ / 100 * DT 
NDTGRA/ IUU 

(5) The total number of response quantities saved (total number of nonzero MI T's and 
NPFL's on 0500 and 0600 Series ( aids) must be less than 100. 

(0) Format for this card is(A6, 4X. AI0, 51 10). 


2-27 
















KRASH INPUT DATA 


CARD 0090 : RESTART CONTROL PARAMETERS 

DESCRIPTION : Defines the identifiers of a previously checkpointed KRASH case and the simulation time from 

which the KRASH analysis will be restarted. 

FORMAT AND EXAMPLE: 


0 

1 

2 

3 

4 

5 

6 

7 


8 

1234567890123456789012345678901234S6789012345678901234567890I2345678901234567890 

CASEIN 

>2 

RUNIN 

MSECIN 





* 


OLEO 


1 

40 





_ 

0090 


FIELD CONTENTS 

CASEIN Alphanumeric Identifier of Checkpointed Case (Maximum of Eight Characters, Left Justified) 

RUNIN Numeric Identifier of Checkpointed Case 

MSECIN Restart Time - Milliseconds 


REMARKS 


(1) Required data card, however, it may be blank. 

(2) All numeric entries are right justified integers. 

(3) Previously checkpointed case must be resident on mag tape and be accessed via JCL. 

(4) Restart time must be included in the KRASH analysis of the previously checkpointed case. 

(5) Only nonblank when using restart capability to initiate from a preceding analysis that has 
been saved. 

(6) Format for tliis card is(A8. 2X. 6110). 


2-28 



















KRASH INPUT DATA 


CARD 0100: CHECKPOINT CONTROL PARAMETERS 

DESCRIPTION : Defines indentifiers and simulation times for the current KRASH case to checkpoint the 

analytical results for future restarts. 

FORMAT AND EXAMPLE: 


0 1 2 3 4 5 6 7 

1 2 34 56 7890123456 7 89012345678901 234S678901234567 8901 234567 89012345678901 2 

8 

34567890 

CASEOUT 

►:< 

RUNOUT 

MSCOUT(l) 

MSCOUT(2) 



MSCOUT (5) 



OLEO 

□ 

2 

40 

80 

100 

120 

150 

□ 

0100 


FIELD CONTENTS 

CASEOUT Alphanumeric Identifier (Maximum of Eight Characters, Left Justified) 

RUNOUT Numeric Identifier 

MSCOUT1 Analysis Times at Which Results Will be Saved - Milliseconds 


REMARKS: 


(1) Required data card; however, it may be blank. 

(2) All numeric entries are right justified integers. 

(3) JCL must provide mag tape on which results will be saved. 

(4) Only nonblank when data are to be saved. A maximum of five times can be saved per 
analysis. 

(5) Format for this card is(A8. 2X, 6110.0). 


-29 




















KRASH INPUT DATA 


CARD 0110: PARAMETERS FOR NUMERICAL INTEGRATION, PLOWING FORCE, ACCELERATION 

FILTER, AND KRASH EXECUTION MODE 

DESCRIPTION: Defines print control, numerical integration time step, analysis time, plowing force time, 

acceleration filter cutoff frequency, and KRASH execution mode (airplane model and impact 
condition symmetry). 

FORMAT AND EXAMPLE: 


1 0 1 

2 

3 

4 

5 

6 

7 


8 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

DP/DT 

DT 

TMAX 

PLOWT 

FCUT 

RUNMOD 

x 

IK 


100 

0 00001 

0 120 


100.0 

1.0 


_ 

0110 


FIELD CONTENTS 


DP DT 
DT 

TMAX 

PLOW! 

FCL'T 

RL'NMOI) 


REMARKS 


Multiple of Numerical Integration Time Interval at Which Output Will be Printed, 

Right Justified Interger 

Fixed Time Step For Numerical Integration - Seconds 

Maximum Analysis Time - Seconds 

Analysis Time at Which Plowing Forces Cease - Seconds 

Cutoff Frequency of First-Order Filter Applied to Mass Point Translational Accelerations - 
Hertz (E10.0 Format) 

Flag to Control the Mode of Program Execution as Follows: 


RUNMOD 

INPUT 

DATASET 

DATA SET 
ANALYZED 

AIRPLANE 

MODEL 

IMPACT 

CONDITIONS 

0 . 

Full Airplane 

Full Airplane 

Unsymmetrical 

Unsymmetrical 

1 . 

Half Airplane 

Half Airplane 

Symmetrical 

Symmetrical 

-> * 

Half Airplane 

Full Airplane 

Symmetrical 

Unsymmetrical 


*See remark (5 ) 


(1) Required data card. 

(2) 'DP/DT', ‘DT\ 'TMAX'. and ‘RUNMOD’ are required inputs. 

(3) Blank entries are read as zero. 

(4) Entries requiring scientific notation (X.XEXX) should be right justified. 

(5 ) For RUNMOD = 2. image mass number = 100 + mass number. 

(b) Suitable values tor 'DT' range from 0.00001 to 0.001 seconds. A rule of thumb for selecting 
a final integration value is the following: 

DT S 0.01 Max. Computed Beam Frequency (Hz). 

(7) Nonzero plowing forces act from time = 0 to time = ‘PLOWT . For time > PLOWT 
the plowing forces are set to zero. 

(8) Suitable values for ‘FCUT’ range fiom fifty to eighty-five percent of the actual test filter 
cutoff frequency. Eighty-five percent is commonly used. 

(O) Foimat toi tills card is ( I 10. 51:1 0.0). 
























KRASH INPUT DATA 


CARD 0120 : VARIABLE INTEGRATION PARAMETERS 

DESCRIPTION: Define parameters for numerical integration with variable time step. 

FORMAT AND EXAMPLE: 


o i : 

1 2 345t»“'S < >01 2345678901 

3 4 5 6 7 8 

23456789012345678901234567890123456789012345678901234567890 

IV A R 

EL 

EU 

RATMIN 

RATMAX 


x 

ft 


1 

0 01 

0.10 

0 6 

2.0 



_ 

0120 


FIELD 

IVAR 


I L 
IT 

RATMIN 

RATMAX 

REMARKS 


CONTENTS 


Flag For Type of Numerical Integration With Variable Time Step as Follows (Right Justified 
Integer): 


IVAR 

TYPE OF NUMERICAL INTEGRATION WITH VARIABLE TIME STEP 

0 

None 

1 

Tolerance Based on Six Linear and Angular Velocities of Each Mass Point 

"1 

Tolerance Based on Energy 


Maximum Tolerance 
Minimum Tolerance 

Integration Time Step Factor if Tolerance > ‘EU' 

Integration Time Step Factor if Tolerance < ‘EL’ 

(1) Required data card, but it should be blank as the variable integration algorithm is not 
currently operational. 

(2) Blank entries are read as zero. 

(3) Format for this card is (l 10. 4E 10.0). 




















KRASH INPUT DATA 


CARD 0130 : PRINT OUTPUT CONTROL 

DESCRIPTION: Defines flags to control the printout of results, KRASH model size parameters, and allowable 

errors in energy for terminating the analysis. 

FORMAT AND EXAMPLE: 


























KRASH INPUT DATA 


CARD 0140: PRINTER PLOT CONTROL PARAMETERS 

DESCRIPTION: Defines the type and number of time history printer plots and defines the number of mass 

„ point position (structure deformation) printer plots. 

FORMAT AND EXAMPLE: 


0 1 2 3 4 5 6 ' X 

I 234 56"X9012 3456'K9()|234567X9012345678901234 567X90123456'890I 2 34 567X9012 34 567X90 


NMF:P 

NNF.P 

NBFP 

NBDP 

NSTP 

NSEP 

NENP 

ndrpI 

NPLT 

NPFCT 



1 

i- 

21 

0 

3 

0 

0 

0 

2 

1_ 

1 

2 

20 




0140 


FIELD CONTENTS 


NMEP Number of Mass Points Having Time History Printer Plots Per 3900-Series Cards 

NNEP Number of Massless Node Points Having Time History Printer Plots Per 4000-Series Cards 

NBFP Number of Beam Elements Having Load Time History Printer Plots Per 4100-Series Cards 

NBDP Number of Beam Elements Having Deflection Time History Printer Plots Per 4200-Series Cards 

NSTP Number of Beam Elements Having Stress Time History Printer Plots Per 4300-Series Cards 

NSEP Number of External Crushing Springs Having Time History Printer Plots Per 4400-Series Cards 

NENP Number of Beam Elements Having Strain and/or Damping Energy Time History Printer Plots 

Per 4500-Series Cards 

NDRP Number of DRI Mass Points Having Time History Printer Plots Per 4600-Series Cards 

NPLT Number of Mass Point Position (Structure Deformation) Printer Plots Per 3700/3800-Series Cards 

NPFCT Print Time Factor For Which Mass Point Position (Structure Deformation) Plots Are Generated 


REMARKS 


(1) Required data card; however, it may be blank. 

(2) All entries are right justified integers. 

(3) Blank entries are read as zero. 

(4) Blank or zero entries do not generate printer plots. 

(5) Mass position plots occur at time = 0. and at intervals equal to NPFCT \ DP DT \ DT. 

(6) Format for this card is 1015, 


2-33 































KRASH INPUT DATA 


CARD 0150: INITIAL AIRPLANE UNEAR VELOCITIES 

DESCRIPTION . Defines the initial airplane linear velocity components with respect to the ground coordinate 
system. 

FORMAT AND EXAMPLE: 


0 1 

2 

3 

4 

5 

6 

7 


8 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

XGDOT 

YGDOT 

ZGDOT 


x 

x 

ixr 

* 


0.0 

0.0 

360.0 





_ 

0150 


FIELD CONTENTS 

XCDOT Initial Fore-and-Aft Velocity of Airplane, Positive Forward 

YGDOT Initial Lateral Velocity of Airplane, Positive Right 

ZGDOT Initial Vertical Velocity of Airplane, Positive Down 

REMARKS: (1) Required data cards; however, it may be blank. 

(2) Velocity units are inches per second. 

(3) Blank entries are read as zero. 

(4) Entries requiring scientific notation (X.XEXX) should be right justified. 

(5) Format for this card is 3E 10.0. 


2-34 























KRASH INPUT DATA 


CARD 0160: INITIAL AIRPLANE ANGULAR VELOCITIES 

DESCRIPTION : Defines the initial airplane angular velocity components with respect to the ground coordinate 

system. 

FORMAT AND EXAMPLE: 


0 1 2 3 4 5 6 7 8 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 



FIELD CONTENTS 

PPR Initial Airplane Roll Velocity, Positive Right Wing Down 

QPR Initial Airplane Pitch Velocity, Positive Nose Up 

RPR Initial Airplane Yaw Velocity, Positive Nose Right 

REMARKS: (1) Required data card; however, it may be blank. 

(2) Angular velocity units are radians per second. 

(3) Blank entries are read as zero. 

(4) Entries requiring scientific notation (X.XEXX) should be right justified. 

(5) Format for this card is 3E10.0. 














KRASH INPUT DATA 


CARD 0170 MISCELLANEOUS AIRPLANE INITIAL CONDITIONS 

DESCRIPTION Defines the initial airplane attitude Euler angles and the initial airplane linear position with 
respeet to the ground coordinate system and defines the ground plane slope angle. 

FORMAT AND EXAMPLE: 


0 1 

1234567890 

2 3 4 5 6 7 8 

1 2 3456789012345678901 2345678901234567890123456789012345678901234567890 

PHIPR 

THEPR 

PSIPR 

XGIN 

ZGIN 


RHO 

8 


0 0 

0.001 

0 0 

0.0 

0 0 

45.0 

1.1463F.-07 


0170 


FIELD CONTENTS 

PH1PR Initial Airplane Roll Euler Angle, Positive Right Wind Down Radians 

THEPR Initial Airplane Pitch Euler Angle, Positive Nose Up - Radians 

PS1PR Initial Airplane Yaw Euler Angle. Positive Nose Right - Radians 

XCiIN Eore-and-Aft Distance of Airplane Initial CG Position Relative to the Basic Position 

Calculated in the Initial Condition Subroutine, Positive Aft - Inches 
ZG1N Vertical Distance of Airplane Initial CG Position Relative to the Basic Position 

Calculated in the Initial Condition Subroutine. Positive Up - Inches 
BETA Ground Plane Slope Angle, Positive Up - Degrees 

RHO Air Density Used for Calculating Aerodynamic Loads (NAERO £0). Pound-Sec'/ln 4 

REM ARKS (1) Required data card; however, it may be blank. 

(2) Blank entries are read as zero. 

(31 Normally. ‘XGIN' and ‘ZGIN’ are input as zero and the KRASH initial 
conditions subroutine positions the airplane relative to ground. 

(4) If it is desired to have the airplane impact only on the slope and not on the 
horizontal ground, a large value of ZGIN may be input (1000 inches). This 
will move the airplane upward ZGIN above the horizontal ground, and 
simultaneously move it forward so that it is almost contacting the slope. 

The normal initial position for the airplane is wedged into the juncture of 
the horizontal ground and the slope as explained in Volume 1, Section 1.3.1 : 

(5) Values of ‘BETA - range from zero to ninety degrees (horizontal to vertical 
impact surfaces). 

(6) Entries requiring scientific notation (X.XEXX) should be right justified. 

(7) If NSP = 0 (no external springs), ZGIN is the distance from the ground plane 
to the airplane CG. positive up. 

(8) Formats for this card is 7E10.0. 




















(CRASH INPUT DATA 


CARDS 0200: MASS POINT DATA 

DESCRIPTION: Defines the weight, location coordinates, and mass moments of inertia for each of the mass 

points in the (CRASH model. 

FORMAT AND EXAMPLE: 


0 1 2 3 4 5 6 7 

123456 78<)01234567 89012345678901 234567890123456789012345678901 2345678901 2 

8 

34567890 

WGT 

XDP 

YDP 

ZDP 

XI 

YI 

ZI 

ID 


103.0 

50 0 

20.0 

33.0 

12.5 

3.7 

12.5 

a 

0200 


FIELD CONTENTS 


WGT 

XDP 

YDP 

2DP 

XI 

Yl 

21 

ID 

REMARKS: 


Weight - Pounds 

Fuselage Station Coordinate, Positive Aft - Inches 

Buttline Coordinate, Positive Left - Inches 

Waterline Coordinate, Positive Up — Inches 

Roll Mass Moment of Inertia - Inch * Pound * Second**2 

Pitch Mass Moment of Inertia - Inch * Pound *Second**2 

Yaw Mass Moment of Inertia - Inch * Pound * Second**2 

Mass Point Number 

(1) ‘NM’ on card 0040 specifies the number of these cards for input. 

(2) The order of these cards determines the mass point number. 

(3) Blank entries are read as zero. 

(4) The location coordinates are defined in a left-handed coordinate system. 

(5) At least one of the three mass moments of inertia must be nonzero. 

(6) Mass moment of inertia cross products may be defined on the 3100-series of cards. 

(7) Entries requiring scientific notation (X.XEXX) should be right justified. 

(8) Mass point number (ID) must be greater than zero or less than 100. Mass numbers 
must be unique and can be input in any order. If ID for any mass point is left 
blank, all mass points will automatically be numbered sequentially in the order 

of input. 

(9) For RUNMOD = 2, the Image mass point number will equal the mass point 
number plus 100. 

(10) Formats for this card is 7E10.0, 12. 


2-37 


















KRASH INPUT DATA 


CARDS 0300: MASSLESS NODE POINT DATA 

DESCRIPTION: Defines for each of the massless node points in the KRASH model the location coordinates 

- and the mass point number to which each is rigidly attached. 

FORMAT AND EXAMPLE: 


01 2345678 

I 2 34 56 78901234 56789012 3456 78901 234 56789012345678901 234567890123456789012 34567890 


MNP 

INP 

XNPDP 

YNPDP 

ZNPDP 


>< 

x 

s 


1 

12 


wmm 

mmn 




_ 

0300 


FIELD CONTENTS 

MNP Massless Node Point Number (Right Justified Integer) 

INP Mass Point Number (Right Justified Integer) 

XNPDP Fuselage Station Coordinate, Positive Aft - Inches 

'I'NPDP Buttline Coordinate, Positive Left - Inches 

ZNPDP Waterline Coordinate,Positive Up - Inches 


REMARKS: 


(1) Optional data card(s). 

(2) ‘NNP’ on card 0040 specifies the number of these cards for input. 

(3) ‘MNP’ and ‘INP’ must be nonzero. 

(4) Blank entries are read as zero. 

(5) The massless node point number is determined by taking each mass point and numbering 
the node points attached to it 1, 2. 3,... etc. There is no limit on the number of node 
points that may be connected to a single mass point. 

(6) The location coordinates are defined in a left-handed coordinate system. 

(7) User should not place a node point on the center line for a RUNMOD = 2 condition. 
Program will not generate a connection across this point. User can place node point 
slightly off center, if necessary. 

(8) Generally used to model regions wherein rigid connections exist (i.e.. seat. engine) 
or where multiple behavior is being represented by different elements. 

(9) Entries requiring scientific notation (X.XEXX) must be right justified. 

(10) Format for this card is (215,3E10.0). 


2-38 






















KRASH INPUT DATA 


CARDS 0400 : ACCELERATION TRANSFER DATA 

DESCRIPTION: Defines the correspondence between mass/node point numbers from a previous model for 

——- which acceleration data was saved, and the current model which is to use the acceleration 

data as input forcing functions. 

FORMAT AND EXAMPLE: 


0 

1 


2 


3 

4 

5 6 7 

8 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

ISNEW 

(MSNEW) 

LSNEW 

ISOLD 

MSOLD 

LSOLD 

TSH 



3 


4 

6 

3 

■D 

.003 


0400 


FIELD CONTENTS 

ISNEW Mass Number in Current (New) Model That Will be Driven by an Acceleration Table Saved 

in Data Set DSA (defined in JCL) 

(MSNEW) Not Used (Coding Does Not Allow Driving a Node Point With an Input Acceleration) 

LSNEW Direction for Which Table Read From Data Set DSA Will Drive Mass ISNEW 

LSNEW: 1 = XACCEL 4 = PDOT 

2 = Y ACC EL 5 = QDOT 

3 = ZACCEL 6 = RDOT 

ISOLD Mass Number in Previous (OLD) Model. The Acceleration From Which Will be Used to Drive 

Mass ISNEW in The Current Model 

MSOLD Node Point Number in Previous (OLD) Model. Coding Allows Driving a Mass in The Current 

Model With an Acceleration From a Node Point in The Previous Model 

[.SOLD Direction of Acceleration Saved in Prior Model to be Used to Drive the Current Model. It is 

Not Necessary for LSOLD = LSNEW: i.e.. an XACCEL From a Previous Model Can Drive a 
ZACCEL in The Current Model 

LSOLD: I = X \CCEL 4 = PDOT 7 = XACC FILTERED 

2 = YACCEL 5 = QDOT 8 = YACC FILTERED 

3 = ZACCEL 6 = RDOT 9 = ZACC FILTERED 

TSI 1 Time Shift Applied to Data From Previous Model (Stored in DSA) Before Using in Current 

Model. This Allows User to Zpply a “Downstream" Response From Previous Model as 
Input to The Current Model. Which Starts at t = 0 

'NEW' = 'OLD ’ TSH 


REMARKS: 


(1) Optional data card(s). 

(2) NTAB on card 0070 specifies the number of these cards for input. 

(3) Data set DSA. generated from a previous run. must be in the user's data file in order to 

use the acceleration transfer data. The actual data set name for DSA is specified in the JCL. 

(4) A different TSII can be specified for each table used. 

(5) Filtered accelerations from a previous model can be used to drive the current model. 
(LSOLD = 7.8 or 9). 

(6) Format for this card is (615. IE 10.0). 




















KRASH INPUT DATA 


CARDS 0500 : MASS ACCELERATION SAVE PARAMETERS 

DESCRIPTION : Defines mass numbers and directions for saving acceleration time-history data. 

FORMAT AND EXAMPLE: 


0 

1 


2 


3 


4 


5 


6 7 

8 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

JBS 

[ ISAV 

Ml LI 

Ml 1.2 

MIL3 

MFL4 

MILS 

MFL6 ! 

_ i 

MFL7 

MFL8 

MFL9 



15 

_° 


1 

0 

1 

M 

0 

m 

0 


0500 


HELD CONTENTS 


ISAV Mass Number For Which Acceleration Data From Current Run Will be Stored in User's Data 

File in Data Set DSB 

MFL1 - Flags Defining For Which Directions (1-9) Acceleration Date is to be Saved in Data Set DSB. 

MFL9 Input Either 1 or 0 for Each Item; 1 Denotes Save The Acceleration Time-History For The 

Indicated Direction. Directions 1 -9 Correspond to The Description of LSOLD on Cards 0400. 


REMARKS: 


(1) Optional data card(s). 

(2) NMSAV on Card 0080 specifies the number of these cards for input. 

(3) Date set DSB is specified in the JCL. 

(4) The acceleration data is saved at time intervals of NDTSAV, specified on Card 80. 

(5) NWRFLG on Card 80 must be nonzero to write the acceleration data into date set DSB. 

(6) Format for this card is (5X, 1015). 

























KRASII INPUT DATA 


( ARDS OoOO NODI: POINT ACCF DERATION SAVL PARAMLT1 RS 

DESCRIPTION : Defines node point numbers and directions tor saving acceleration lime-liistorv. data. 

FORM AT AND EXAMPLE: 


0 

1 


2 

3 


4 


5 


6 

7 

8 

1 2345678901234 5678901234 5678901234S678901234S6789012345678901 2 34567 8901234S67890 



NPt-Ll 



NPI 1 4 



NPFL7 

NPIL8 

NPI L9 




□ 

■s 

0 

_ 

l 0 

i 

0 

1 

! ’1 

0 

■1 

0 



0600 


III: LD CONTENTS 


ISAY. 
MNPSAV 
NPIT.I 
NIM T» 


Mass and Node Point Number lor Which Acceleration Data From Current Run Will be 
Stored in User's Data File in Data Set DSB 

Flags Defining for Which Directions (1-9) Acceleration Date is to be Saved in Data Set DSB. 
Input Either I or 0 for Each Item; 1 Denotes Save The Acceleration Time-History for The 
Indicated Direction. Directions I -9 Correspond to The Description of I.SOLD on Cards 0400 


RL MARKS: 


(1) Optional data card(s). 

(2) NNPSAV on Card 0080 specifies the number of these cards for input. 

(3) Date set DSB is specified in the JCL. 

(4) The acceleration data are saved at time intervals of NDTSAV. specified on Card 80. 

(5) NWRFLG on Card 80 must be nonzero to write the acceleration data into date set DSB. 
(b) Format for this card is I 115. 


2-41 



















KRASH INPUT DATA 


CARDS 0700: EXTERNAL CRUSHING SPRING PARAMETERS 

DESCRIPTION: Defines the attach point. direction, length, ground coefficient of friction, bottoming 

spring rate, plowing force, and ground flexibility for each of the external crushing springs 
in the KRASH model. 

FORMAT AND EXAMPLE: 


0 

1 2 

1 2 3 4 5 6 7 8 

345678901234567890123456789012345678901234567890123456789012345678901234567890 


■ 

K 

XLBAR 

XMU 

XKE 

FPLOW 

GFLEX 

ITIRE 

ss 

►:< 


L, 

a 

3 


0.3 

20000.0 

0 0 

0.0 

■D 


_ 

0700 


FIELD CONTENTS 

M Massless Node Point Number (Right Justified Integer) 

I Mass Point Number (Right Justified Integer) 

K Degree-of-Freedotn in Which External Crushing Spring Acts Where 1,2,3 Correspond to the 

X. Y, Z Directions in the Mass Point Coordinate System (Right Justified Integer) 

XLBAR Free Length of Spring Either Positive or Negative in the Mass Point Coordinate System Inches 

XMU Impact Surface Coefficient of Friction. Values of Between 0.35 to 0.60 are Appropriate For 

Structure to Ground Contact. 

XKE Bottoming Spring Rate - Pounds Per Inch 

FPLOW Plowing Force - Pounds 

GFI.EX Impact Surface Flexibility - Inches Per Pound 

ITIRF Defines spring that remains normal to contact surface 


REMARKS: 


(1) Optional data card(s). 

( 2 ) 'NSP' on card 0040 specifies the number of these cards for input. 

(3) Blank entries are read as zero. 

(4) The free length of the external crushing spring is arbitrary;however, the value generally 
represents the actual depth of the crushable structure. 

(5) A value of zero for the impact surface flexibility (GFLEX) represents a rigid surface. A 
flexibility value of 0.00036 in/lb is an approximate representation in KRASH for soil, 
having a CBR-4 and moisture content ot4.30 percent. 

(6) Entries requiring scientific notation (X.XEXX) must be right justified. 

(7) If (TIRE = I external spring remains normal to contact surface. Use only for tire representation 

in K = 3 direction. If Beta > 0 tire spring remains normal to sloped surface. Not coded to account 
lor transition from flat to sloped surface. 

(8) Format for this card is (12.13. 15. 5EI0.0, 15). 





















KRASH INPUT DATA 


CARDS 0800: EX TERNAL CRUSHING SPRING LOAD-DEFLECTION AND DAMPING PARAMETERS 

DESCRIPTION : Defines four deflection points, two load values and one damping value for each external crushing 

spring in the KRASH model. 

FORMAT AND EXAMPLE: 


0 1 

2 

3 

4 

5 

6 

7 


8 

1 23456 7 8901234 567 8901 234567890I234S678901234567 890123456789012345678901234567890 

SI 

SA 

SB 

SF 

FSPOI 

FSPDF 

CDAMP 



0 1 

1.0 

3.5 

5.0 

10000.0 

25000.0 

.08 

_ 

0800 


FIELD CONTENTS 


SI 

SA 

SB 

SF 

FSPOI 

FSPOF 

CD.AMP 


Deflection Point at Which First Linear Region Ends and First Nonlinear Region Begins - Inches 
Deflection Point at Which First Nonlinear Region Ends and Second Linear Region Begins — 
Inches 

Deflection Point at Which Second Linear Region Ends and Second Nonlinear Region Begins - 
Inches 

Deflection Point at Which Second Nonlinear Region Ends and Linear Bottoming Begins 
Inches 

Constant Load Between Deflection Points SI and SA - Pounds 
Constant Load Between Deflection Points SB and SF - Pounds 
Critical Damping Ratio. Acceptable Range is .02 to .10 


REMARKS : (1) ‘NSP’ on card 0040specifies the number of these cards for input. 

(2) These load-deflection cards must be ordered to correspond with the 0700-series cards of 
externa] crushing spring data. 

(3) The general shape of the load-deflection curve is as follows: 


LOAD 

POUNDS 


BOTTOMING SPRING. 



2-43 

























KRASH INPUT DATA 


CARDS 0800: EXTERNAL CRUSHING SPRING LOAD-DEFLECTION AND DAMPING PARAMETERS 
(Continued) 

(4) External spring damping in program KRASH is compi ed as: 

2 * CDAMP* /(FSPOI/SI) * WGT / 386.4 
where WGT is the weight for mass i. 

(5» Entries requiring scientific notation (X.XEXX) should be right justified. 

((■>) Format for this card is 7E10.0. 








KRASH INPUT DATA 


C ARDS 0900: BEAM ELEMENT PROPERTIES 


DESCRIPTION: Defines the end points and cross-sectional properties for each beam element in the 

KRASH model. 

FORMAT AND EXAMPLE 


01 2345678 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

yi 

D 

D 

E 

AA 

XJ 

IYY 

IZZ 

XIQ 

Z1 

rn 

Z2 MC 

■ 

E 

B 

E 

0.5 

0.0 

3.67 

1.54 

0.0 

0.0 

0 0 4 900 


FIELD CONTENTS 

M Massless Node Point Number At End “I” (Right Justified Integer) 

I Mass Point Number At End “I” (Right Justified Integer) 

N Massless Node Point Number at End “J" (Right Justified Integer) 

J Mass Point Number At End “J" (Right Justified Integer) 

AA Cross-Sectional Area - Inches**?. 

XJ Torsional Stiffness Inertia - Inches**4 

IYY Cross-Sectional Area Moment of Inertia About Beam Element Y-Axis For Bending In X-Z 

Plane - Inches**4 

IZZ Cross-Sectional Area Moment Of Inertia About Beam Element Z-Axis For Bending In 

X-Y Plane - Inches**4 

XIQ Cross-Sectional Shape Factor Relating Torsional Shear Stress To The Applied Moment - 

1/Inches**3 

Z1 Distance From The Neutral Axis To The Extreme Fibers In The Beam Element 

Z-Direction - Inches 

Z2 Distance From The Neutral Axis To The Extreme Fibers In The Beam Element 

Y-Direction Inches 

MC Material Code Number (Right Justified Integer) 


REMARKS 


(1) "NB" on card 0040 specifies the number of these cards for input. 

(2) Blank entries are read as zero. 

(3) At least one beam element must be defined. 

(4) The order of these data cards determines the beam element number. 

(5) It “XJ" is input as zero, KRASH will automatically compute a value for “XJ" as 
the sum of "IYY" and “IZZ". 

(6) The beam element coordinate system depends on the geometric orientation as shown 
in Figure 2-5. 

(7) "XIQ". "Z1", and "Z2" are used only for stress calculations (See Section 1.3.17 in Volume I). 

(8) The torsional stress parameter “XIQ" is equal to the shape factor “l/Q” used in Roark’s 
formulas for stress and strain (Reference 4). 

(9) KRASH has ten standard materials internally defined as shown in Table 2-2. 

(10) Entries requiiing scientific notation (X.XEXX) should be right justified. 

(11) Formal for this card is (2(12.13), 5E10.0, 2F5.0,12). 


























CENTER-OF-GRAVITY 
COORDINATE SYSTEM 
(TY?) 


FORE-AND-AFT BEAM 


ELEMEN" 






VERTICAL BEAM ELEMENT 

(use for beam inclined 
at angle <30 degrees 
from vertical) 


3EAM ELEMENT INCLINED 
IN X-2 PLANE 

(use for beam inclined 
at angle > 30 degrees 
from vertical) 


3EAM ELEMENT INCLINED 
IN Y-Z PLANE 

(use for beam inclined 
at angle > 30 degrees 
from vertical) 



FIGURE 2-5. BEAM ELEMENT COORDINATE SYSTEM ORIENTATIONS 
















TABLE 2-3. STANDARD MATERIAL PROPERTIES 


MATERIAL 

MODULUS OF 
ELASTICITY 
(PSI) 

MODULUS OF 
RIGIDITY 
(PSD 

TENSILE 

STRESS 

(PSI) 

COMPRESSIVE 

STRESS 

(PSD 

SHEAR 

STRESS 

(PSI) 

4130 STEEL 

30.0E6 

11.0E6 

75000 

75000 

37500 

6150H STEEL 

30.0E6 

11.0E6 

205000 

205000 

80000 

300-SERIES 

STAINLESS 

STEEL 

28.0E6 

12.5E6 

70000 

46000 

36000 

2024 T3 
ALUMINUM 

10.5E6 

4.0E6 

47000 

39000 

22000 

6061-T3 

ALUMINUM 

10.0E6 

3.8E6 

35000 

34000 

17000 

819S-T4 CAST 
ALUMINUM 

10.0E6 

3.8E6 

16000 

16000 

17000 

LOW MODULUS 
MATERIAL 

1.0E6 

0.4E6 

16000 

16000 

17000 

ZERO TORSION 
MATERIAL 

1.0E6 

0.0 

16000 

16000 

17000 

DRI SPINE 
(MAN) 

1.0E6 

0.4E6 

16000 

16000 

17000 

DRI SPINE 
(DRI) 

1.0E6 

0.4E6 

16000 

16000 

17000 



















KRASH INPUT DATA 


CARDS 1000: NON-STANDARD MATERIAL PROPERTIES 


DESCRIPTION : Defines non-standard material properties for beam elements in the KRASH model. 

FORMAT AND EXAMPLE 


0 

1 

1 

3 

4 

5 

6 

7 


8 

123456'8901234567890123456789012345678901234567890123456789012345678901234567890 

MC 

S3 

EE 

GG 

STENS 

SCOMP 

SHEAR 

x 

* 


11 


10.3E06 

3.9E06 

3S000.0 

34000.0 

17000.0 


_ 

1000 


FIELD 

MC 

EE 

GG 

STENS 

SCUMP 

SHEAR 


CONTENTS 

Materia] Code Number. MC = 11-20 (Right Justified Integer) 

Modulus Of Elasticity - Pounds Per Inch**2 

Modulus Of Rigidity - Pounds Per Inch**2 

Tensile Yield Stress - Pounds Per Inch**2 

Compressive Yield Stress - Pounds Per inch**2 

Shear Stress - Pounds Per Inch**2 


REMARKS 


(1) Optional data card(s). 

(2) ■‘NMTL" on card 0040 specifies the number of these cards for input. 

(3) Blank entries are read as zero. 

(4) The yield stress properties are required when stress calculations are desired. 

(5) The standard materials available in KRASH are listed in Table 2-2. 

(6) Entries requiring scientific notation (X.XEXX) should be right justified. 

(7) Format for this card is (15. 5X, 5E10.0). 

























KRASH INPUT DATA 


CARDS 1100 : BEAM ELEMENT PINNED END CONDITIONS 

DESCRIPTION : Defines the end points and the degrees-of-freedom for the beam elements with pinned 

“ ~ end conditions in the KRASH model. 

FORMAT AND EXAMPLE: 


01 2 3 4 5 6 7 s 

12345678901234567X9012345678901234567X901234567X90123456789012345678901234567X90 

83 

■ 

IS 

E 

PY1 

PZI 

PYJ 

PZJ 

SF35 

SF26 

SF35J 

SF26J 

>:< 


■ 

E 

B 

E 

0 

1 

0 

1.0 

1.5 

1.2 


1.0 

_ 

1100 


FIELD CONTENTS 


M Massless Node Point Number At End “1" 

I Mass Point Number At End “I" 

N Massless Node Point Number At End “J*” 

J Mass Point Number At End “J'" 

PY1 Pin Flag For Bending Moment About Beam Element Y-Axis At End “I” 

PZI Pin Flag For Bending Moment About Beam Element Z-Axis At End “I” 

PYJ Pin Flag For Bending Moment About Beam Element Y-Axis At End “J" 

PZJ Pin Flag For Bending Moment About Beam Element Z-Axis At End "J" 

SF35 Beam Shape Factor At End “1" About Beam Y-Axis 

SF26 Beam Shape Factor At End “I", About Beam Z-Axis 

SF35J Beam Shape Factor At End “J" About Beam Y-Axis 

SF26J Beam Shape Factor At End ”J” About Beam Z-Axis 


REMARKS 


(1) Optional data card(s). 

(2) “NPIN" on card 0040 specifies the number of these cards for input 

(3) The pin flags are defined as follows: 

0 = Fixed 

1 = Pinned 

(4) Blank entries are read as zero. 

(5) All entries except SF26, SF35, SF26J and SF35J are right justified integers. 

SF26. SF35, SF26J and SF35J are E10.0 format. 

(6) The beam element Y- and Z-axis directions depend on the beam element geometric 
orientation as shown in Figure 2-3. 

(7) Bending moments about the beam element Y- and Z-axes correspond to bending moments 
in the beam element X-Z and X-Y planes, respectively, as outlined in Table 2-3. 

(8) All entries requiring scientific notation (X.XEXX) should be right justified. 

(9) Format for this card is (2 (12,13), 415,4E 10.0). 

(10) Beam shape factors SF26 and SF35, SF26J, and SF35J can be obtained from Table 2-4. 
and Reference 14. 

(11) SF26, and/or SF35 values are required for representation of plastic hinge at beam end I. 

(12) SF26J and/or SF35J values are required for representation of plastic hinge at beam end J. 






















If a beam end is to be pinned then the desired PY, PZ, PYJ and PZJ flags are used 
and the SF26, SF35, SF26J and SF35J values are input as zero. The program will 
treat these beams as not providing for moments at the appropriate end and direction. 

(b) to define a beam that can develop a plastic hinge at one or botli ends of the beam. 

If a plastic hinge is represented the appropriate beam end direction (PY, PZ, PYJ, PZJ) 
must be flagged and a corresponding (SF35, SF26, SF35J, SF26J) must have a value. 
The program will treat such a beam as fixed until such time as the plastic moment is 
formed. Thereafter the beam moment in the noted direction is maintained (no longer 
changes). In order to use the plastic moment equations the user must have beam 
section properties Z1 or Z2 (card 0900) defined since KRASH computes the plastic 
moment as follows: 



f = shape factor (SF35, SF26, SF35J, SI)26J) 


<Ty = material yield stress (contained in the material 
code table),lb/in2 


I = area moment of inertia, either I or I , in 4 

yy 

y ma x = distance to neutral axis either Z1 or Z2 , in 


The following table shows the relationship between directional moments and appropriate 
input terms for program KRASH. 










TABLE 2-4. RELATIONSHIP FOR DIRECTIONAL MOMENTS AND INPUT TERMS IN KRASH 






APPROPRIATE INPUT REQUIRE MI NT 

! OR(7 

MOMENT 

FORCE, 

KRASH 

AREA 

MOMENT 

or 

DISTANCE EROM 
N.A. TO ELEMENT 

SHAPI 

FACTOR 

PIN CODING 

ALONG 

AXIS 

ABOUT 

AXIS 

MOMENT 

DESIGNATION 

DIRECTION 

NUMBERS 

INERTIA 
(CARD 0900) 

FXTREML FIBER 
(CARD 0900) 


■ 


..... 

END 

1 

V 

i /• Me 

3.5 

IYY 

Z1 

SF35 

SF35J 

PY 

PYJ 

y 

Z 

1 . M* 

2,6 

— 

1ZZ 

Z2 

SF26 

_ 

SF26J 

PZ 

PZJ 


TABLE 2-5. SHAPE FACTORS FOR PLASTIC HINGE BEAMS (Reference 14) 




























KRASH INPUT DATA 


CARDS 1200: AXIALLY UNSYMETRIC BEAM ELEMENT PARAMETERS 


DESCRIPTION Defines end points, type of load, and deadband for the beam elements with 
~ unsymetrical axial properties in the KRASH model. 


FORMAT AND EXAMPLE: 


0 1 2 3 4 5 6 7 

123456789012345678901234567890123456789012345678901234567890123456789012 

8 

34567890 


B 

D 

E 

IJUB 


DB 



>< 

x 

E 


■ 

E 

E 

B 

-1 


1.5 





u 

1200 


FIELD CONTENTS 


M 

I 

N 

J 

IJUB 


DB 

REMARKS 


Massless Node Point Number At End ‘'I” (Right Justified Integer) 

Mass Point Number At End "I" (Right Justified Integer) 

Massless Node Point Number At End “J” (Right Justified Integer) 

Mass Point Number At End "J" (Right Justified Integer) 

Flag For The Type Of Axial Loading In The Beam Elements 
IJUB= +1. Tension Only 
IJUB = -1. Compression Only 
Deadband for axial loading, inches 

(1) Optional data card(s). 

(2) “NUB" on card 0040 specifies the number of these cards for input. 

(3) Blank entries are i. ad as zero. 

(4) The general form of the load-deflection curve for the axially unsymetric beam element 
is as follows: 


LOAD 

POUNDS 


/ 


/ 


V 


DB 


/ 

/ 

IJUB = -1, COMPRESSION •+- 


DB 


/ 


/ 


/ 


/ 


DEFLECTION - INCHES 


-► IJUB = +1, TENSION 


(5) This type of beam element may also incorporate nonlinear characteristics by specifying 
the nonlinear properties per the 1800-series cards. 

(6) The axial load-deflection curves that can be obtained using this capability are described 
in Volume I,Section 1.3.5.3.5. (Reference 1) 

(7) Format for this card is (2 (12,13), 15. 5X, E 10.0). 















KRASH INPUT DATA 


CARD 1290 : SHOCK STRUT DATA 

DESCRIPTION: Friction coefficient and number of metering pin tables. 

FORMAT EXAMPLE: 


01 2 3 4 5 6 7 S 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 


ALPHAP 

NMPTAB 

x 


x 

x 




WMR 

2 






1 

1290 


FIELD CONTENTS 

ALPHAP Constant For Use In Computing Shock Strut Friction Force 

NMPTAB Number of Separate Metering Pin Tables Input on Cards 1490/1500. 


REMARKS: 


(1) Optional data card. 

(2) Required only if NO LE0 1 0 (card 0040) 

(3) Only 1 card regardless of NOLEO value 

(4) Blank entry read as zero 

(5) Range of ALPHAP is between .1 to 2.0. The smaller the alphap used the closer the 
representation is to pure Coulomb friction. Generally a value of 1.0 is suitable. 

(6) See Appendix A for the discussion on oleo friction forces for alphap selection. 

(7) Format for this card is (E10.0,110). 














KRASH INPUT DATA 


CARDS 1300: SHOCK STRUT DATA 


DESCRIPTION': Air curve parameters 

FORMAT EXAMPLE 


0 



i 

■> 

3 

4 

5 

6 

7 


■n 

1 2 

34567X90I234567890123456789012M56789012345678901234567890I2345678901234567*90 

Q 

■ 

D 

8 

EOLEO 

FAO 

FAA 

EXPOLE 

YMAX 

x 

9 


■ 

n 

■ 

■ 

10.27 

116. 

5. 

1.0 

9.32 


□ 

1300 


FIELD CONTENTS 


M 

I 

N 

J 

EOLEO 

FAO 

FAA 

EXPOLE 

YMAX 


Massless Node Point Number In End "I" (Right Justified Integer) 
Mass Point Number At End “I” (Right Justified Integer) 

Massless Node Point Number At End "J" (Right Justified Integer) 
Mass Point Number At End "J” (Right Justified Integer) 

Effective Total Strut Cylinder Length, in. 

Fully Extended Gear Preload, lb. 

Ambient Air Preload, lb. 

Poly tropic Exponent. 

Maximum Stroke, in. 


REMARKS 


(1) Optional data cards. 

(2) "NOLEO" on card 0040 specifies the number of these cards for input. 

(3) All entries requiring scientific notation (X.XEXX) should be right justified. 

(4) EXPOLE ranges from 1 (isothermal) to 1.4 (adiabatic). Adiabatic condition will 
usually prevail. 

(5) See Appendix A for a description of the shock strut parameters and their usage. 

(6) Format for this card is (2 (12,13), 5E10.0). 

















KRASH INPUT DATA 


CARDS 1400: SHOCK STRUT DATA 


DESCRIPTION Damping constants, linear springs at extended and compressed ends of strut travel and 
coulomb friction. 

FORMAT EXAMPLE: 


01 2345678 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

D 

■ 

B 

■ 

BOLEO 

BROLEO 

XkEXT 

XKCOMP 

FCOUL 

MPTAB 

►:< 


L 

B 

■ 

B 

0.24 

0.48 

10000. 

10000. 

5.5 

1 


1400 


FIELD CONTENTS 


M 

I 

N 

J 

BOLEO 

BROLEO 

XKF.XT 

XKCOMP 

FCOUL 

MPTAB 

i 

i 


Massless Node Point Number At End “1” (Right Justified Integer) 

Mass Point Number At End “I” (Right Justified Integer) 

Massless Node Point Number At End “J" (Right Justified Integer) 

Mass Point Number At End “J" (Right Justified Integer) 

Strut Orifice Damping Ib-sec2/in2 

Strut Rebound Valve Damping lb-sec^/in 1 2 3 4 5 * 7 
Linear Spring At Extended End Of Strut Travel, lb/in. 

Linear Spring At Compressed End Of Strut Travel, lb/in. 

Coulomb Or Constant Friction Force, lbs. 

Metering Pin Table Number. If a Metering Pin Is Not Used. Input Zero. MPTAB 
Refers to Metering Pin Tables Input Sequentially On 1500-Series Cards. 


REMARKS: 


i 


(1) Optional data cards. 

(2) “NOLEO" on card 0040 specifies the number ;f these cards for input. 

(3) All entries requiring scientific notation (X.XEXX) should be right justified. 

(4) See Appendix A for a description of the shock strut parameters and their usage. 

(5) If a metering pin table is used, BOLEO is ignored. If MPTAB is input as a negative 
integer, the subsequent table on cards I 500 is interpreted as total gear load versus 
stroke. This is used only for the inverse metering pin option, explained in 
Appendix A. 

(h) No. of cards = NPTSMP value (card 1290) 

(7) Format for this card is (2 (12, 13), 5EI0.0,110). 



















KRASH INPUT DATA 


CARD 1490 : MATURING PIN DATA 

DESCRIPTION : Number of points in following metering pin table 

FORMAT EXAMPLE: 



FIELD CONTENTS 

NPTSMP Number of Cards in The Following Table of YOLEO Versus BOLEO (Maximum Allowable 

is 100 ) 

REMARKS : (1) Optional data card. Required only if MPTAB is nonzero on any of the 1400-Series cards. 

(2) This card precedes each 1500-Series of metering pin table cards. For example, if there 
were 3 metering pin tables (NMPTAB = 3 on card 1290), the proper sequence would be 

1490 1 card 

1500-XX NPTSMP, cards 
1490 1 card 

1500-XX NPTSMP 2 cards 
1490 1 card 

1500-XX NPTSMP 3 cards 

(3) Format for this card is 110 







KRASH INPUT DATA 


CARDS 1500: METERING PIN DATA 

DESCRIPTION : Table(s) of oleo piston compression versus damping constant. 

FORMAT EXAMPLE 


01 2345678 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

YOLEO 

BOLEO 



7. 

1.76E02 


1500 


FIELD 


YOLEO 
BO LEO 


REMARKS 

input. If NMPTAB= 0 on card 1290, then none of these cards are used. 

(2) Format for this card is 2E10.0. 

(3) If MPTAB on card 1400 is input as a negative integer, then BOLEO on the corresponding 
1500-Series cards is interpreted as total gear load. This is referred to as the inverse 
metering pin option, which can be used to calculate BOLEO versus YOLEO if a known 
for desired) load-deflection characteristic curve is input on this series of cards. This 
option is explained in Appendix A. 


CONTENTS 

Oleo Piston Compression. Inches. Measured From Fully Extended Position 
Oleo Hydraulic Damping Constant, Pount-Sec ^/in^, at The Piston Position Defined 
by YOLEO 

(1) Optional data card(s). NPTSMP on card 1490 defines the number of these cards to 

















KRASH INPUT DATA 


CARD 1600 : BEAM ELEMENT DAMPING RATIO 

DESCRIPTION : Defines an overall damping ratio for the beam elements in the KRASH model. 

FORMAT AND FXAMPLE 


0 1 
1234567890 

2 

1234567890 

3 

1234567890 

4 5 6 7 8 

12345678901234567890123456789012345678901234567890 

DAMPC 

X 

x 

x 

x 


2X7 

x 


0.10 








1600 


FIELD CONTENTS 

DAMPC Damping Ratio (Actual/Critical) 


REMARKS 


(1) Required data card; however, it may be blank. 

(2) Blank entry is read as zero damping for all beams. 

(3) DAMPC values in KRASH are between .1 and .5. The 
sketch below shows the relationship between DAMPC values and 
percent of critical damping. 

(4) Format lor this card is hi0.0 


o 



O UJ 
Z3 O 
0C CC 
h- UJ 
CO Q_ 









KRASH INPUT DATA 


CARDS 1700 : NON-STANDARD BEAM ELEMENT DAMPING RATIOS 

DESCRIPTION Defines the end points and damping ratio for each beam element in the KRASH model 
for which a non-standard damping ratio is required. 

FORMAT AND EXAMPLE 
















KRASH INPUT DATA 


CARDS 1800: NONLINEAR BEAM ELEMENT PARAMETERS 


D ESCRIPTION : Defines the end points, degree-of-freedom. KR table type, and linear deflection points for 

the nonlinear beam elements in the KRASH model. 



FIELD CONTENTS 


M 

I 

N 

J 

L 

NP 
LDP 
LDP I 

REMARKS 


Massless Node Point Number At End “1” (Right Justified Integer) 

Mass Point Number At End “I" (Right Justified Integer) 

Massless Node Point Number At End “J" (Right Justified Integer) 

Mass Point Number At End "J" (Right Justified Integer) 

Nonlinear Degree-Of-Freedom Where L= 1. 2. 3. 4, 5, 6 Corresponds To The Beam Element 
Coordinate System Directions X. Y, Z ,<p,9 . Respectively (Right Justified Integer) 

Number Of Data Points Used In KR Table (Right Justified Integer) 

Deflection At Which Nonlinear Behavior Begins - Inches 

Deflection At Which Nonlinear Behavior Ends And Linear Restiffening Begins - Inches 

except as noted in remark (8). 

(1) Optional data card(s). 

(2) “NLB" on card 0040 specifies the number of these cards for input. 

(3) Blank entries are read as zero. 

(4) The nonlinear degrees-of-freedom are specified in the beam element coordinate 
systems shown in figure 2-3. 

(5) For “NP" = 4-9 the corresponding standard KR tables are shown in figure 2.6. For 
"NP” >9 the user will input a nonstandard KR table with “NP" data points. 

(6) "LDPI " is used for the KR table "NP" = 9 and for "NP” = 4 (see remark 8). 

(7) The theory on how the KR curves are used to calculate internal beam loads is 
shown in Volume I. Section 1.3.5.3.4. (Reference I). 

(8) Foi "NP" = 4 the LDP value represents the deflection value at which KR = I. 
(LINEAR). LDPI icprescnts KR value (< I). 0 <_ deflection <_ LDP. 

NP = 4 can he iiselul I'm modeling elements such as a seat cushion which is 
soil miiialK and stiltens during compression. Do not use with LDPI > 1.0 

(9) I'm mat tm i ho , ai d n ( 2 (12. 13 i 2L S . 2EI 0.0). 
















MAX LOAD 


LDP IS THE DEFLECTION AT WHICH PEAK 
LOAD OCCURS 

h I KR = 0.0 


NP = 5 THROUGH 9 


NP = 5 


V \ 


1 NP = 6 


NP = 7 


NP = 8 


3LDP 4 LDP 


DEFLECTION, INCHES OR RADIANS 



DEFLECTION, INCHES OR RADIANS 


FIGURE 2-6. STANDARD NONLINEAR BEAM ELEMENT STIFFNESS 
REDUCTION CURVES 










KRASH INPUT DATA 


CARDS 1900: NON-STANDARD KR TABLE DATA POINTS 

DESCRIPTION Defines non-standard KR tables for the nonlinear beam elements in the KRASH model 

~~ which cannot be described with the standard KR tables. 

FORMAT AND EXAMPLE: 


- —— --- - -- 

0 1 2 3 4 5 6 7 

I 2 34 56 7*901234 56~X90I 2345678901234 56 78901234 567X9012345678901234567890123456789 


XKR 

KR 

x 


:>c 


x: 

►:< 


1.0 

-1.0 






□ 

1900 

a v a 


FIELD CONTENTS 

XKR Deflection - Inches 

KR Stiffness Reduction Factor at XKR 


REMARKS 


(1) Optional data cards. 

(2) Fo: each use of "NP" > 9 on the 1 200-series cards. “NP" of these cards are 
required input. 

(3) Blank entries are read as zero. 

(4) Within each set of "NP" data cards, deflections must be in ascending order. 

(5) Each set of "NP" data cards must be ordered to correspond with the 1800 series 
cards where "NP" > 9 js used. 

(6) Format for this card is 2E10.0. 


X © 














KRASH INPUT DATA 


CARD 2000: CONTROL VOLUMt MASS PENETRATION PARAMETERS 

DESCRIPTION : Defines a control volume around a selected mass point in the KRASH model which is 

monitored for penetration by another mass point during the analysis. 

FORMAT AND EXAMPLE 


0 1 

-> 

3 

4 

S 

6 

7 


8 

12345678901234567890123456789012345678901234S67890123456789012345678901234567890 

XN 

XP 

YN 

YP 

ZN 

ZP 

x 

0 


10 0 

10.0 

3.0 

4.0 

10.5 

1.9 


□ 

2000 


FIELD 

CONTENTS 

XN 

Distance From Mass Point To 

XP 

Distance From Mass Point To 

YN 

Distance From Mass Point To 

YP 

Distance From Mass Point To 

ZN 

Distance From Mass Point To 

ZP . 

Distance From Mass Point To 

REMARKS 

(1) Optional data card. 


(2) ‘MVP” on card 0040 specifies the mass point number for which this data card applies. 

(3) Only one mass point may have a control volume. 

(4) Blank entries are read as zero. 

(5) All distances are positive and units are inches. 

(6) For a RUNMOD = 2 the MVP mass should be selected from a mass point located on 
the airplane centerline. This restriction doesn’t apply to RUNMOD = 0 or 1. 

(7) Any of the model mass points may penetrate the designated control volume of the model. 

(8) The mass penetration calculations are described in Volume I, Section 1.3.10. 

(9) Format for this card is 6E 10.0. 


2-63 
















KRASH INPUT DATA 


CARD 2100 : DRI ELEMENT SPECIFICATION 

DESCRIPTION: Defines the end mass points of the DRI beam elements in the KRASH model. 

FORMAT AND EXAMPLE: 


1 0 

1 


2 


3 


4 


5 


6 


7 


8 

1 12345678901234567890123456789012345678901234567890123456789012345678901234567890 

11 

Jl 

m 

J2 

13 

J3 

14 

J4 

15 

J5 

16 

J6 

17 

J7 

6 


3 














U 

2100 


FIELD CONTENTS 

II Mass Point Number At End “I" 

JI Mass Point Number At End “J” 


REMARKS: 


(1) Optional data card(s). 

(2) "NDRI" on card 0040 specifies the number of these cards for input. 

(3) All entries are right justified integers. 

(4) Blank entries are read as zero. 

(5) Up to seven DRI beam elements can be specified on each card. (Normally an analysis 
requires from 1 to 4 DRI elements). 

(6) DRI beam element section properties can be defined on the 0900-series cards or if a 
MTL code of 10 is used the program will automatically compute the DRI properties. 

(7) Beams that connect massless node points cannot be used as DRI elements, only 
direct mass to mass connection is allowed. 

(8) The usage of DRI elements is described in Volume I, Section 1.3.12. 

(9) Format for this card is 1415. 


i 

i 


2-64 
























KRASH INPUT DATA 


CARD 2200 : OCCUPIABLE VOLUME CHANGE PARAMETERS 

DESCRIPTION : Defines occupiable volumes in the KRASH model for volume change calculations by 

specifying the eight corner mass points. 

FORMAT AND EXAMPLE: 


01 2345678 

1234567890123456789012345678901234S678901234567890123456789012345678901234567890 


11 

12 

13 

74 

15 

16 

17 

18 

><f 

XT 


B 


3 

■B 

12 

13 

21 

23 

31 

35 




□ 

2200 


FIELD CONTENTS 


11 Mass Point Number At Forward End, Upper Left-Hand Comer 

12 Mass Point Number At Forward End, Upper Right-Hand Corner 

13 Mass Point Number At Aft End, Upper Left-Hand Comer 

14 Mass Point Number At Aft End, Upper Right-Hand Comer 

15 Mass Point Number At Forward End, Lower Left-Hand Comer 

16 Mass Point Number At Forward End, Lower Right-Hand Corner 

17 Mass Point Number At Aft End, Lower Left-Hand Comer 

18 Mass Point Number At Aft End, Lower Right-Hand Corner 


REMARKS 


(1) Optional data card(s). 

(2) “NVCH” on card 0004 specifies the number of these cards for input. 

(3) All entries are right justified integers. 

(4) Blank entries are not allowed. 

(5) The volume change calculations are explained in Volume I, Section 1.3.11 (Figure 1-16). 

(6) For a symmetrical full model (RUNMOD = 2 type) when only half the data is input the user 
inputs mass point locations 1,3, 5, 7 (11.13,15.17). The opposite side mass point locations 
2.4. 6, 8 (12,14.16,18) are input as zero (blank). KRASH automatically computes the oppo¬ 
site side masses. See Volume I. Figure 1-16 for mass point designations. 

(7) Format for this card is 815. 

























KRASH INPUT DATA 



CARDS 2300: NON STANDARD MAXIMUM BEAM ELEMENT POSITIVE DEFLECTIONS 
FOR RUPTURE 

DESCRIPTION Defines the end points and the maximum positive deflections and rotations for 
rupture of beam elements in the KRASH model. 

FORMAT AND EXAMPLE 


01 2345678 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 



VMAX1 

VMAX2 

VMAX3 

VMAX4 

10.0 

15.2 

100.0 

100.0 




FIELD 

CONTENTS 

M 

Massless Node Point Number At End “1” (Right Justified Integer) 

1 

Mass Point Number At End “I” (Right Justified Integer) 

N 

Massless Node Point Number At End “J” (Right Justified Integer) 

J 

Mass Point Number At End “J” (Right Justified Integer) 

VMAX1 

Maximum Deflection In Beam Element X-Direction - Inches 

VMAX2 

Maximum Deflection In Beam Element Y-Direction - Inches 

VM AX.' 

Maximum Deflection In Beam Element Z-Direction - Inches 

VMAX4 

Maximum Rotation About Beam Element X-Axis - Radians 

VMAX5 

Maximum Rotation About Beam Element Y-Axis - Radians 

VMAX6 

Maximum Rotation About Beam Element Z-Axis - Radians 

REMARKS 

(1) Optional data card(s). 

(2) "NVBM" on card 0050 specifies the number of these cards for input. 

(3) The standard or default values for maximum deflections and rotations are 


100 inches and 100 radians, respectively. The deflections and rotations 
refer to relative motions of the j end of the beam minus the i end of 
the beam. 

• 

(4) The beam clement coordinate systems are shown in Figure 2-5. 

(5) All values are input as positive numbers. 

(6) Format for this card is (2 (12,13), 6E10.0). 


2-66 






















KRASH INPUT DATA 


CARDS 2400: 

- NON STANDARD MAXIMUM BEAM ELEMENT NEGATIVE DEFLECTIONS FOR RUPTURE 

DESCRIPTION: Defines the end points and the maximum negative deflections and rotations for 

' rupture of beam elements in the KRASH model. 

FORMAT AND EXAMPLE: 


0 1 2 3 4 5 6 

1234567890123456789012345678901234567890123456789012345678901 


VMAXN1 VMAXN2 VMAXN3 VMAXN4 


1 


15.2 

100. 

9 

100. 



7 8 

2345678901234S67890 

VMAXN6 _ 

100.0 2400 


FIELD CONTENTS 

M Massless Node Point Number At End “I” (Right Justified Integer) 

I Mass Point Number At End “F (Right Justified Integer) 

N Massless Node Point Number At End “J” (Right Justified Integer) 

J Mass Point Number At End “J” (Right Justified Integer) 

VMAXN1 Maximum Deflection In Beam Element X-Direction - Inches 

VMAXN2 Maximum Deflection In Beam Element Y-Direction - Inches 

VMAXN3 Maximum Deflection In Beam Element Z-Direction - Inches 

VMAXN4 Maximum Rotation About Beam Element X-Axis - Radians 

VMAXN5 Maximum Rotation About Beam Element Y-Axis - Radians 

VMAXN6 Maximum Rotation About Beam Element Z-Axis - Radians 

REMARKS : (1) Optional data card(s). 

(2) “NVBMN" on card 0050 specifies the number of these cards for input. 

(3) The standard or default values for maximum deflections and rotations are 100 inches 
and 100 radians, respectively. The deflections and rotations refer to relative motions 
of the j end of the beam minus the i end of the beam. 

(4) The beam element coordinate systems are shown in Figure 2-5. 

(5) All values are input as positive numbers. 

(6) Format for this card is (2 (12.13), 6E10.0). 






















KRASH INPUT DATA 


CARDS 2500: NONSTANDARD MAXIMUM BEAM ELEMENT POSITIVE LOADS FOR RUPTURE 

DESCRIPTION: Defines the end points and the maximum forces and moments for rupture of beam 

elements in the KRASH model. 

FORMAT AND EXAMPLE: 


0 1 2 3 4 5 6 7 8 

I2345678901234567890123456789012345678901234567890123456789012345678901234567890 


BUSH 

FMAX1 

FMAX2 

FMAX3 

FMAX4 

FMAX5 

FMAX6 

IB 


■BIB 

10.0E10 

1000.0 

10.0E10 

10.0E10 

10.0E6 

10.0E10 

L 

2500 


FIELD 


CONTENTS 


M Massless Node Point Number at End “I” (Right Justified Integer) 

1 Mass Point Number at End “1” (Right Justified Integer) 

N Massless Node Point Number at End “J” (Right Justified Integer) 

J Mass point Number at End “J” (Right Justified Integer) 

FMAX 1 Maximum Axial Force in Beam Element X-Direction - Pounds 

FMAX2 Maximum Shear Force in Beam Element Y-Direction - pounds 

FMAX3 Maximum Shear Force in Beam Element Z-Direction - Pounds 

FMAX4 Maximum Torque About Beam Element X-Axis - Inch * Pounds 

FMAX5 Maximum Bending Moment About Beam Element Y-Axis - Inch * Pounds 

FM A.X 6 Maximum Bending Moment About Beam Element Z-Axis - Inch * Pounds 

Hi M \RKn j I) Optional data card(s). 

(2) “NE'BM" on card 0050 specifies the number of these cards for input. 

(3) The standard of default values for maximum rupture forces and moments are 
I.EI0 pounds and inch-pounds, respectively. 

i 1) Entries requiring scientific notation (X.XEXX) should be right justified. 

(5) Blank entries are read as zero. 

(61 The beam element coordinate systems are shown in Figure 2-5. 

(7) All values are input as positive numbers. 

(8) The input values are compared to the time-varying beam loads at the j end 
of <*ie beam to determine if beam rupture occurs. 

( n ) Format for this card is(2(12,13), 6E10.0). 






















KRASH INPUT DATA 


CARDS 2600: NON-STANDARD MAXIMUM BEAM ELEMENT NEGATIVE LOADS FOR 

- RUPTURE 

DESCRIPTION': Defines the end points and the maximum forces and moments for rupture of beam elements in 

the KRASH model. 

FORMAT AND EXAMPLE: 


0 

1 2 

i 

34567890 

2 3 4 5 6 7 8 

1234567890123456789012345678901234567890123456789012345678901234567890 


■ 

D 

■ 

FMAXN1 

FMAXN2 

FMAXN3 

FMAXN4 

FMAXN5 

FMAXN6 

►:< 


a 


1 


10.0 E1 0 

1000.0 

10.0E10 

10.0E10 

10.0E6 

■mss 

■ 

2600 


FIELD CONTENTS 


M 

I 

N 

J 

FMAXN1 

FMAXN2 

FMAXN3 

FMAXN4 

FMAXN5 

FMAXN6 


Massless Node Point Number at End T (Right Justified Integer) 

Mass Point Number at End T (Right Justified Integer) 

Massless Node Point Number at End ‘J’ (Right Justified Integer) 

Mass Point Number at End ‘J’ (Right Justified Integer) 

Maximum Axial Force In Beam Element X-Direction — Pounds 
Maximum Shear Force In Beam Element Y-Direction - Pounds 
Maximum Shear Force In Beam Element Z-Direction - Pounds 
Maximum Torque About Beam Element X-Axis - Inch ♦ Pounds 
Maximum Bending Moment About Beam Element Y-Axis - Inch * Pounds 
Maximum Bending Moment About Beam Element Z-Axis - Inch * Pounds 


REMARKS: 


(1) Optional data card(s). 

(2) ‘NFBMN’ on card 0050 specifies the number of these cards for input. 

(3) The standard or default values for maximum rupture forces and moments are 
1 .E10 pounds and inch-pounds, respectively. 

(4) Entries requiring scientific notation (X.XEXX) should be right justified. 

(5) Blank entries are read as zero. 

(6) The beam element coordinate systems are shown in Figure 2-5. 

(7) All values are input as positive numbers. 

(8) The input values are compared to the time-varying beam loads at the j end 
of the beam to determine if beam rupture occurs. 

( 9 ) Format for this card is (2(12,13), 6E10.0). 


2-63 




















KRASH INPUT DATA 


CARDS 2700 : LOAD INTERACTION CURVE SIGN CONVENTION DATA 

DESCRIPTION : Defines the sign conventions to be used for load-interaction data output. 

EORMAT AND EXAMPLE: 


1 0 



2 

3 

4 5 6 7 

8 

123456789012345678901234S678901234S678901234567890123456789012345678901234567890 


1SCV2 

ISCV3 

ISCV4 

ISCVS 

1SCV6 




-2 

5 

6 

■4 

1 


2700 


HELD: CONTENTS 

ISCVI- CALAC (Lockheed-California Consign convention load number to be used for the 

ISCV6 corresponding user defined loads. The above example results in the following 

correspondence between the user-defined loads and the CALAC sign convention 
loads: 


User Loads 

1 

2 

3 

4 

5 

6 

are made up of 

CALAC Loads 

3 

_2 

5 

6 

_4 

I 



REMARKS: (I) Optional data card(s). 

(2) NSCV on card 0060 defines the number of these cards for input. 

(3) Any nonzero ISCN on the 2800-series cards requires a corresponding sign 
convention definition card in the 2700 series. 

(4) Section 3.1 describes the load-interaction data and the significance of the 
user-defined sign conventions. 

(5) The format for this card is 615 


2-70 

















KRASH INPUT DATA 


CARDS 2800 LOAD INTERACTION CURVE DATA 

DESCRIPTION: Defines the beams to be analyzed for load-interaction curves, the two interacting load 

directions, sign conventions to be applied, exact location along the beams and rupture 
ratio. 

FORMAT AND EXAMPLE: 


0 

1 


2 

> 

3 

4 

5 

( 

» 7 


8 

1234567890123456789012345678901234567890I234567890123456789012345678901234567890 

IJ 

K 

■9 

NLIL 

ISCN 

NSMI 

FSLIC 

BLLIC 

WLLIC 

RUPRAT 



7 

3 

5 

3 

1 

10 

1160. 



1.4 


2800 


El ELD 


1.1 

k.L 

NLIL 


ISCN 


NSMI 

FSLIC, 

BLLIC, 

WLLIC 


RUPRAT 


REMARKS: 


CONTENTS 


Beam number, the internal loads from which are to be analyzed on load-interaction diagrams. 

Load directions for the x and y axes of load-interaction curve. In the above example, 3.5 
means use Fz and My, in the user-defined sign convention. 

Number of sloping load-interaction lines, the data for which is defined on the 3000-series 
cards. The maximum allowed per load-interaction diagram is 20, including those lines 
generated as mirror images. 

User-defined sign convention number to be applied to the beam internal loads before selecting 
the K.L loads for this load interaction diagram. If ISCN = 0, then the CALAC internal load 
sign convention, defined in Section 4.15 reference 1, is used. 

Number of masses involved if shear and moment summation of a particular station is required. 
Defines the location on the airplane for this load-interaction curve. Input only one of these 
nonzero. For fore-aft beams, use FSLIC. For lateral beams use BLLIC. For vertical beams, 
use WLLIC. The location input must be physically within the end points of beam IJ. In the 
example shown, a load-interaction curve is defined for beam number 7, which is a fore-aft 
beam, at FS 1160. 

Beam IJ will rupture when the maximum load ratio for this interaction curve exceeds RUPRAT. 

If the input data on cards 2900 and 3000 define a strength envelope which at any point would 
cause complete failure of the structure represented by beam IJ, then RUPRAT = 1.0 would be 
appropriate. A very large value (RUPRAT = 1000) will guarantee that beam rupture is not 
triggered by the load-interaction curve calculations. 

(1) Optional data card. NLIC on card 0060 defines the number of these cards to be input. 

(2) For each load-interaction curve, cards 2800, 2900 and 3000 are input in sequence, 
before the next 2800-3000 series. In other words, the 2800-3000 card sequence is 
repeated NLIC times. 

(3) Section 3.1 describes the load-interaction calculations and data. 

(4) Format for this card is (615, 4E10.0). 


2-71 


























KRASH INPUT DATA 


CARDS 2000 : LOAD INTERACTION CURVE DATA 

DESCRIPTION: Defines the maximum load levels along the positive and negative x and y load axes. 

EORMAT AND EXAMPLE: 


0 12 3 

I 234 56789012345678901 23456789C 

4 

11 23456789C 

pmyi in 

1 f 

11234567891 

FMYI 1 Cl 1 

) t 

) 123456789C 

PM YI 1C4 1 

. 1 

1123456789C 

FMYf \CA 1 

» 

112 

8 

34567890 


254000. 

74.0E06 

-254000. 

-74.0E06 

— 

2900 


HELD CONTENTS 

Maximum load levels along the positive and negative x and y load axes. Sequenee is as follows: 

1 = + x axis 

2 = + y 

3 = - x 

4 = - y 

These lines form a rectangular load-interaction strength envelope that looks like: 



y 

CNI 



k 

* 

4 


-H 

3 

? - 


1 X 

41 




Optional data card. NLIC on card 0060 defines the number of these cards to be input. 
For each load-interaction curve, cards 2800, 2900 and 3000 are input in sequence, 
before the next 2800-3000 series. In other words, the 2800-3000 card sequence is 
repeated NLIC times. 

Section 3.1 describes the load-interaction calculations and data. 

Format for this card is (3OX. 4E10.0). 

A zero or blank input for any of these 4 values will invoke a default value of 1.E20 
pounds or inch-pounds. 

FMXLIC3 and FMXLIC4 are input as negative numbers. 


REMARKS: (I) 

(2) 


(3) 

(4) 

(5) 

( 6 ) 


EMXLICI 
EM X LIC 2 
EMXLIC3 
EMXLIC4 


2-72 
















KRASH INPUT DATA 



CARDS 3000: LOAD INTERACTION CURVE DATA 

DESCRIPTION: Defines the intercepts for sloping load interaction lines and mirror image fiags for generating 

these lines in other load quadrants. 

EORMAT AND EXAMPLE. 


012 3 45678 

I234S678901234S678901234S678901234S678901234567890123456789012345678901234567890 


MXY1 MXY2 


HELD 

MXY I 
MXY2 


REMARKS: 


I'LIC! 

FL1C2 

1500. 

30.F06 




CONTENTS 

Mirror image fiags defining additional load-interaction lines that are generated internally in 
KRASH. based on the line defined by FLIC1 and FL1C2. The following combinations are 
possible: 


MXY1 

MXY2 

RESULT 

Total No. of L.I. Lines 

0 

0 

No mirror images generated 

1 

0 

1 

Mirror about y axis only 

2 

1 

0 

Mirror about x axis only 

2 

1 

1 

Mirror about x and y axes 

4 


Intercept of sloping load-interaction line with x (FLIC 1) and y (FLIC2) axes. These two 
numbers define a single load interaction line, while MXY1 and MXY2 can be used to generate 
additional lines which are symmetrical about the x. y or both axes. 

(1) Optional data. NLIC on Card 2800 defines the number of these cards to be input 

(2) For ecah load-interaction curve, cards 2800. 2900 and 3000 are input in sequence, 
before the next 2800-3000 series. In other words, the 2800-3000 card sequence is 
repeated NLIC times. 

(3) Section 3.1 describes the load-interaction calculations and data. 

(4) Format for this card is (215. 2E10.0).. 

(5) For each load-interaction curve, a maximum of 20 load-interaction lines are allowed. 
The limit of 20 includes any lines generated by KRASH through nonzero inputs of 
MXY I and MXY2. 

(6) The example data will generate the following load-interaction strength envelope: 

▲ y ~ 10 6 IN (LBS 

_ ~ 30 | ~ 2 0 - 

™X ~ to 3 IBS 

^ 0N/@ 


Load-interaction line 1 is generated by the user-input FLIC] and FLIC2. Lines 2-4 
are generated by KRASH because MXY1 = MXY2 = 1. 


2-73 
















KRASH INPUT DATA 


CARDS 3010: LOAD INTERACTION CURVE DATA 

DESCRIPTION: Defines water line at forward and aft ends of segment for which shear and moment 

loads are to be summed. 

FORMAT AND EXAMPLE: 


01 2345678 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 


WLSMF 

WLSMA 


215.7 

206.4 



FIELD CONTENTS 

WLSMF Water line at beam forward end. 

WLSMA Water line at beam aft end. 

REMARKS: (1) Optional data card. Use only if WSMI on card 2800 is > 0. 

(2) Beam number (IJ) is defined. 

(3) Format f or this card is (2E 10.0). 


2-74 














KRASH INPUT DATA 


CARDS 3020: LOAD INTERACTION CURVE DATA 

DESCRIPTION: Defines masses located at station for which shear and moment loads 

are to be summed. 


FORMAT AND EXAMPLE: 


0 1 2 3 4 5 6 7 

I 2345678901 2345678901 23456789012345678901234S678901 2345678901234567 890123456789 


IJSMi 

IJSM2 

IJSM3 

IJSM4 

IJSM5 

1JSM6 

IJSM7 

IJSM8 

1JSM9 

IJSM 

10 

33 

41 

49 

57 

65 

84 

104 

105 

118 

1 19 


IJSM 

IJSM 

IJSM 

12 

13 

14 


FIELD 

IJSM1 

thru 

IJSMI4 

REMARKS: 


CONTENTS 

Mass Point Number (Right Justified Integer) 


(1) Optional data card. Use only if NSMI on card 2800 is > 0. 

(2) Masses designed. IJSM1 thru IJSM14 must all be at same FS or BL station. 

(3) 14 masses per card. Use NSMI/14 cards. 

(4) Format for this card is (1415). 


O 00 

































KRASH INPUT DATA 


CARDS 3100. MISCELLANEOUS MASS POINT PARAMETERS 

DESCRIPTION : Defines any nonzero aerodynamic lift forces, angular moments of rotating masses, and mass 

cross products of inertia for mass points in the KRASH model. 

FORMAT AND EXAMPLE: 

0 I 2 3 4 5 6 7 8 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 


B 

LC 

HEX 

HEY 

HEZ 

XYI 

YZI 

XZI 

If 

H 


100.0 

0.0 

0.0 

1.3 

-3.3 

0.0 

0 


FIELD 


I 

LC 

HEX 

HEY 

HEZ 

XYI 

YZI 

XZI 

NIISY 


REMARKS: 


CONTENTS 


Mass Point Number (Right Justified Integer) 

Lift Coefficient For Aerodynamic Force, Positive Up 

Angular Momentum of Rotating Masses About Mass Point X-Axis — Inch * Pound * Second 

Angular Momentum of Rotating Masses About Mass Point Y-Axis - Inch * Pound * Second 

Angular Momentum of Rotating Masses About Mass Point Z-Axis - Inch * Pound * Second 

Mass Cross Product of Inertia in Mass Point X-Y Plane - Inch * Pound * Second **2 
Mass Cross Product of Inertia in Mass Poim Y-Z Plane - Inch * Pound * Second **2 
Mass Cross Product of Inertia in Mass Point X-Y Plane - Inch * Pound * Second **2 
Symmetry flag which defines the signs for HEX, HEY. HEZ for masses on the right side 
of the airplane, generated by subroutine GENMOD, if RUNMOD on card 110 is 2. 

(1) Optional data card(s). 

(2) ‘NHE on card 0050 specifies the number of these cards for input. 

(3) Blank entries are read as zero. 

(4) The airplane weight is multiplied by the lift coefficient to generate an aerodynamic lift 
force on the mass point. This lift acts upward in ground axes. 

(5) Format for this card is(12. E8.0, 6EI0.0.12) 

(6) NHSY = 0 corresponds to a symmetrical model (counter-rotating engines), so that 

HEX-RIGHT = - HEX LEFT 
HEY-RIGHT = + HEY LEFT 
HEZ-RIGHT =- HEZ LEFT 

NHSY = 1 corresponds to an anti-symmetrical model (engines rotate in same direction), 
so that 

HEX-RIGHT = + HEX LEFT 
HEY-RIGHT = -HEY LEFT 
IIEZ-RIGHT =+ HEZ LEFT 


2-76 
























KRASH INPUT DATA 


CARD 3200: MASS POINT EULER ANGLES 

DESCRIPTION: Defines for any mass point in the KRASH model three Euler angles to arbitrarily rotate the 

mass point or body coordinate system relative to the airplane coordinate system. 

FORMAT AND EXAMPLE: 


0 1 2 3 4 5 6 7 8 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 


mm 

^1 

PHIDP 

THEDP 

IDP 

x 



B 


3 


0 157 

0.0 

0.0 





3200 


FIELD CONTENTS 


I Mass Point Number (Right Justified Integer) 

PHIDP Roll Euler Angle about Airplane X-Axis - Radians 

THEDP Pitch Euler Angle about Airplane Y-Axis - Radians 

PSIDP Yaw Euler Angle about Airplane Z-Axis- Radians 


REMARKS 


(1) Optional data card(s). 

(2) “NPH” on card 0050 specifies the number of these cards for input. 

(3) Euler angles are order-dependent rotations. The order is PSIDP, THEDP, PHIDP. 

(4) Blank entries are read as zero. 

(5) These angles relate the mass-fixed axes to the airplane axes. Normally these axes 
coincide and therefore the angles are zero. If mass inertia were available in an 
inclined axis system the user might want to utilize this option. Another reason 
for inclining mass axes away from the airplane axes is to enable the user to orient 
an external spring in a direction that doesn’t coincide with any of the airplane 
axes (external springs must point along one of the mass fixed axes). 

(6) Roll angle positive when mass axes are “right-wing-down” relative to eg axes. 
Pitch angle positive when mass axes are “nose-up” relative to eg axes. 

Yaw angle positive when mass axes are “nose-right” relative to eg axes. 

(7) Format for this card (15, 5X, 3E10,0). 


2-77 














KRASH INPUT DATA 


CARDS 3300: MASS POINT AERODYNAMIC COEFFICIENTS 

DESCRIPTION: Defines for any mass point 6 aerodynamic load coefficients to be used to calculate 

aerodynamic loads. 

FORMAT AND EXAMPLE: 


0 

1 2 3 

4 

; 5 

I 6 7 


8 

12345678901234567890I23456789012345678901234567890123456789012345678901234567890 

I 

85 

CXAIR 

CYAIR 

CZAIR 

CLAIR 

CMAIR 

CNAIR 



13 


-137. 

0. 

-1500. 

3500. 

5200. 



3300 


FIELD 

CONTENTS 

1 

Mass point number 

CXAIR 

Aerodynamic drag coefficient, in" 

CYAIR 

Aerodynamic side force coefficient, in" 

CZAIR 

Aerodynamic lift coefficient, in" 

CLAIR 

Aerodynamic rolling moment coefficient, in' 

CMAIR 

Aerodynamic pitching moment coefficient, ii 

CNAIR 

Aerodynamic yawing moment coefficient, in 

REMARKS. 

(1) Optional data card(s). 


(2) NAERO on card 0050 specifies the number of these cards for input. 

(3) The input aerodynamic coefficients are defined as follows: 


CXAIR 

CYAIR 

CZAIR 

CLAIR 

CMAIR 

CNAIR 


S * CX alpha 
S * CY beta 
S *CZ alpha 
S * b * CL beta 
S * c* CM alpha 
S * b * CN beta 


where 

S 

b 

c 

alpha 

beta 

CXalpha 

CYbeta 

CZalpha 


= Reference area. in“ 

= Reference span, in 

= Reference mean aerodynamic chord, in. 

= Angle of attack, rad. Positive when mass is nose up relative to its velocity 
vector. 

= Sideslip angle, rad. Positive when mass is nose left relative to its velocity 
vector. 

= Slope of aerodynamic drag (positive forward (versus alpha. 1/rad 
= Slope of aerodynamic side force (positive right) versus beta. 1/rad 
= Slope of aerodynamic vertical force (positive down) versus alpha. 1/rad 


2-78 



















KRASH INPUT DATA 


REMARKS : 

(Continued) 


CLbeta = Slope of aerodynamic roll moment (positive right wing down) versus 
beta, 1/rad 

CMalpha = Slope of aerodynamic pitch moment (positive nose up) versus alpha. I /rad 

CNbeta = Slope of aerodynamic yaw moment (positive nose right) versus beta, I/rad 

(4) All data refer to the local mass defined by I, not to the entire airplane. 

(5) Aerodynamic loads at zero ALPHA are not included in the calculations. If 
necessary, these can be included as external forces/moments in the 3300 series 
cards. 

(6) Aerodynamic loads using these coefficients are not included in the balanced initial 
conditions coding. 

(7) The format for this card is (I5.5X.6E 10.0). 


2-79 




' 









KRASH INPUT DATA 


CARDS 3400: MASS POINT TIME HISTORY ACCELERATION PARAMETERS 

DESCRIPTION : Defines the mass point number, degrce-of-freedom. and number of data points to specify 

an acceleration or load time history for any mass point in the KRASH model. 

FORMAT AND EXAMPLE: 


01 2345678 

12345678901 2345678901 2345678901 23456789012345678901 2345678901234 5678901234567890 


I 

m 

NP 


>< 



■><^ 

>><r 

fit 


3 

m 

m 

■ 







3400 


FIELD CONTENTS 


I 

L 

NP 

NCODE 


Mass Point Number. 

Degree-of-Freedom where L = 1,2, 3, 4, 5, 6 corresponds to X, Y, Z,0X,0Y,0Z in the 
Mass Pom! Coordinate System 

Number of Data Points in the Table that specifies the Acceleration or Load Time History 
f lag defining whether the input table is of mass point acceleration or applied load. 


REMARKS: 


(11 Optional data card(s). 

(2) "NA( C" on card 0040 specifies the number of these cards for input. 

(3> All entries are right justified integers. 

(4) Each use of this card requires that “NP” number of the 3500-series cards be used. 

(5) The masses must he input in sequence starting with the lower numbered masses. 

(Cl Formal for this card is 415. 

(7) NCODE = 0 lor acceleration input table 
NCODE = I tor force/moment input table 

(8) It is permissible to input forces for some masses and accelerations for other masses. 
If both types are input for the same mass, the accelerations will predominate. 


2-80 





















KRASH INPUT DATA 


CARDS 3500: MASS POINT ACCELERATION OR LOAD TIME HISTORY DATA TABLE 

DESCRIPTION: Defines a table of time and acceleration or load data points for each mass point specified 

on the 3400-series cards. 

FORMAT AND EX.AMPLE: 


0 1 2 3 4 5 6 7 * 

1234567X901234567X901214567X90123456789012345678901234567K90I2345678901234567890 


T 

ACCEL 

x 

Xf 

x 

^XT! 

hxT 

X 


0.01 

-0.6 







3500 


FUlD 

CONTENTS 

T 

Time - Seconds 

Accel 

Acceleration G’s or Radians per Second **2 
or Loads Pounds or Inch-Pounds 

REMARKS: 

(1) Optional data cards. 


(2) For each of the “NACC” number of 3400-series cards, “NP” number of these cards 
are required. 

(3) Within each set ot data, the “NP” cards must be arranged in ascending order of time. 

(4) Each set of data must be ordered to correspond with the 3400 series cards. 

(5) Blank entries are read as zero. 

(6) A maximum of 5000 acceleration times are allowed. For example, if accelerations 
are applied to 50 masses, the time history of each location can not exceed a curve 
consisting of 100 points. 

(7) The values of acceleration or load are in mass axes, with translational accelerations 
in g's and rotational accelerations in rad/sec^. Loads are in pounds or inch-pounds. 
(See Equation 1-117 Volume I). 

(8) Format for this card is 2E10.0. 


2-81 












KRASH INPUT DATA 


CARDS 3600: DIRECT INPUT OF BEAM ELEMENT 6X6 STIFFNESS MATRIX 

DESCRIPTION: Defines the end points and 6x6 stiffness matrix terms for any beam element in the 

KRASH model. 

FORMAT AND EXAMPLE: 


0 



i 

2 

3 

4 

5 

6 

7 


8 

i 2 

34567890123456789012345678901234567890 

1 23456789012 34567890I 234S6789012 34567890 

iD 

■ 

D 

■ 

(mgii 

x 

x 



x 

►:< 


■ 

B 

■ 

B 







_ 

2400 


0 1 

2 

3 

4 

5 

6 

7 


8 

1234567890 

1 234567890123456789012345678901234567890123456789012345678901 234567890 

K 1 1 

K 1 2 

K 1 3 

K 14 

K 1 5 

K16 

x 

>:< 


3500.0 

0.0 



0.0 



_ 

2401 


0 1 


3 

4 

5 

6 

7 

8 

1 234 56' X90I 2 34 56789012 345678901 2 34 567890 

1234567890123456789012345678901234567890 

K 2 1 

K 2 2 

K23 

K24 

K25 

K26 


'tmm 

0 0 

1.7E07 

0 0 

0.0 


-2.2E05 


2402 


0 1 

2 

3 

4 

5 

6 

7 


8 

123456789012345678901234567890123456789012345678901234567890123456789012 

34567890 

K3I 

K 3 2 

K33 

K34 

K35 

K36 

x 

X 


0 0 

0 0 

1.7E07 

0.0 

0.3E05 



_ 

2403 


a l 

1 

3 

4 

5 

6 

7 


8 

i: u 5 ^-v>o 

123456-840123456**901234567890 

1234567890123456789012345678901 

34567890 

K4I 

K42 

K43 

K44 

K45 

K46 


X 


0 0 

1 1 

0 0 

15200 0 

0.0 



_ 

2404 


0 1 

2 

3 

4 

5 

6 

7 


8 1 

12345678901234567890123456789012345678901234567890123456789012345678901234567890| 

K 5 1 

K52 

K53 

K54 

K55 

K56 

x 

§ 



0 0 

0.3E06 


3.5E09 



_ 

2405 


0 1 

2 

3 

4 

5 

6 

7 


8 

12345678901234567890123456789012345678901234567890123456789012345678901234567890| 

K6I 

K62 

K63 

K64 

K65 

K66 

x 

X 


0.0 

2.2E05 

0.0 



3.5E09 


_ 

2406 



































































KRASH INPUT DATA 


CARDS 3600: DIRECT INPUT OF BEAM ELEMENT 6X6 STIFFNESS MATRIX (Continued) 

FIELD CONTENTS 

M Massless Node Point Number at end “I" (Right Justified Integer) 

I Mass Point Number at end “I” (Right Justified Integer) 

N Massless Node Point Number at end “J” (Right Justified Integer) 

J Mass Point Number at end “J” (Right Justified Integer) 

KIJ Stiffness Matrix Terms - Pounds per Inch or Inch * Pounds per Radian 

REMARKS: (1) Optional data cards. 

—— (2) “NKM” on card 0050 specifies the number of these card sets for input. 

(3) Blank entries are read as zero. 

(4) The beam element must be included on the 0900-series cards. 

(5) The stiffness data on these cards will override any values calculated with the beam 
element section properties on the 0900-series cards. 

(6) The input 6x6 stiffness matrix corresponds to the lower right-hand quadrant of a 
full 12x12 beam element stiffness matrix, shown as Equation (1-23) in Volume I. 

(7) Entries requiring scientific notation (X.XEXX) should be right justified. 

(8) Format for the beam identification card is 2(12,13). 

(9) Format for the stiffness matrix data cards is 6E10.0. 


2-83 







KRASH INPUT DATA 


CARDS 3700-3X00: MASS POINT POSITION (STRUCTURE DEFORMATION) PRINTER PLOT 

PARAMETERS 

DESCRIPTION Defines the planar view, scale factors, and mass point numbers for each mass point position 
(structure deformation) printer plot. 

FORMAT AND EXAMPLE : 


01 2 3 45678 

I 234 56 78^012 34 5 67 89012 34 56 78901234 567 8901 2345678901 2345678901 234 5678901 234567890 


01 2345678 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 



M2 

M3 

M4 

2 

5 

6 


M 6 

M 7 

M 8 

M9 

11 

13 

14 

21 


Mil 

1 Ml 2 I 

M 1 3 

M14 


27 




FIELD 

NTPL 

NMPTS 
ISC ALE 


CONTENTS 


Flag to select Planar View where NTPL = 1.2. 3 corresponds to top. side, and frontal 
views, respectively (Right Justified Integer) 

Number of Mass Points (Right Justified Integer - Maximum allowed is 50) 

Flag to Select Scaling Option as follows (Right Justified Integer): 


[SCALE 

0 


XSCAL1 
Y SCALE 
Ml 

REMARKS: 


_ TYPE OF SCALING _ 

Automatic scaling w'here horizontal and vertical plot axes scales are selected 
independently based on the corresponding largest mass point displacement 
components. 

Automatic scaling where horizontal and vertical plot axes scales are set 
equal based on largest mass point displacement component. 

User defined scaling 


Horizontal Scale Factor required if "ISC ALE" = 3 
Vertical Scale Factor required if "ISC ALE" = 3 
Mass Point Number (Right Justified Integer) 

(1) Optional data cards. 

(2) “NPLT" on card 0140 specifies the number of these card sets for input. 

(3) “NTPL“NMPTS,” and “MI" must be nonzero. 

(4) Blank entries are read as zero. 

(5) Scale factor units are inches of mass point displacement per inch of paper. 

(6) Entries requiring scientific notation (X.XEXX) should be right justified. 

(7) Recommend ISCALE = 3 if user plans to compare or overlay plots at different time 
periods. 

(8) Format for card 3700 type is (315.5X.2EI 0.0). 

(9) Formal for card 3800 type is 1415. 


2-84 














































KRASH INPUT DATA 


CARDS 3900: MASS POINT PRINTER PLOT PARAMETERS 

DESCRIPTION: Defines the mass point number and flags to specify which mass point output quantity time 

histories will be printer plotted. 

FORMAT AND EXAMPLE: 


0 

1 2345 

1 

67890 

1 234 5 

7^ 4 5 6 7 8 

67890123456789012345678901234567890123456789012345678901234567890 

l 

MP1 

MP2 

MP3 

MP4 

MP5 

MP6 

MP7 

MP8 

MP9 



ft 


3 

m 

1 

m 

1 

0 

0 

1 

0 

■1 




3900 


FIELD CONTENTS 

I Mass Point Number 

MP1 Flag for Linear Displacements (X. Y, Z.- Inches') in the Ground Coordinate System 

MP2 Flag for Euler Angles (PHI. THETA, PSI ■ Radians) in the Airplane Coordinate System 

MP3 Flag for Linear Velocities (X. Y, Z - Inches per Second)in the Ground Coordinate System 

MP4 Flag for Linear Velocities (U. V. W - Inches per Second) in the Mass Point or Body 

Coordinate System 

MP5 Flag for Angular Velocities (P. Q, R - Radians per Second) in the Mass Point or Body 

Coordinate System 

MPt> Flag for Unfiltered Linear Accelerations (X. Y, Z • G's) in the Mass Point or Body 

Coordinate System 

MP~ Flag for Filtered Linear Accelerations (X, Y. Z - G’s) in the Mass Point or Body Coordinate 

System 

MP8 Flag for Angular Accelerations (P. Q. R • Radians per Second**2) in the Mass Point or Body 

Coordinate System 

MP9 Flag for Impulse (X, Y. Z in G-sec., P. Q, R in (RAD Per Sec) in Mass Point or Body 

Coordinate Axes for Filtered Data 


REMARKS: 


(1) Optional data card(s). 

(2) “NMEP" on card 0140 specifies the number of these cards for input. 

(3) All entries are right justified integers. 

(4) “1” must be nonzero. 

(5) Blank entries are read as zero. 

(6) Flags for printer plot time histories are defined as follows: 

0 = No 
1 = Yes 

Format for this card is 1015, 


( 7 ) 






















KRASH INPUT DATA 

CARDS 4000: MASSLESS NODE POINT PRINTER PLOT PARAMETERS 

DESCRIPTION: Defines the massless node point number, mass point number, and flags to specify which 

massless node point output quantity time histories will be printer plotted. 

FORMAT AND EXAMPLE: 


0 

1 234 5 

1 

67890 

1 2345 

2 3 4 S 6 7 8 

67890123456789012345678901234567890123456789012345678901234567890 

M 

I 

NPl 

NP2 

NP3 

NP4 

NP5 

NP6 

x 


'X" 



I 

7 

m 

1 

0 

1 

0 

0 





4000 


FIELD CONTENTS 

M Massless Node Point Number 

I Mass Point Number 

NPl Flag for Linear Displacements (X, Y, Z - Inches) in the Ground Coordinate System 

NP2 Flag for Linear Velocities (X, Y, Z - Inches per Second) in the Ground Coordinate System 

NP3 Flag for Linear Velocities (U, V, W - Inches per Second) in the Mass Point or Body 

Coordinate System 

NP4 Flag for Unfiltered Linear Accelerations (X, Y, Z - G’s) in the Mass Point or Body 

Coordinate System 

NP5 Flag for Filtered Linear Accelerations (X, Y, Z - G’s) in the Mass Point or Body Coordinate 

System 

NP6 Flag for Impulse (X, Y, Z in G-sec. P, Q, R in RAD/Sec) in Mass Point or Body Coordinate 

System 


REMARKS: 


(1) Optional data card(s). 

(2) “NNEP” on card 0140 specifies the number of these cards for input. 

(3) All entries are right justified integers. 

(4) “M" and “1” must be nonzero. 

(5) Blank entries are read as zero. 

(6) Flags for printer plot time histories are defined as follows: 

0 = No 

1 = Yes 

(7) Format for this card is815. 


2-86 
















KRASH INPUT DATA 

CARDS 4100: BEAM ELEMENT LOADS PRINTER PLOT PARAMETERS 

DESCRIPTION: Defines the beam element number and flags to specify which beam element internal load 

' time histories will be printer plotted. 

FORMAT AND EXAMPLE: 



FIELD CONTENTS 


IJ Beam Element Number 

BFP1 Flag for Axial and Shear Forces (FX, FY, FZ - Pounds) 

BFP2 Flag for Torque and Bending Moments at End “1” (MX, MY. MZ - Inch * Pounds) 

BFP3 Flag for Torque and Bending Moments at End “J” (MX, MY, MZ - Inch * Pounds) 

BFP4 Flag for choosing between beam axis loads or loads in mass axes. 


REMARKS: 


(1) Optional data card(s). 

(2) “NBFP” on card 0140 specifies the number of these cards for input. 

(3) All entries are right justified integers. 

(4) “[J'’must be nonzero. 

(5) Blank entries are read as zero. 

(6) Flags for printer plot time histories are defined as follows: 

0= No 

1 = Yes 

(7) If BFP4 = 0, then all load data are in the beam element coordinate system shown in 
Figure 2-5. 

If BFP4 = 1. then all load data are in the mass point coordinate system at mass i or 
j. as appropriate. 

(8) If BFP4 = 1, then BFP1 through BFP3 control plotting of the following: 

BFPI: FX,FY,FZ at mass I. in mass point coordinate system 
BFP2: FX,FY,FZ at mass J. in mass point coordinate system 
BFP3: MYI and MYJ. moments about y axis i.t each mass point 
coordinate system. 

(9) Format for this card is 515. 


2-87 




















































































KRASH INPUT DATA 


( ARDS 4:u0 BI AM ELEMENT DEFLECTION-ROTATION PRINTER PLOT PARAMETERS 

DESCRIPTION Defines the beam element number and flags to specify which beam element deflection and 
" rotation time histories will be printer plotted. 

FORMAT AND EXAMPLE 


01 2 3 45678 

1 234>67890 I 234567840 I 234567890 I 23456789012345678901 2345678901 2345678901234567890 


IJ 

BDP1 

BDP2 

3 

0 

0 



FIELD CONTENTS 

[J Beam Element Number 

BDP1 Flag for Deflection Differences of End “J” and End “1” (X, Y, Z - Inches) 

BDP2 Flag for Rotation Differences of End “J” and End “1" (Phi, Theta, Psi - Radians) 

BDP3 Flag for Rotation Sums of End “J” and End (Phi, Theta. Psi - Radians) 

REMARKS (1) Optional data card(s). 

(2) “NBDP" on card 0140 specifies the number of these cards for input. 

(3) All entries are right justified integers. 

(4) “1J" must be nonzero. 

(5l Blank entries are read as zero. 

(61 Flags for printer plot time histories are defined as follows: 

0= No 
1 = Yes 

(7) All deflection-rotation data is output in the beam element coordinate systems shown 
in Figure 2-3. 

(8) Formal lor this card is 415. 

















KRASH INPUT DATA 


CARDS 4300 BEAM ELEMENT STRESS RATIO PRINTER PLOT PARAMETERS 

DESCRIPTION: Defines the beam element number and flags to specify which beam element stress ratio time 

histories will be printer plotted. 

FORMAT AND EXAMPLE: 


0 1 2 3 4 5 6 7 8 

I 23456"S90l 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 234567890 


IJ 

STP 1 

STP2 

STP3 

STP4 

STP5 

XT 

X' 


"XT 

>:< 


7 

0 

1 

1 

0 

m 






4300 


FIELD CONTENTS 


1J 

STP1 

stp: 

STP3 

STP4 

STP5 


Beam Element 
Flag for Stress 
Flag for Stress 
Flag for Stress 
Flag for Stress 
Flag for Stress 


Number 

Ratio for Top and Bottom Fibers Using Maximum Shear Stress Theory 
Ratio of Left and Right Fibers Using Maximum Shear Stress Theory 
Ratio of Top and Bottom Fibers using Constant Energy of Distortion Theory 
Ratio of Left and Right Fibers Using Constant Energy of Distortion Theory 
Ratio of Tension-Only. Compression-Only, and Axial Buckling Loads 


REMARKS 


(1) Optional data card(s). 

(2) “NSTP" on card 0140 specifies the number of these cards for input. 

(3) All entries are right justified integers. 

(4) "IJ" must be nonzero. 

(5) Blank entries are read as zero. 

(6) Flags for printer plot time histories are defined as follows: 

0 = No 
1 = Yes 

(7) Stress parameters must be provided for the beam elements on the 0900-series cards. 

(8) "NSC" on card 0050 must he flagged “yes.” 

(9) Format for this card is 615. 


2-89 




















KRASH INPUT DATA 


CARDS 4400: EXTERNAL CRUSHING SPRING LOAD-DEFLECTION PRINTER PLOT 

- PARAMETERS 

DESCRIPTION: Defines the end point and flags to specify which external crushing spring load and deflection 

time histories will be printer plotted. 

FORMAT AND EXAMPLE: 


0 1 2 3 4 5 6 7 X 

I;3456'890 I234567890123456789012345678901234567890123456789012345678901234567890 


I 

M 

SEP1 

SEP2 


X’ 


x 


mam 

3 

1 

m 

■3 






4400 


HELD CONTENTS 

I Mass Point Number 

M Massless Node Point Number 

SI PI Flag for Axial Deflection (Inches) 

SI P2 Flag for Axial Loads (Pounds) 


REMARKS 


(1) Optional data card(s). 

(2) “NSEP" on card 0140 specifies the number of these cards for input. 

(3) All entries are right justified integers. 

(4) “I” must be nonzero. 

( 5) Blank entries are read as zero. 

(6) Flags for printer plot time histories are defined as follows: 

0 = No 

! = Yes 

(7) All externa] crushing springs attached to the same mass point/massless node point will 
be printer plotted if that end point is specified. 

(8) Format for this card is 415. 


2-90 
















KRASH INPUT DATA 


CARDS 4500 BEAM ELEMENT STRAIN AND DAMPING ENERGY PRINTER PLOT 

- PARAMETERS 

DESCRIPTION: Defines the beam element number and Hags to specify which beam internal element strain and 

damping energy time history will be printer plotted 

FORMAT AND EXAMPLE: 


0 12 3 

1 2345678901 2 34 567X901 234 567X90 

4 5 6 7 b 

12345678901234567890123456789012345678901234567890 

U 

ENGI 

ENG 2 

& 


XT 

X 

x 


6 


2 

1 

1 







r 

4500 


FIELD CONTENTS 


IJ Beam Element Number 

ENG 1 Flag for Strain Energy (in.-lb.) 

ENG2 Flag for Damping Energy (in.-lb.) 


REMARKS: 


(1) Optional data cards. 

(2) “NF.NP" on card 0140 specifies the number of these cards for input. 

(3) All entries must be right justified. 

(4) “IJ’' must be nonzero. 

(5 ) Blank entries are read as zero. 

(t>) Flags for printer plot time histories are defined as follows: 

0 = No 
1 = Yes 

(7) Format for this card is 315. 


2-91 
















KRASH INPUT DATA 


CARDS 4b00: DYNAMIC RESPONSE INDEX (DRI) PRINTER PLOT PARAMETERS 

DESCRIPTION: Defines the mass point number of a DRI beam element for dynamic response index (DRI) 

time history printer plots. 

FORMAT AND EXAMPLE: 


0 

i 

2 

3 

4 

5 

6 

7 


8 

I2345678901234567890123456789012345678901234567890123456789012345678901234567890 

J 

si 

(B£5| 


:xc 

x 



a 


ms 








□ 

4600 


FIELD CONTENTS 

J Mass Point Number 


REMARKS 


(1) Optional data card(s). 

(2) “NDRP" on card 0140 specifies the number of these cards for input. 

(3) All entries are right justified integers. 

(4) “J" must be nonzero. 

(5) Blank entries are read as zero. 

(6) Flags for printer plot time histories are defined as follows: 

0 = No 

1 = Yes 

(7) The mass point number must be end “J" of a DRI beam element. 

(8) Format for this card is 15. 


CARD 4700: END OF DATA 

DESCRIPTION : Defines tire final card of the input data. 

FORMAT AND EXAMPLE 


01 2345678 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

END 


END 

4700 


FIELD CONTENTS 

End The Mnemonic “End" (Left Justified) 

REMARKS : (1) Required data card. 


2-92 















2.3 OUTPUT AND SAMPLE CASE 


As explained in Section 2.1, the most general, case of a KRASH85 analysis 
involves the use of three separate programs: KRASHIC, MSCTRAN, and KRASH85. 
Table 2-6 shows a summary of the output from each program. A sample case 
which models one-half of a transport airplane with 21 masses and 28 internal 
beams will be used to illustrate the output for each program. This model is 
illustrated in figure 2-7. This is a test case with special elements for 
checkout purposes; it does not represent a realistic airplane m odel. 

TABLE 2-6. SUMMARY OF KRASH85 OUTPUT 


KRASHIC 

KRASH85 

• Echo of input data (2 times) 

• Echo of input data (2 times) 

• Formatted printout of input data 

• Formatted printout of input data 

• Miscellaneous calculated data 

• Miscellaneous calculated data 


• Time histories of model responses 

MSCTRAN 

• Mass data 


• Internal beam data 

• Executive control deck echo 

• External spring data 

• Case control deck echo 

• Energy data 

• Input bulk data deck echo 

• Summaries at end of run 

• Sorted bulk data deck echo 

t External spring loading/unloading 

• Displacement vector 

• Summary of plastic hinge formations 

• Load vector 

• Summary of internal beam yielding and rupture 

• Forces of single-point constraint 

• Summary of energy distribution 

• Forces in bar elements 

• Interaction load time-histories 

• Element strain energies 

• Vehicle c.g. motion time-histories 

■ Grid point force balance 

$ Time history plots of selected response quantities 


2.5.1 KRASHIC Output 
2. 3.1.1 Echo of Input Data 

This is a direct listing of the input data cards for the case being 
analyzed. Figure 2-8 illustrates this print for the sample case. Each 
















page ot tin- list ins; is preceded hv a heading which identities the column 
numher. The sequence numhers are in columns 77 - 80. The first card, with 
a 1 in column 10, is generated hv the Job Control Language (.ICI.) , and is not 
part oi the data set (I.T . SAMPLE. DATA in this case) in the user's library. 

Ibis lirst card tells the program whether or not to read an additional data 
set oi slat ic tie) lections. A value of 1 means read t lie add i t iona 1 data set, 

0 means don't read it. The ICI. is set up to supply a zero for this card for 
the i irst iteration, when no static del lection information is available, and 
a 1 lor all subsequent iterations, when the data are available, as generated 
hv NASTRAN. the listing in figure 2-8 is from the last iteration, and there- 
I ore the first card has a 1 in column 10. To reiterate, this card is atuoma- 
ticallv generated by the .ICI.; the user does not supply this card. 

Cards It) through 1480 are supplied by the user and represent the basic. 
KRAS 1185 data set described in Section 2.2. This is the data set referred to 
as XY.DAi'A in Section 2.1. Note how the dummy title cards serve to segment 
tin 1 date and facilitate reviewing and editing the data set. 

Following card 1480 is a set of cards numbered 1 through 7b. This is 
the .static deflection data set referred to as XYZ. NASOUT. DATA in Section 2.1. 

I he i irst six cards of this data set are title cards, the remaining cards are 
the three delleet ions and three rotations of eaeii grid point in the NASTRAN 
model used to solve the stat ic loads problem. Cards 1 through 7b are till gen¬ 
erated automat ieally; the user does not have to develop this data set. The 
...it a set will reside in the user's library under the name XYZ .NASOl'T. DATA. 

ihe eemplete echo shown in figure 2-8 is provided twice. One eepv can 
:>«• used to mark up tor torming a new data set, while the other eopv remains 
as a clean record oi the input for the current ease. 


— 

rma11 ed Print- 

■Out ol 

i Input 

Data 




ills S. 

cc l i on oi t he 

pr i n L 

out put 

organizes a 11 

t ho 

input data 

into logiea 

and 

prints out t lu 

■ data 

w i t h se 

1 t'-exp 1 ana lory 

hit 

>nt i t ieat ion 

headings. 


.hi.- output is illustrated in figure 2-9 tor the sample ease. the data are 
or.-, in i ;:ed into tin* ! ol lowing major groups: 








Case title cards 
Program size data 

Acceleration data transfer control parameters 
Program data management control data (restart option) 

Program control data 
Vehicle initial conditions 

Initial mass/node point deflections (read from XYZ.NASOUT.DATA) 
Generalized surface data 

Corresponding mass and beam numbering (RUNMOD = 2 only) 

Mass data 

Node point data (optional) 

External spring data (optional) 

Material properties 

Internal beam data 

Unsymmetrical beam data (optional) 

Plastic hinge and end-fixity data (optional) 

01eo strut beam data (optional) 

Nonlinear beam data (optional) 

Volume penetration data (optional) 

DRF elements (optional) 

Volume change data (optional) 

Nonstandard maximum deflections (optional) 

Nonstandard maximum forces (optional) 

Load interaction curve sign conventions and curve data (optional) 

Nonzero angular momenta, cross-products of inertia, lift constants 
(optiona1) 


2-95 


L.'-. 


■ - ** ■ 









FIGURE 2-7. LARGE TRANSPORT AIRPLANE MODEL - SAMPLE CASE 













ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 




1 

2 

3 

4 5 6 

7 

8 

' CARD 

NO. 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

* 

1 

2 

1 

LT.SAMPLE.DATA 




00000010 


3 

21 MASS/28 

BEAM TEST 

CASE ONLY- 

-NOT VALID AIRPLANE MODEL 


00000020 


4 

12345678901234567890123456789012345678901234567890123456789012345678901200000030 

* 

5 

NM MSP 

NB NLB 

NNP NPIN 

NUB NDRINOLEO NACC MVP NVCH NMTL 

ND 

00000040 


6 

21 19 

28 1 

12 10 

4 1 2 19 0 0 0 

0 

00000050 


7 

NVBM NFBMNVBMNNFBMN 

NKM NHI 

NPH TOL1 TOL2 TOL3 NSC NICNAERONBOMB 

00000060 


8 

0 2 

0 2 

0 2 

2 1000 1000 1000 110 

1 

00000070 


9 

NSCV NLICNHRGR NBAL 

ICDICITR 



00000080 

", 

10 

1 15 

0 5 

1 1 



00000090 


11 

GRAPHICS 





00000100 


12 






00000110 


13 





200 

00000120 

l 

14 

ONE RESTART 

' AND ONE SAVE CARD FOLLOWS 


00000130 


15 






00000140 


16 






00000150 


17 

IPRINT 

DELTAT 

TMAX 

PLOWT FCUT RUNMOD 


00000160 

? 

18 

200 

.000050 

0.1 

0.000 50. 1. 


00000170 


19 

BLANK CARD 

FOLLOWS 




00000180 

* 

20 






00000190 

T 

21 

NSF NTF 

NOE NSPD 

NED NS 

NRP NIMP NBC : PRINT DATA 


00000200 

/ 

22 

1 1 

1 1 

1 0 

10 1 


00000210 

r 

23 

NMEP NNEP 

NBFP NBDP 

NSTP NSEP 

NENP NDRP NPLTNPFCT : PLOT DATA 


00000220 

' 

24 

0 0 

6 0 

0 0 

0 0 0 0 


00000230 

3 

25 

INITIAL CONDITION DATA : 3 CARDS 


00000240 

' 

26 

3140.00 

000.00 

3 00.00 



0000025D 


27 

000.00 

0.1 

000.00 



00000260 

, 

28 

000.00 

.01745 

000.00 

000.00 000.00 0.001.1463E-07 

00000270 

* 

29 

MASS DATA : 

NM CARDS 




00000280 


30 

1585.0 

199.0 

0.0 

220.0.11514E+05.4 E+05.15 

E*05 

100000290 


31 

9064.5 

300.0 

0.0 

218.7.89080E+05.3 E+06.99 

E+05 

200000300 


32 

15318.1 

460.0 

0.0 

208.7.16278E+06.96935E+05.10309E+06 

300000310 

: 

33 

13096.0 

620.0 

0.0 

206.0.19627E+06.66715E+05.79389E+05 

400000320 


34 

21752.6 

820,0 

0.0 

200 . 2.49106E+06.12567E+06 . 14651E+06 

500000330 


35 

7901.5 

960.0 

0.0 

212.4.81383E +05.12 E+06.2 

E+06 

600000340 


36 

9190.7 

1040.0 

0.0 

207.9.87536E+05.14 E+06.2 

E+06 

700000350 


37 

9938.4 

1200.0 

0.0 

225.1.88098E *05.18 E+06.3 

E+06 

800000360 


38 

5702.0 

1359.9 

0.0 

260.0.96249E +05.41788E *05.26039E +05 

900000370 


39 

6175.2 

1570.0 

0.0 

302.3.21530E+06.10798E +06.15863E +06 1 000000380 


40 

9670.6 

801.3 

118.3 

188.3.15213E *05.13858E *06.36 

E+06 1100000390 


41 

10065.6 

852.3 

271.8 

203.1.19510E+05.12263E+06.3 

E+06 1200000400 


42 

£286.5 

943.5 

430.7 

219.9.72715E+04.5Z619E+05.11 

E+06 1300000410 


43 

3759.0 

1045.8 

583.5 

243.5.44083E+04.25823E+05.60 

E+05 1400000420 


44 

1542.3 

1112.6 

740.6 

255.1.16708E+04.90137E+04 . 18 

E+05 

1500000430 


45 

5400 . 0 

719.0 

321.6 

165.8 3651.56 25746. 29374.6 

1600000440 


46 

5151.0 

902.8 

551.6 

188.1 3712. 24588.2 28178. 

1700000450 


47 

1922.0 

887.0 

131.6 

90.7 371. 1600. 2000. 

1800000460 


48 

238.0 

279.0 

0.0 

85.0 24. 300. 500. 

1900000470 


49 

1000. 

300.0 

0.0 

238.7 1000. 1000. 1000. 

2000000480 


50 

1000. 

300.0 

0.0 

238.7 1000. 1000. 1000. 

2100000490 


FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 1 OF 9) 







ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 




1 

2 

3 

4 

5 

6 

7 8 

CARD NO. 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

51 

NODE POINT DATA : NNP CARDS 




00000500 

52 

1 

5 

775.1 

48.0 

181.0 



00000510 

53 

1 

11 

773.9 

118.3 

186.3 



00000520 

54 

2 

11 

887.0 

131.6 

179.7 



00000530 

55 

3 

11 

887.0 

131.6 

179.7 



00000540 

56 

1 

12 

811.8 

321.6 

199.6 



00000550 

57 

1 

14 

994.5 

551.6 

220.5 



00000560 

58 

1 

15 

1148.0 

740.6 

261.3 



00000570 

59 

2 

15 

1112.6 

740.6 

255.1 



00000580 

60 

1 

16 

735.7 

321.6 

199.6 



00000590 

61 

2 

16 

719.0 

321.6 

165.8 



00000600 

62 

1 

17 

918.4 

551.6 

220.5 



00000610 

63 

1 

2 

279.0 

0.0 

147.5 



00000620 

64 

EXTERNAL SPRING DATA : 2 

X NSP CARDS 



00000630 

65 

1 

3 

70. 

0.35 

175000. 



00000640 

66 

2 

3 

82.7 

0.35 

300000.0 



00000650 

67 

3 

3 

72.7 

0.35 

100000.0 



00000660 

68 

4 

3 

70.0 

0.35 

300000.0 



00000670 

69 

5 

3 

64.2 

0.35 

300000.0 



00000680 

70 

6 

3 

76.4 

0.35 

300000.0 



00000690 

71 

7 

3 

69.9 

0.35 

100000.0 



00000700 

72 

8 

3 

69.1 

0.35 

100000.0 



00000710 

73 

9 

3 

64.0 

0.35 

300000.0 



00000720 

74 

10 

3 

82.0 

0.35 

300000.0 



00000730 

75 

11 

3 

28. 

0.35 

100000. 



00000740 

76 

12 

3 

14. 

0.35 

100000. 



00000750 

77 

13 

3 

11. 

0.35 

100000. 



00000760 

78 

14 

3 

7. 

0.35 

100000. 



00000770 

79 

15 

3 

3. 

0.35 

100000. 



00000780 

80 

16 

3 

29.8 

0.35 

272000. 



00000790 

81 

17 

3 

28. 

0.35 

272000. 



00000800 

82 

18 

3 

19.65 

0.30 

100000. 



00000810 

63 

19 

3 

16.45 

0.30 

100000. 



00000820 

84 

1.3 

1.5 

1.6 

10. 70000. 

7000. 

0 . 

00000830 

85 

1.3 

1.5 

1.6 

10. 140000. 

14000. 

0.00 

00000840 

86 

1.0 

6.0 

10. 

21. 115000. 

90000. 

0.00 

00000850 

87 

1.0 

1.1 

2.0 

3. 

0 340000. 

200000. 

0.00 

00000860 

88 

1.0 

1.1 

2.0 

3. 

0 340000. 

200000. 

0.00 

00000870 

89 

1.0 

1.1 

2.0 

3. 

0 340000. 

200000. 

0.00 

00000880 

90 

1 . 

6. 

10. 

21 

60000. 

48000. 

0.00 

00000890 

91 

1 . 

6. 

10. 

21. 68000. 

48000. 

0.00 

00000900 

92 

1 . 

1.1 

2.0 

3. 

300000. 

30000. 

0.00 

00000910 

93 

1 . 

1.1 

2.0 

3. 

300000. 

30000. 

0.00 

00000920 

94 

1 . 

1.5 

2. 

7. 

330000. 

330000. 


00000930 

95 

1 . 

1.5 

2. 

7. 

330000. 

330000. 

0.00 

00000940 

96 

1 . 

1.5 

2. 

7. 

330000. 

330000. 


00000950 

97 

1 . 

1.5 

2 . 

7. 

330000. 

330000. 


00000960 

98 

1 . 

1.5 

2 . 

7. 

330000. 

330000. 

0.00 

00000970 

99 

1 . 

8. 

9. 

16. 10000. 

30000. 


00000980 

100 

1 . 

8. 

9. 

16. 10000. 

30000. 


00000990 

101 

2. 

2.001 8.05 

8. 

051 62200. 

294700. 

.02 

00001000 


FIGURE 2- 

8. ECHO 

OF THE INPUT DATA 

(SHEET 2 

OF 9) 



t 










ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 

12345678 
CARD NO. 12345678901234567890123456789012345678901234567890123456789012345678901234567890 


102 

2 



2 

.001 5.75 5 

.751 

16150. 

51500. 

.02 


00001010 

103 

INTERNAL 

BEAM DATA : N8 CARDS 







00001020 

104 


1 


2 

32.00 0.00 

6.20E+04 

3.70E+04 


0.00 

96.0 

96.0 

500001030 

105 


2 


3 

36.00 0.00 

7.70E+04 

4.30E+04 


0.00 

99.0 

99.0 

500001040 

106 


3 


4 

36.00 0.00 

8.60E+04 

4.30E+04 


0.00 

56.0 

56.0 

500001050 

107 


4 


5 

59.00 0.00 

13.60E+04 

4.65E+04 


0.00 

56.0 

56.0 

500001060 

108 


5 


6 

59.00 0.00 

11.60E+04 

4.65E+04 


0.00 

66.0 

66.0 

500001070 

109 


6 


7 

57.00 0.00 

13.60E+04 

5.70E+04 


0.00 

88.0 

88.0 

500001080 

110 


7 


8 

48.00 0.00 

11.40E+04 

6.20E+04 


0.00 

91.0 

91.0 

500001090 

111 


8 


9 

37.00 0.00 

5.60E+04 

3.35E+04 


0.00 

51.0 

51.0 

5000011C0 

112 


9 


10 

25.00 0.00 

9.00E+04 

9.50E+03 


0.00 

50.0 

50.0 

500001110 

113 


5 

1 

11 

54.00 4.800E+04 

1.59E + 04 

1.14E+05 


0.00 

1.0 

1.0 

500001120 

114 

1 

11 


12 

63.20 2.600E+04 

1.14E+04 

1.02E+05 


0.00 

1.0 

1.0 

500001130 

115 


12 


13 

56.3 1.000E+04 

4.70E+03 

5.80E+04 


0.00 

1.0 

1.0 

500001140 

116 


13 


14 

40.7 4.800E+03 

2.00E+03 

2.10E + 04 


0.00 

1.0 

1.0 

500001150 

117 


14 

1 

15 

20. 2.700E+03 

1.20E+03 

8.00E+03 


0.00 

1.0 

1.0 

500001160 

118 

1 

12 

1 

16 

8.0 2.208E+02 

7.32E+02 

1.00E+02 


0.00 

1.0 

1.0 

400001170 

119 

1 

14 

1 

17 

8.0 2.208E+02 

7.32E+02 

1.00E+02 


0.00 

1.0 

1.0 

400001180 

120 

2 

11 


18 

0.01 150.0 

239.E +00 

239.E+00 


0.00 

1.0 

1.0 

100001190 

121 

3 

11 


18 

0.01 150.0 

239.£+00 

239.E+00 


0.00 

1.0 

1.0 

100001200 

122 

1 

2 


19 

0.01 5. 

32.5E+00 

32.5E+00 


0.00 

1.0 

1.0 

100001210 

123 


6 


12 

40.7 4.800E+03 

2.00E+03 

2.10E+04 


0.00 

1.0 

1.0 

500001220 

124 


9 


14 

40.7 4.800E+03 

2.00E+03 

2.10E+04 


0.00 

1.0 

1.0 

500001230 

125 


12 


0 

40.7 4.800E+03 

2.00E+03 

2.10E+04 


0.00 

1.0 

1.0 

500001240 

126 


2 


20 

10. 1.0 

1.0 

1.0 


0.00 

1.0 

1.0 

900001250 

127 


2 


21 

10. 1.0 

1.0 

1.0 


0.00 

1.0 

1.01000001260 

128 


15 


16 

20. 




0.00 

1.0 

1.0 

500001270 

129 

2 

15 

2 

16 

20. 




0.00 

1.0 

1.0 

500001280 

130 


15 


0 

20. 2.700E+03 

1.20E+03 

8.00E+03 


0.00 

1.0 

1.0 

500001290 

131 

2 

15 


0 

20. 2.700E+03 

1.20E+03 

8.00E+03 


0.00 

1.0 

1.0 

500001300 

132 

BEAM END FIXITY CARDS: NPIN CARDS 






00001310 

133 


1 


2 

0 0 11 

0 . 

0 . 

0.0088 

1.15 

00001320 

134 


2 


3 

0 0 11 

0 . 

0 . 

1.25 


1.25 

00001330 

135 


3 


4 

0 0 11 

0. 

0 . 

1.1 


1.1 


00001340 

136 


4 


5 

0 0 11 

0 . 

0. 

1.15 


1.15 

00001350 

137 


5 


6 

0 0 11 

0 . 

0 . 

1.25 


1.25 

00001360 

138 


6 


7 

0 0 11 

0 . 

0 . 

1.25 


1.25 

00001370 

139 


7 


8 

0 0 11 

0 . 

0 . 

1.15 


1.15 

00001380 

140 


8 


9 

0 0 11 

0 . 

0 . 

1.0 


1.0 


00001390 

141 


6 


12 

0 0 11 

0 . 

0 . 

0 . 


0 . 


00001400 

142 


9 


14 

0 10 1 

0 . 

0 . 

0 . 


0 . 


00001410 

143 

UNSYM 

BEAM 

DATA: NUB CARDS 







00001420 

144 


15 


16 

1 .08 







00001430 

145 

2 

15 

2 

16 

-1 .08 







00001440 

146 


15 


0 

1 .3 







00001450 

147 

2 

15 


0 

-1 .3 







00001460 

148 

OLEO BEAM CARDS: 







00001470 

149 




1 . 

1 







00001480 

ISO 

2 

11 


18 

20.982 10855. 

739. 

1.4 

20. 




00001490 

151 

1 

2 


19 

16.965 3420. 

289. 

1.4 

16. 




00001500 

152 

2 

11 


18 

4.0 0. 

. 1E06 

. 1E06 

5000. 


1 

00001510 


FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 3 OF 9) 




ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 


12545678 


CARD NO. 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

153 

1 2 19 

3.4 

0. 50.E03 

50.E03 

500. 

00001520 

154 

45 





00001530 

155 

-0.2 

352.7 




00001540 

156 

-0.0964 

352.7 




00001550 

157 

-0.0376 

10.24 




00001560 

158 

0.124 

23.62 




00001570 

159 

0.341 

22.21 




00001580 

160 

0.607 

17.90 




00001590 

161 

0.953 

8.24 




00001600 

162 

1.46 

3.38 




00001610 

163 

2.17 

2.13 




00001620 

164 

3.07 

1.25 




00001630 

165 

4.13 

1.56 




00001640 

166 

5.21 

1.79 




00001650 

167 

6.20 

2.46 




00001660 

168 

7.05 

3.58 




00001670 

169 

7.72 

6.26 




00001680 

170 

8.20 

13.47 




00001690 

171 

8.53 

31.50 




00001700 

172 

8.74 

62.40 




00001710 

173 

8.91 

64.06 




00001720 

174 

9.12 

34.22 




00001730 

i7r 

9.41 

16.03 




00001740 

176 

9.83 

8.42 




00001750 

177 

10.39 

5.24 




00001760 

178 

11.08 

3.68 




00001770 

179 

11.87 

2.93 




00001780 

180 

12.71 

2.77 




00001790 

181 

13.54 

3.38 




00001800 

182 

14.27 

4.93 




00001810 

183 

14.83 

9.33 




00001820 

184 

15.21 

25.53 




00001830 

185 

15.40 

153.79 




00001840 

186 

15.4518 

1000. 




00001850 

187 

15.4539 

1000. 




00001860 

188 

15.4581 

1000. 




00001870 

189 

15.494 

403.85 




00001880 

190 

15.61 

67.70 




00001890 

191 

15.84 

22.15 




00001900 

192 

16.18 

9.93 




00001910 

193 

16.65 

5.31 




00001920 

194 

17.21 

3.02 




00001930 

195 

17.82 

2.07 




00001940 

196 

18.39 

0.92 




00001950 

197 

18.82 

0 . 




00001960 

198 

18.97 

10. 




00001970 

199 

22 . 

10. 




00001980 

200 

DAMPC CARD 





00001990 

201 

.05 





00002000 

202 

NONLINEAR BEAM OATA: 

NLB + CARDS 



00002010 

203 

3 11 18 

1 7 

2.0 



00002020 


FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 4 OF 9) 










ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 


12545678 
CARD NO. 123456 78 90123456 7890123>+5o 7890123456 7890123456 7890123456789012345678901234567890 


204 

DRI 

CARD: 






00002030 

205 


2 

21 






00002040 

206 

POS 

•FORCE CUTOFF:NFBM CARDS 




00002050 

207 

2 

11 

18 428000 

1 

,.E10 

1.0E10 

1.E10 1.E10 

1.E10 

00002060 

208 

1 

2 

19 130000 

1 

..E10 

78000 

1.E10 1.E10 

1.E10 

00002070 

209 

NEG 

.FORCE CUTOFF:NFBMN CARDS 




00002080 

210 

2 

11 

18 428000 

1 

. E10 

1.0E10 

1.E10 1.E10 

1.E10 

00002090 

211 

1 

2 

19 130000 

1 

. E10 

78000 

1.E10 1.E10 

1.E10 

00002100 

212 

LOAD INTERACTION SIGN CONVENTIONS!NSCV CARDS): 


00002110 

213 


1 

2-3 4 

5 

6 




00002120 

214 

LOAD INTERACTION DATA!NLIC+ CARDS): 



00002130 

215 


1 

3 5 1 

0 


300. 


1000. 

00002140 

216 






166000. 

20.8E+06 -166000. 

-20.8E+06 

00002150 

217 


1 

1 199000. 

45.6 

E+06 




00002160 

218 


2 

3 5 1 

0 


300. 


1000. 

00002170 

219 






166000. 

20.8E+06 -166000. 

-20.8E+06 

00002180 

220 


1 

1 199000. 

45.6 

E+06 




00002190 

221 


2 

3 5 2 

0 


400. 


1000. 

00002200 

222 






210000. 

23.8E+06 -210000. 

-23.8E+06 

00002210 

223 


1 

1 185000. 

60.8 

E+06 




00002220 

224 


1 

1 674300. 

25.4 

E+06 




00002230 

225 


3 

3 5 2 

0 


480. 


1000. 

00002240 

226 









00002250 

227 


1 

1 195000. 

L30.3 

E+06 




00002260 

228 


1 

1 545300. 

28.9 

E+06 




00002270 

229 


3 

3 5 2 

0 


540. 


1000. 

00002280 

230 









00002290 

231 


I 

1 199000. 137.3 

E+06 




00002300 

232 


1 

11365380. 

35.3 

E+06 




00002310 

233 


3 

3 5 2 

0 


620. 


1000. 

00002320 

234 






274000. 

45.0E+06 -274000. 

-45.0E+06 

00002330 

235 


1 

1 286000. 

L85.6 

E+06 




00002340 

236 


1 

1 384400. 

79.7 

E+06 




00002350 

237 


4 

3 5 2 

0 


620. 


1000. 

00002360 

238 






274000. 

45.0E+06 -274000. 

-45.0E+06 

00002370 

239 


1 

1 286000. 

185.6 

E+06 




00002380 

240 


1 

1 384400. 

79.7 

E+06 




00002390 

241 


5 

3 5 2 

1 


960. 


1000. 

00002400 

242 






288000. 

-288000. 


00002410 

243 


1 

0-5.2317E06 

71.5E+06 




00002420 

244 


1 

1 474500. 

152.8E+06 




00002430 

245 


6 

3 5 2 

1 


960. 


1000. 

00002440 

246 






288000. 

-288000. 


00002450 

247 


1 

0-5.2317E06 

71.5E+06 




00002460 

248 


1 

1 474500. 

152.8E+06 




00002470 

249 


6 

3 5 2 

1 


1000. 


1000. 

00002480 

250 






254000. 

74.0E+06 -254000. 

-74.0E+06 

00002490 

251 


1 

1 301000. 

228.7E+06 




00002500 

252 


1 

11.3581E 06 

84.2E+06 




00002510 

253 


7 

3 5 3 

1 


1080. 


1000. 

00002520 

254 









00002530 


FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 5 OF 9) 


2-101 





ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 




1 

2 3 4 


5 

6 7 

8 

CARD NO. 

12545678901254567890125456789012545678901254567890125456789012545678901254567890 

255 

0 

1 210000. 

-555.88E06 




00002540 

256 

1 

1 527700. 

107.75E06 




00002550 

257 

1 

1 1.5758E06 64.0 E06 




00002560 

258 

7 

5 5 

3 1 1160. 



1000. 

00002570 

259 







00002580 

260 

0 

1 259000. 

-265.64E06 




00002590 

261 

1 

1 572214. 

83.5E 06 




00002600 

262 

1 

1 804840. 

49.9E 06 




00002610 

265 

8 

5 5 

3 1 1240. 



1000. 

00002620 

264 



35.0 

E 

06 

-35.0E06 

00002630 

265 

0 

1 198000. 

-217.32E06 




00002640 

266 

1 

1 409460. 

50.5E 06 




00002650 

267 

1 

1 965217. 

37.OE 06 




00002660 

268 

8 

5 5 

2 1 1320. 



1000. 

00002670 

269 



27.2 

E 

06 

-27.2E06 

00002680 

270 

0 

1 148000. 

-91.818E06 




00002690 

271 

1 

1 662500. 

31.8E 06 




00002700 

272 

9 

5 5 

3 1 1400. 



1000. 

00002710 

275 







00002720 

274 

0 

1 125500. 

-S4.998E06 




00002730 

275 

1 

1 550720. 

24.2E 06 




00002740 

276 

1 

1 914520. 

18.9E 06 




00002750 

277 

NONZERO 

ANGULAR MOMENTA (NHI CARDS): 




00002760 

278 

16 

.1 E06 




00002770 

279 

17 

.1 E06 




00002780 

280 

NONZERO 

MASS ORIENTATION ANGLES (NPH CARDS): 




00002790 

281 

16 

-.0872665 .0549066 .05236 




00002800 

282 

17 

-.0872665 .0349066 .05236 




00002810 

285 

FORCE TIME HISTORY 

OATA: NACC + CARDS 




00002820 

284 


3 2 

1 




00002850 

285 

2 

3 2 

1 




00002840 

286 

5 

3 2 

1 




00002850 

287 

4 

3 2 

1 




00002860 

288 

5 

3 2 

1 




00002870 

289 

6 

3 2 

1 




00002880 

290 

7 

3 2 

1 




00002890 

291 

8 

3 2 

1 




00002900 

292 

9 

3 2 

1 




00002910 

295 

10 

5 2 

1 




00002920 

294 

11 

3 2 

1 




00002950 

295 

12 

3 2 

1 




00002940 

296 

15 

3 2 

1 




00002950 

297 

14 

3 2 

1 




00002960 

298 

15 

3 2 

1 




00002970 

299 

16 

3 2 

1 




00002980 

500 

17 

3 2 

1 




00002990 

501 

18 

3 2 

1 




00003000 

502 

19 

3 2 

1 




00003010 

505 

0 . 

-95 





00005020 

504 

1 . 

-95. 





00003030 

505 

0 . 

-624 

.5 




00003040 


FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 6 OF 9) 


2-102 









ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 

12345678 
CARD NO. 12345678901234567890123456789012345678901234567890123456789012345678901234567890 


306 

1 . 

-624.5 



00003050 

307 

0 . 

-1861. 



00003060 

308 

1 . 

-1861. 



00003070 

309 

0 . 

-4715. 



00003080 

310 

1 . 

-4715. 



00003090 

311 

0 . 

-7901. 



00003100 

312 

1 . 

-7901. 



00003110 

313 

0 . 

-1991. 



00003120 

314 

1 . 

-1991. 



00003130 

315 

0 . 

-2316. 



00003140 

316 

1 . 

-2316. 



00003150 

317 

0 . 

-785.4 



00003160 

318 

1 . 

-785.4 



00003170 

319 

0 . 

-450. 



00003180 

320 

1 . 

-450.0 



00003190 

321 

0 . 

17445.6 



00003200 

322 

1 . 

17445.6 



00003210 

323 

0 . 

-15419.2 



00003220 

324 

1 . 

-15419.2 



00003230 

325 

0 . 

-28188.2 



00003240 

326 

1 . 

-28188.2 



00003250 

327 

0 . 

-21394.1 



00003260 

328 

1 . 

-21394.1 



00003270 

329 

0 . 

-17818.8 



00003280 

330 

1 . 

-17818.8 



00003290 

331 

0 . 

-6240.9 



00003300 

332 

1 . 

-6240.9 



00003310 

333 

0 . 

-270.8 



00003320 

334 

1 . 

-270.8 



00003330 

335 

0 . 

-258.3 



00003340 

336 

1 . 

-258.3 



00003350 

337 

0 . 

0 . 



00003360 

338 

1 . 

0 . 



00003370 

339 

0 . 

0 . 



00003380 

390 

1 . 

0 . 



00003390 

341 

BEAM LOAD 

i PLOT PARAMETERS: 

NBFP CARDS 

00003400 

342 

3 

111 

0 


00003410 

343 

7 

111 

1 


00003420 

344 

11 

111 

0 


00003430 

345 

11 

111 

1 


00003440 

346 

12 

111 

1 


00003450 

347 

14 

111 

0 


00003460 

348 

END 




00003470 

349 

$TITLE 

=LT.SAMPLE.DATA 


1 

350 

$SUBTITLE 

=21 MASS/28 

BEAM TEST CASE ONLY-NOT VALID AIRPLANE 

MODEL 2 

351 

SLABEl 

=INITIAL CONDITION 

STATIC SOLUTION 

3 

352 

$DISPLACEMENTS 



4 

353 

SREAL OUTPUT 



5 

354 

$SUBCASE 

ID = 

1 


6 

355 

100 G 

-3.089143E-02 0.0 

-9.927106E-01 7 

356 

-CONT- 


0.0 

-2.240265E-03 

0.0 8 


FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 7 OF 9) 


2-103 





ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 



1 


2 3 

4 5 

6 7 

8 

CARD NO. 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

357 

200 

G 

-2.848941E-02 

0.0 

-7.668377E-01 

9 

358 

-CONT- 


0.0 

-2.228401E-03 

0.0 

10 

359 

201 

G 

1.302763E-01 

0.0 

-8.132805E-01 

11 

360 

-CONT- 


0.0 

-2.228401E-03 

0.0 

12 

361 

300 

G 

-7.956207E-03 

0.0 

-4.223564E-01 

13 

362 

-CONT- 


0.0 

-2.016658E-03 

0.0 

14 

363 

400 

G 

-3.881566E-03 

0.0 

-1.467094E-01 

15 

364 

-CONT- 


0.0 

-1.310210E-03 

0.0 

16 

365 

500 

G 

0.0 

0.0 

0.0 

17 

366 

-CONT- 


0.0 

0.0 

0.0 

18 

367 

501 

G 

0.0 

0.0 

0.0 

19 

368 

-CONT- 


0.0 

0.0 

0.0 

20 

369 

600 

G 

3.900044E-04 

0.0 

-1.395651E-01 

21 

370 

-CONT- 


0.0 

1.905726E-03 

0.0 

22 

371 

700 

G 

-1.741045E-02 

0.0 

-3.224223E-01 

23 

372 

-CONT- 


0.0 

2.646158E-03 

0.0 

24 

373 

800 

G 

1.960037E-02 

0.0 

-8.574680E-01 

25 

374 

-CONT- 


0.0 

3.925510E-03 

0.0 

26 

375 

900 

G 

1.623369E-01 

0.0 

-1.646019E+00 

27 

376 

-CONT- 


0.0 

5.791210E-03 

0.0 

28 

377 

1000 

G 

4.121330E-01 

0.0 

-2.947555E+00 

29 

378 

-CONT- 


0.0 

6.380443E-03 

0.0 

30 

379 

1100 

G 

-2.376708E-02 

-6.204829E-02 

4.549811E-01 

31 

380 

-CONT- 


-6.692741E-03 

-2.201437E-03 

-5.605556E-04 

32 

381 

1101 

G 

-1.923054E-02 

-6.048076E-02 

3.946611E-01 

33 

382 

-CONT- 


-6.692741E-03 

-2.201437E-03 

-5.605556E-04 

34 

383 

1102 

G 

-1.296112E-02 

-1.657883E-01 

7.333756E-01 

35 

384 

-CONT- 


-6.692741E-03 

-2.201437E-03 

-5.605556E-04 

36 

385 

1103 

G 

-1.296112E-02 

-1.657883E-01 

7.333756E-01 

37 

386 

-CONT- 


-6.692741E-03 

-2.201437E-03 

-5.605556E *04 

38 

387 

1199 

G 

-9.159952E-02 

0.0 

5.671605E-01 

39 

388 

-CONT- 


0.;! 

-6.671570E-03 

0.0 

40 

389 

1200 

G 

-2. lo-iiOSE-Ol 

4.138300E-02 

2.341778E+00 

41 

390 

-CONT- 


-1.306025E-02 

-6.671570E-03 

-9.325834E-04 

42 

391 

1201 

G 

-2.439489E-01 

3.842940E-02 

2.721848E+00 

43 

392 

-CONT- 


-1.306025E-02 

-6.671570E-03 

-9.325834E-04 

44 

393 

1300 

G 

-6.008096E-01 

3.054580E-01 

6.170235E+00 

45 

394 

-CONT- 


-2.241265E-02 

-1.032134E-02 

-1.681539E-03 

46 

395 

1400 

G 

-1.368592E+00 

6.399863E-01 

1.084585E*01 

47 

396 

-CONT- 


-2.562700E-02 

-7.394243E-03 

-5.296096E-03 

48 

397 

1401 

G 

-1.022668E+00 

2.900483E-01 

9.660551E +00 

49 

398 

-CONT- 


-2.562700E-02 

-7.394243E-03 

-5.296096E-03 

50 

399 

1498 

G 

-6.724822E-01 

0.0 

8.267696E+00 

51 

400 

-CONT- 


0.0 

-9.067804E-03 

0.0 

52 

401 

1499 

G 

-6.724822E-01 

0.0 

8.267696E+00 

53 

402 

-CONT- 


0.0 

-9.067804E-03 

0.0 

54 

403 

1500 

G 

-2.495207E+00 

4.342729E-01 

1.459589E+01 

55 

404 

-CONT- 


-1.709940E-02 

-9.067804E-03 

-4.925180E-03 

56 

405 

1501 

G 

-2.554651E+00 

3.717276E-01 

1.491743E+01 

57 

406 

-CONT- 


-1.709940E-02 

-9.067804E-03 

-4.925180E-03 

58 

407 

1502 

G 

-2.495207E+00 

4.342729E-01 

1.459589E+01 

59 


FIGURE 

2-8. 

ECHO OF THE INPUT DATA (SHEET 

8 OF 9) 



2-104 










ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT 



1 


2 3 

4 5 

6 7 

8 

CARO NO. 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

408 

-CONT- 


-1.709940E-02 

-9.067804E-03 

-4.925180E-03 

60 

409 

1600 

G 

7.919735E-02 

-2.893812E-01 

1.937819E+00 

61 

410 

-CONT- 


-1.295901E-02 

-9.379078E-03 

-1.573280E-03 

62 

411 

1601 

G 

-2.385548E-01 

1.247810E-01 

2.086104E+00 

63 

412 

-CONT- 


-1.295901E-02 

-9.379078E-03 

-1.573280E-03 

64 

413 

1602 

G 

7.919735E-02 

-2.893812E-01 

1.937819E+00 

65 

414 

-CONT- 


-1.295901E-02 

-9.379078E-03 

-1.573280E-03 

66 

415 

1700 

G 

-6.952552E-01 

-3.464461E-02 

8.834676E+00 

67 

416 

-CONT- 


-2.537085E-02 

-9.936552E-03 

-5.952675E-03 

68 

417 

1701 

G 

-1.0141526+00 

6.997874E-01 

8.967885E+00 

69 

418 

-CONT- 


-2.537085E-02 

-9.936552E-03 

-5.952675E-03 

70 

419 

1800 

G 

1.832870E-01 

-7.628592E-01 

6.225001E-01 

71 

420 

-CONT- 


-6.689243E-03 

-2.204068E-03 

-5.605288E-04 

72 

421 

1900 

G 

2.696309E-01 

0.0 

-8.798568E-01 

73 

422 

-CONT- 


0.0 

-2.223161E-03 

0.0 

74 

423 

2000 

G 

-9.809875E-02 

0.0 

-8.621072E-01 

75 

424 

-CONT- 


0.0 

-4.137885E-03 

0.0 

76 

425 

2100 

G 

-7.305723E-02 

0.0 

-7.669372E-01 

77 

426 

-CONT- 


0.0 

-2.228401E-03 

0.0 

78 


FIGURE 

ho 

1 

00 

ECHO OF THE INPUT DATA (SHEET 

9 OF 9) 



2-105 












FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 1 OF 16) 








VEHICLE INITIAL CONDITIONS 



u4 U 

SK- 

22; 52 

— < < 


<n - 


o - M 
Q K l/l 

O a 


►-* M O - 


■ 10 ♦ 

M U1 O 
O *H -I 


a a 
o o 
o o 
o m 
o o- 
o o 


-j *h a 
Ui o 
> Ouj 


O H H 


H < > 

>- z 

< O U. 

^ O 

t3 ! 


: «* i/> 


U MJ < 

u u a 


MOO 

MOO 


i 




O O O O O O O 


aooooooo 

sB-fO'^ooin® 

iTIMMO'COCOf'CO 

IflffllOOHNON 

mm-toi/iMCMin 

ONCOO'NNlAO 

lOoO'^M'O^o'ino'^oooo 


ooooooooooi/tfr-MWtfMiflinooo 


— I/I 

a -o 
< cm 
X o 
♦- o 


a o o 

H to O 
O W -H 

«y -e n 
eo •*> o 


i 


l CM 


o o a o 

M5 00 O O 
N Ul H H 
NHlflN 
1/1 sO l/l M 
CM -I -t C3 O CM O' 

NOMOff'^O'N 


a a 

k» c-» 
O’ m 

>3- O’ 


a o 

o O’ 

fM M 


I H M V 

> M c 
i so o r 


a o 

M O’ 
O’ O 
CM CO 


a a 
eo <m 

rM Lf| 
O 1/1 
O' sO 
M 
M O' 


O O < 

a a e 


>0 /> 
o <H 

o m 

O CM 
CM CM 


CO O 
CO o 
I s - <0 

M CM 


ICMMl/l'CCM^OMKO'O'O'CMCMOCM 


ooaaoogo 

HUIUIOOHUIM 

OCM-OGOOCOO 

SOCM^O'O'OCM 

CMsOMCMO'l/lN-O' 

O'OO'OOO'MCO 

lOOOOOOOOOM>MCMl/ir^fMl/l»0OOO 


)OOOOOOOOM>«H<MCMMr-ICMM)OO0 


1 O O < 


I 


i o a o 

i t* o o 

I S -Cfr 
< M U> O 

■«MN 

J M3 CM M3 
' M> CM O 


OOOOOOOOOOOO 

MMOO'inMeomiflO'O'o 

mN(0HI/|HMfl(0#HN 

ONOOIflCONNlflinWO 

mooM>r^<7'MOOO'r^o 

C'CMNO-OOO’t^COinMKV 

IMCJlfl-CC'lflMHOtfC'CO 


o o 

M CO 
a M3 
O Ifl 

i/i to 

CM O' 

cm rs. 


a o 

CM CM 

r- s. 
O M 
<H O' 
CM M> 
M3 so 


o o o o o o 

M <0 -O (U H K1 

H Ul Ifl O ui O 

NO N s CO m N 

M) M M HOfI 

O’ M M CM M) O' 

• O' M K1 C*. M3 O 


O O 

O' O’ 

co o 
m -< 

O' M3 

in co 
O’ o 


co 

r-» n. 
m m> 
O' O' 


OMr>.r*.cMO'M^<M^*<o 


O'K^HOHtflC0HN3N>eHHH(0'0(0«0N 


oooooooooo 


I I 


ooaoaaoo 

O'OOMO'CMrMCM 

<MOCO'OCMi-«nOO' 

coMineo^eoom 

OOOO'CMMOCO 

OMI/10'00'M>CM 

>OOOOOOOOOCM*HOMMCOO’MDOO© 


O D O Q o o 

SO M Kl O M M> 

k © co O’ co 

©CO © O' O’ CM 

©NNNON 

o m i/i O’ o r* 

IOC49) 


) O' 


o a 
O' o 

CM f-t 

f* © 

CM fs. 

O’ O’ 

M CM 


a a 

CM O’ 
*H fs. 
© © 


OCHHK1NK14HN4 


00000000004tflfl44NMNOOO 


CM CM M K1 


O © O O 


I O O O 

I H N 4 

’ O’ o o> 


a o a a 
o in c- o- 

O’ o K1 -o 

o o © m 

O >—< O M 
O O 'C CM 


a © 
© © 
M O 


o o 

M -0 

© O' 


a a 

cm r*» 
O' o 

in cm 

© m 

>0 O' 


OtOO'(OOff'SC'4HI*lHOIOJ 


© o 

© CM 

m in 

CM l/| 

O' CM 

-« m 
o- o 


o o 
© o 

Cm © 
© cn 

CM M3 
N> O 
© M> 


I 


9 ° 

m tn 

Cm CM 
© 

o m 
o o 

© Kl 


Z 

M 

o 


o a 

O’ CM 

m <-« 


Ki no 
cm o 
1 O CM 


© © o o © a a c 

ci O' o h n to in c 

HI04IAO4XU 
H444NI0N' 
■& o cm O’ m m o s 

O' M CM l/l O' (0 H i 

cm o o m o m o c 


IHHHCJHCMtMNSH 


I N MO O 


|HHH4NCM4HNN4HN^\ 


IHHCJW1HHHNHNH 

Hl/lHHrtlM3l/ll/144N 


2-107 


“AV’rfA'V A*. 










FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 2 OF 16) 



































FREE FRICTION 801 TONING PLOWING GROUND 

.PRING LENG1H COEf FICIENT SPRING FORCE FLEXIBILITY 


.OOOOOOOOOOOOOOOOOOO 

0000000000000000000 


00000000000000000000 

OOOOOOOOOOOOOOOOOOO 


loaoooooooaooooaooo 

1000000000000000000 

>000000000000000000 

>000000000000000000 

>oooooooooooooo<\»moo 

oooooooooooooor^i^oo 


>000000000000000000 

.• I I I I I f I 

looaooooooooooooooo 

OOOOOOOOOOOOOOOOOOO 

>0 OOOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOOOOO 

•OOOOOOOOOOOOOOOOOO 

MfW)iru>uuoiAioxMfli/iiouun^u>oo 

iMfFIWNUOMWKlWRlKlMWMMMrOM 


ooooooooooooooooao 

OOOOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOOOO 

oocooooooooooooomw 

^r-OEJxJO ^HOOOOOOOCOO'^.J 


MOOOOOOOOOOOOOOOOOOO 

HHoIMHHHHHH 


a. k\ o 

M ^ fsj 

«tOOOOOOOOOOOOOOOOOLn® 

O. 

UOOOOOOQOOOOOOOOOOMN 


a 00 

• o o 

y- 00 

M OO 

O' 00 

UOOOOOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOOOCSJN 


loooooaoooaooooooooo 

•OOOOOOOOOOOOOOOOOOO 
• OOOOOOOOOOOOOOOOOOO 
lOOOOOOOOOOOOOOOOOf^O 

.ooooooooooooooooo^m 

lO-JOOOOtOfflOQKlMiflN'rtOOff'H 


>-<OOOOOOOOOOOOOOOOOOQ 
— OOOOOOOOOOOOOOOOOOO 
MOOOOOOOOOOOOOOOOOOO 

0000000000000000000 m 

aoo»flooooooooooooooMM 

WO^H^tf^oBOOKlMIOMrtOON.O 


>0000000000000000 

>0000000000000000 

>0000000000000000 

>oooooooooooooomm 

>oooooooooooooomm 

<oaoMMOoooooo-<>vCor'» 

jroN>N>Nfg>0K>i^rs!r^r^rv l 4'-«c0tn 


rOOODOOOOOOOOOOOOOOO 

MOOOOOOOOOOOOOOOOOOO 

MOOOOOOOOOOOOOOOOOOO 

-OOOOOOOOOOOOOOOOOOO 

toooooooooooooooooomifl 

</)«OsDOOoooooooooooooorv. 

MHHNNNHHNNNNNNNff'ff'OW 


MOOOOOOOOOOOOOOOOOOO 
MOOOOOOOOOOOOOOOOOOO 
MOOOOOOOOOOOOOOOOOOO 
— OOOOOOOOOOOOOOOOOMM 

<0000000000000000000 

vmiiflOHHHooHHiflinifliflifloooo 


OOOOOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOOOOO 

^OOOOOOOOOOOOOOOOOOO 
MOOOOOOOOOOOOOOOOOOO 
MOOOOOOOOOOOOOOOOOOO 
— OOOOOOOOOOOOOOOOOOO 
MOOOOOOOOOOOOOOOOOOO 
COfOKlOOOOoOOOOOOOOOOOO 


MOOOOOOOOOOOOOOOOOOO 




000000 
000000 
in o o o o o 

r- o >0 <m r*. r*. 


000000 

000000 

000000 

N O K> H 


000000 

O O O O O o 

000000 

N O s ^ M H 


O O o o o o 
000000 
000000 
o o m o o o 

H H N o « (O 


000000 

000000 

000000 

O O O 10 O o 

O O <0 o o o 


109 


FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 4 OF 16) 
























>:firooooo©oooooooooO'HM*-*ooo«H.-,oooo 


o o o o 
o o o o 
o o o o 


I Q O O o C 

> o o o o < 

> O o o O ( 
» o o o o < 


] O Q O O t 
\ fO o O rH , 
IOhhh, 
) ® vO a ( 


O O a o 
o o o o 

0 0 0 3 

O 0 x> o 


OOOOOOOOOOOoOOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOOOOOOOOOOOOOO 


OOOOOOaOOOOoOQOOOOQOOaOOOOOO 
CSJOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
NOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
sOO“ ^-C^CO'HfHOOOOOOOOOOOOOOOOOOOO 


o o o o 
o o o o 
o o a o 

NO *0 -O -O 


oooooaoooaaoQoooaaooooaoaoao 

■-HOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

NOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

> OC'sO> 0 -I 5 CO^-t'HOOOOOOOOOOOOOOOOOOOO 


aooooooooaaoooaaooooaooo n a 

xooominooooooooococooooooooo O o 

~>OO 0 -t\)MhT^>ini^OOOOOOOOOOOOOOO o o 

a'NN«>Oa'N<Mrffl^OfflSNN®lflO«»®OOOONN 


O o O 

o o o 

O 0 3 

o o o 

0 0 3 0 


000000000000000000000000 o o 

NOOOOOOOOOOOOOOOOOOOOOOOO oo 

NoooininootfiotfCMoooooO'O'tfloooao oo 

MI»»K\f<>-0«0^'CJ^tnrHOoO>-'OOOMMCJ«»H>-«000000 




tOJNMNNNHHOO(0(0 


oaoooaaaaoaoaoaooaaaoooo o o 

>000000000000000000000000 oo 

>-ooo^)^>Ovrooo^oooMcgo'0'inooooo oo 

HMNJMHMH-OOUlHSONWrflMWNOOOOOOONN 

^Nfl3HHHHI/l(7'Hrf^NHNNNN»ONNNHHOOHH 


CD o o O Q 
O o O O o 
o o o o 
o o o o 


o o o o 

D O O O 
C Q o O 
O C O 3 
o o o o 


ooaaoaoaaoarooooaaaoaooooooo 

OOOOOOOOOOOoOOOOOOOOOO-Oa-OOOO 
<0000000000 rsjt^f'-OOOOOOr>-f>»f^*AOOOOO 
C\j .0 J5C <T- r^tor^irj Tf^-DOOOOOOOOOOOKIOOOO 




IH^^^NHNNNN 


Zooooooooo^ooo*HpH^«ooooooooofv»oo 

ITOOOOOOOOOO>- 1 OOO>-t*HCMP 0 ^HOOOOOOf'JOM 


Z T-C ^OO 






cd h m ifl lti ifl 




FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 5 OF 16) 













tooqooooo 
-C*HO 4 N < \t CM O' 

H ixi a o-kioco^^joo 


a H H N M I 


I N N a O O 


iflh.rs,r-.r-».rvr^*. 

oooooooo 

“JOOQQOOQQ 

lf)0'K^C'J^O'»“tCNiNA 

MBOhNCOJ^'J 

ta-^ffN^NOffloo 

dH^iflas^inMoo 


HOOOOOOOOOO 

aoooooooooo 


HOOOOOOOOOO 

0.0000000000 


->00000000 

NHCJhHNCOHQOO 




I i-* r* O O 


X o O 
< o o 
zoo 
> 0-0 


_) o o 
O o o 
a o o 
x •* vr 


a o c 

§ o < 
o o < 

ggi 


-><rooooooo 

Jioinoifluufluio 

MONHHNNHOOO 

HOHHHHHHHOO 


< o o 
•a o o 
U. O' (T' 
K1 <0 


fc g I 

Ul o ( 
X o c 
X o c 


<SJOOOOOOOOOO 

OOOOOOOOOOO 


O O o 

< -D O 
U. ® f J 

o <r 


aoooooooooo 

aoooooooooo 

^ ^ ^ ^ 

*■> 

►JOOOOOOOOO-* 

HOOOOOOOOOO 

20000000000 
roooooooooo 
*1 T*t\-0*+<D9'*4-9 

f ^ i N E « 


-- s 


o O o 

iu a n 

_j a (J 
0 0-0 


zoo 
r nh 
-> © *■ 
H H N 

T N 


oooaoaooaoaooooaaoaoaaaoo 

ooooooooooooooooooooooooo 

:ooooooooooooooooooooooooo 

jrs.N->J-csjrHOOOOOOOOOOf^OO-OCvJMOOOO 

NNN'ONO'JOMifl^O'>0(0'OJlfl^ONON^(OM 


K» K» 


< N N H C 




-» <0 a 

H H 
M ^ CSJ 


O O O O O O ( 

>oaoooooaoaoaooaoooooooooo 

^ooooooooooooooooooooooooo 

JOOOOOOOOOOOOOOOOOOOOOOOOO 

)ooooooooooooooooooooooo*or^ 

OENNJOlfl^HOHNNOSNl/lS9'Hif®OHrt 




y lo rv r-» < 


(0 O (0 ^ 9 ^ ' 


2-111 



FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 6 OF 16) 




















FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 7 OF 16) 


















f 





FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 8 OF 16) 













I 


c 


ooooooooooooooo 

ooooooooooooooo 

ooooooooooooooo 

ooooooooooooooo 

ooooooooooooooo 

ooooooooooooooo 

ooooooooooooooo 


ooooooooooooooo 

ooooooooooooooo 


ooooooooooooooo 

ooooooooooooooo 


ooooooooooooooo 

ooooooooooooooo 

ooooooooooooooo 

ooooooooooooooo 

ooooooooooooooo 

OOOOJNN^I^Offl'OJNO 


OOOOOOOM^» 


O CD 

SE 

-i z 


a. m 
UJ X 

u < 


a < 
< 

O X 


o-cOooo-oo 




Ooaoooooaoaoooaaooooaooooaooooooooeiooo 

oooooooooooooooooooooooooooooooooooooo 

OOOOOOOOOOOOOOOO^OK^^KlOOOrOO'^^^OOO^O-OsOsOO 

^^^J^OO^CO'fCOtOlO'Jtf'JOS'OOOff'O'ff-NWNNNlflMML'lM/UAUlN 

tfH/llfllfllflUUnLflOU1OOOlflinL/)f0«MWWC0ffl«0NM/l^MKWUfllflfl)^C0O©ff' 




tM r 


I <M <SJ CM r 


i 


IrtfrtMWHSHHHS 


OQOOOOaOOaOOOOOOOOOOOOQOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOOOOOOOOOOOvJ’OOO'T'J’-^'OOOOOO 

oooooooooMOooM^KiOK^oooMM^omoooioinuiO'S-ooo.t 

<T'C'C'C'CT'O'O''crLn- 1 fifi!-OLnvj'‘3'NjLfiu"iu*iuiu^uiLOLfia''£><J s ^<7'--0'O>O'-o-y>O'^'0N^ 


W </) 

U. M 

o < 


Ug 

o 


H 

W 

u 

33 

CO 


< 

H 

< 

Q 

H 

o 

04 

z 


Ctg 

o 

H 

n 

o 

H 


OS 

0-i 

Q 

u 

H 

H 

< 


O 






INNMMP<1^lfl«^NNC01DO' 




X > 
< ♦ 
z 


a o 
o z 


a> 

I 

CM 

3 

o 


2-114 










84400 05 7.4/00D 07 


i 




iNrfl^in-cN»0'OHt>jK>^insOK<o^OHNM^ifl>oK(0(ro 


OQaQOaOQQOQOQQQQQQQOOaaOQQQQOOOOQaQDQOOQQOQaOQOaejQOOOQOQQQO 
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOlflOCOlfllrtlAOOO-^OO^OOOOOOCOOOfsIOOOOOO 
o -oo-o r>-^oooocoo<otO<oocoocococo^or^f^r^ooocpf^oco^f^t^ooo'OOOvOoooooofOooK\oooooo 
NlOMniniflNNNlflNUlMMWlflNIflWNNfflNCOeOONNNtflNOXINSNOOOWUlff'Unfllfll/IO'O'O'NlflONinininOOO 


4 S H H HKNNNHNHHHNHNiH 


I I II I I II II II II II II I I II I 

LniAin>fiinuuA4vo>Am^ 1 omuimuij)<A^uMniAiAiMniAiniAiAiniAuwiu > iifliAiAifliA 


OOOOQQOOQaQQQQOQOOOQQOOQOQQQOQQQOOQQOQOQQQQoaOOOQQOOOQQOClOO 
OOOOOOOOOf^OI^OOOr^0f s 'OOOOr-4OOOr-<r-4>-(OO<0OOOOC0<0C0O^<^O^r^^^vJ-srO>«rJO^>^^)fMfMfJ 
vJO>JOOO^^>tHlflr*lfllOlflrtUlHU\iniflOlOOOO(0(DOONMOSNNMMMOM«ONNWCOCOOO>tNO^tf^NNN 

COCOfflfflCOtOtOfflONNNNf'^Nf'N^^f'OWOOOMKlMiHNlflHPjrJNl/UfllflMNOMSKNOOOff'O'OirOOO'O'O'J 




FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 10 OF 16) 











00000 20 Z.720Q0 07 1.00000 20 -2.7200D 07 1.48000 05 -9.18180 07 




OOOQOOQQQOOQOQa 

OCOOOOCOOOCOOOOOOO 

o^ooocrooo'oooaoo 

COOTCOCOCOCTtMO' ? N N N O' O' O' 
KlO'lflKlKlUlN'-'UlfgNNHHH 


OQOOQOQOQCaaCiDQO 

OOOOOOMNONNMWfJN 

UlOlflUUfllflNlfllflNNNlfllfllfl 

■D -H O' O' <7- 


ooaooooa 

•OHI'JOtONOO 

Ln<Ol/>r^rH^)l^rg 

ONftO'NMHO 

a. oooooooooo'oro'ofsie-^o'^ooo 

M oooooooQoouifrHifltfiflifltnooo 


a o a o oacjaaooQoooQc 

r* O >0 »■« 

N >f ^ N f^<-»U>{V't'TU1^fJ00O'lfl< 

oeo-oo 

•J n«^ o^<\jo-cOo^wO-^eajc 

NNOWOO''00'SMN^O^O'JWf 


Q _ H r* rH 


x o a 
u/ o o a 
I O O o 
O O M 
O O If) 


O O X 
• • CL M 

o o 

o 


INK\U1^N^HNO'NN( 


OOOO-lOOO 
^ MNOO B'O'.f 
r^otsjr^o-pj^csj 

N'OHMC'HnJO 

OOO-OOflJ-JO 

ooooooooooso^fMLfir^vj-fg^ooo 

OOOOOOOOoO'0-«<M<M*Hf'.s0'0OOO 


INMtflfl'OMO^OHNW^Ifl'ONOOO'O* 


FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 11 OF 16) 















j i iii 111 iii 111 hi m 111 hi in uj m hi in t|i n,i ui Lii hi In hi in m lii in m in ui in in m in HI in m 

<OO^>f'6^Hr(OOff'9'r(r<UlWOO'I«J^ytHHKlM«)e0'J'tQOt0« 

lfllllNN(OONNO'ff‘9 , ff > WNlCO«'fllfl f 'MAlfllOOHHNNNNNMfl(flOOOO 

0'0'<e<0HH^<fNNHMNNNN^<fHHHHNNNMHH-0<0NNNNOOOO 






MOOOOOOOOOOOOOOOOOOCaoOOOOOOOOOOOOOOOOOO 

0-HO-HO^O^OrHOr-*Or-<0-HOrHC5^0r-(Oi-<0»HO>HO-HO^HO<HO*-«0^ 

a HHHHHHHHH*>(NNNNNNWNNNMMKIIflWMIflMM 


O CO 
_ X so 

»K N • 
X h- *» 




FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 12 OF 16) 






508J8D 06 0.0 0.0 0.0 -2.175910 08 


O O (NJ O M o O O CM O CM O 


O O Ifl O M O O O r-i o 90 O 


OOOOOO 0 0 0^-0 


a 

0^000 


0-00000 P4QOOOO 


► 'T O 70 < 

<h (0 

*-« O © © O O 0-00000 


<M© 0000 «H<-» 00©0 


FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 13 OF 16) 










241080 07 0.0 0.0 0.0 1.775150 09 


r 























tv. 




O' 


r. 


O' 



© 




r- 



M> 




|M 



© 




© 



x> 

o 




rl 



o 




¥-i 



o 







o 




o 


o 


o 



o 














© 




o 



o 






























o 



Q 




o 



o 




o 



a 




a 



Q 



















O' 



tr 











© 











-o 



© 




© 






















r* 









r-C 









CM 







CA 



►A 




fA 



© 


























<M 




O' 





















a 

































<r 


























o 

o 

o 

© 


c 

o 

o 

o 

o 

© 


o 

o 

o 

o 

o 

<M 


o 

vO 

o 

o 

o 

© 


O © 

o 

© o «o 


o 

o 

o 

o 

o 

© 


o 



o 

o 

© 



O’ 

o 

o 

o 

CM 


o 

o 

> o 

1 

o 

o 

o 

© 


o 

<M 

o 

o 

o 

CM 


o 

H 

1 

o 

Q 

o 

^4 


o 

© 

o 

o 

o 



O *H 

o 

O O r-» 


o 

1-t 

1 

o 

o 

o 

© 


o 

H 

o 

© 

o 

© 


o 

© 

1 

o 

o 

o 

© 


o 

© 

1 









K 


O' 







O' 





•o 











o 


© 





o 


© 





© 








o 


o 





o 


o 





o 


o 





o 


o 




o 

© 




© 


o 





o 


© 





o 


o 



























a 











a 


a 





a 


a 





o 















r. 







© 









o 




o 

© 






O' 












© 





























o 


c\l 




CM 





•o 


o 





O' 







to 


*A 













Q 


CM 





© 


CM 





© 


M> 





o 




© 


o 





♦A 


o 













































s0 














H 







> o 

to 

o 

tr 

o 


o 

o 

CM 

o 


o 


a 

o 

© 

o 

o 

o 


o 

o 

•o- 

a 

© © 


© o 

o 

© © © 


© 

o 


o 

© 



© 

o 


o 

o 

o 


o 

o 

o 

o 

CM 

o 


o 

o 

1 o 

© 

o 

O 

o 


o 

o 

N 

o 

CM 

o 


o 

o 

© o 

* 

© 


o 

o 

K1 

o 

* o 


O Q 

CM 

O CM o 


o 

o 

N. 

o o 

o 


o 

o 

r* 

o 

o 

o 


o 

o 

© 

o 

© 

o 


o 

o 

















© 







r* 






r. 





r*. 







r. 







r. 








o 







o 







o 







o 






o 





o 





























a 







o 







o 






a 





o 







o 







9 





























© 






















































O' 


















<o 




































o 






O' 





© 







o 







H 






















■£> 

























M> 













1 o 

o 

o 

o 

o 


o 

o 

o 

rv 

o 

o 


o 

o 

o 

o 

o 

o 


o 

o 

o 

© 

Q O 


o © o 

o-o© 


o 

o 



o 



o 


o 

© 

o 

o 



o 

o © 

o 




o 

• o 

o 

I’M 

o 

o 


o 

o 

Q 

(A 

o 

o 


o 

o 

o 

CM 

o 

o 


o 

o 

o 

O' 

o 

o 


o © © © o © 


o 

o 

O 

•-« 

o 

© 


o 

o 

© 

H 

o a 


o 

o 

o 


o 

o 


o 

o 




r- 







r» 












o 


© 




o 





© 


© 







M> 





© 


M> 






o 


o 





o 


o 







o 







o 




o 

o 






o 














o 






o 


o 





o 


s 





a 

© 


g 





8 


a 




a 

a 




a 

CM 


s 





g 


g 





0 

O’ 


a 





























o 




r. 

CM 




© 


© 





<-c 







© 































© 




r* 












© 


fA 







K 















































-o 





•H 







1 o 

H 

o 

<0 

o 


o 

o 

>0 

© 

CM 

o 


o 

o 

o 

o 

© 

o 


o O rs 

o 

o 

o 


o q -> o a o 


o o o 

o 


© 


o 


o © O' 

o 



o 

CM 


o 



o 

o 

• o 

o 

o 


o 


o 

o 

CM 

o 

<M 

o 


o 

o 

O' 

o © 

o 


O © © 

o 

►A 

o 


o © 

CM O <M O 


© 

O CM 

o 

CM O 


o o 

CM 

o 

r- o 


o 

o 

•H 

o © © 


o 

o 

~o 

o 




to 

o 



M> 

o 




s 



•c 

o 




s 



© 

o 




tv, 

© 


3 


r. 

o 



$ 




© 

o 



s 




© 

© 



© 

o 




© 

o 



© 

o 








o 




















© 





a 




0 



a 




9 



a 




o 



a 

o 







© 














CM 




O' 







CM 











© 











































© 







IA 











© 




cm 




—1 



l/l 














r- 




r. 







O' 




r-» 



O' 







© 




fM 



© 

« D 




O' 



© 











































r-* 




i © 

o 

o 

o 

H 


o 

© 

o 

o 

o 

o 


o 

rt 

o 

o 

o 

o 


o 

tr 

o 

o 

o 

'O 


o * 

o 

0 O © 


o 

© 

O 

o 

o 

© 


o © 

o 

o o 

© 


© 

fM 

o 


o 

o 


o 

CM 

■ .0 

o 

o 

o 

O 


o 

CM 

o 

© 

o 

CM 

1 


o 

H 

o 

o 

o 



o 

© 

o 

o 

o 

►A 


O 

o 

O © M 


o 

CM 

o 

© 

o 

© 

1 


© 

CM 

o 

o 

o 

r-4 

1 


o 

*H 

o 

o 

o © 

1 


o 

H 




























«o 




•o 







© 







♦A 







© 








o 







o 







o 







o 




o 







o 







© 







o 














o 







o 







«-t 




rM 







r~l 







o 

o 






o 

o 








tr 







































•H 















tr 







© 







9 







CM 











© 







© 







© 








to 






o 

o 






o 








CM 




M 







© 







'O 







M> 








o 







•C 







O' 







~o 




o 







o 







>0 







sO 


o 

o 


o 

o 


-0 

o 

o 


© 



o 

© 

o 

o 


© 



o 


o 

© 








o 



o 





o 

o 

o 




o 






© 

o 






CM 







© 














© 




-0 
























■ o 

o 

o 

o 

o 


© 

o 

o 

o 

o 

o 

■—c 

© 

o 

o 

Q 

o 

o 

rH 

CM 

o 

© 

o 

o 

© 

H 

>H O O 

o o © 

© 


o 

o 

o 

o 

o 

H 

ft 

o 

o 

© 

o 

o 

H 

►A 

o 

o 

o 

o 

o 

© 

© 

o 


2-119 


■jc-j-y,; i 


ft ^nIB m m t k tmJkMjL 


■/ ♦ ’ • • • ' * ' «<* . • . •* 
... V-’-c 






FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 14 OF 16) 













90 Q9WtVS 0 0 SO 0«?8SI Z 


ooowoo oooooo 


oooooo 

oooooo 


0000 *-<J- 00000 <x-« 00000»-<-£»00000 


^OOOOOfsJ--HOOOOO<NJ-0OOOOO<Ht 



FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 15 OF 16) 











O' «■© 

O r-* O O O *H 


o a 

o co 

& N0 

O r-t 

0 s <o 

O -t O O O H 


OCSiOOOCSJ o N O o O M 


O' 

K 

O' 

K 

o 

O 

o 

© 

o 

© 

© 

Q 

o 

M 

o 

eg 

vO 

40 

s0 

40 

40 

eg 

to 

eg 

CO 

>0 

CO 

O' 


OONONO 
© © N> O Kt © 


o 

K> 

O O O O' O O 
O O o vO o o 


© a 

o o 

O NO 

O' Lfl 

M <0 

O O O CvJ O 


O O CJ O © 
OOMOMO 


© 

1 

o 

ro 

O O O O' o o 
O O © 'O o o 


OO^OMO 


0 

4 

0 

3 

0 

0 

0 

4 

OMO 

csi 

40 

N 

40 

o 

O 

© 

© 

o 

o 

© 

Q 

O’ 

o 

O' 

O 

Kt 

O' 

K\ 

O' 

o- 

o 

O' 

o 

40 

O' 

40 

O' 


OMOOON 


O O' O O O H 
ONOOON 


© O O © 

in m 

o o 

O t~i <SJ iH 

LO 40 

KtOOOOO Kt O O O O O 

©.O. 

*H © O O O O iHOO©0© 




2-121 







Nonzero mass orientation Euler angles (optional) (When a static 
deflection data set XYZ. NASOl'T. DATA is read in, all masses will he 
rotated and a complete printout of this section of data will occur.) 


• Acceleration input table data (optional) 





matrices for all NB internal beams 


The nonlinear beam data section prints out all the KR tables, whether 
these are user-input or standard tables coded into KRASH85. Similarly, the 
b x b linear stiffness matrix K.. is printed for all NB internal beam ele- 

r 1 l '-u 

ments, whether K.. is directly input by the user or internally calculated 

[ ijJ 

in KRASH. I he printed matrix corresponds to the lower right-hand quandrant 
of a full 12 by 12 beam stiffness matrix (figure 1-19, Vol. 1). 


Certain items in this formatted printout of the input data provide addi¬ 
tional information not directly input by the user. These include the follow¬ 
ing: 

• External spring data - The actual damping constant used in the KRAS1I85 
calculations of spring damping force is shown (CDAMP(IKM)). 

• Internal beam data - Beam lengths are shown (XLB). The item called 
VBM is a flag denoting which, if any, of the beams the program treats 
as vertical beams. VBM = 1 corresponds to a vertical beam, and 

VBM = 0 corresponds to a normal beam. The interpretation of the beam 
orientation Euler angles, part of the time-history beam deflection 
output, depends upon whether a normal or vertical beam is noted. 

• Plastic hinge and end-fixity data - i,,e actual plastic hinge moments, 
calculated within the program, are output. (PLM35,...,PLM25.T) 

• Mass data - The coordinates for the mass and node points are not equal 
to those input by the user in XYZ.DATA. The input coordinates have 
been modified by the initial mass and node point deflections, also 
shown in the formatted output of the input data. All calculations in 
KRASH85 use the modified coordinate data. 


2.1.1.3 Miscellaneous Calculated Data 

The miscellaneous calculated data are illustrated in figure 2-10, and is 

described in the following subsections. 


2-122 












2. i. 1.3.1 Model Parameters. - The overall vehicle weight, c.g. position, and 
inertias are shown. These are used to see how well the anlytical model 
matches the actual vehicle being analyzed. This output is always for a com¬ 
plete airplane, even if only a half-airplane model is input (RUMM01) = 1.0). 
i’he initial position of the vehicle c.g., relative to the ground, is also 
shown. 

2.3.1.3.2 Beam Loads and Deflections Corresponding to Yielding. - This output 
is generated only if NIC on card 50 (figure 2-3) is input nonzero. The beam 
loads and deflections corresponding to yielding are used as guidelines for 
establishing nonlinear deflection points for internal beam KR curves. The 
loads are calculated using the stress and buckling equations discussed in 
Volume I, Section 1.3.17, along with the appropriate yield stress for the 
beam material given in table 2-3 of this report. 

The loads corresponding to yield stress are uncoupled loads (e.g., the 
shear forces are those corresonding to yielding without any bending moment 
applied.) Similarly, beam deflections are those resulting from the corres¬ 
ponding load only without the coupled load being applied. In actual loading 
situations, so~e degree of coupling is always present, so the deflections 
corresponding to yield provide only a rough indication of appropriate values 
to use for setting up KR curves. Furthermore, no attempt has been made to 
include in the analysis the effects of stress concentrations, geometric 
shape factors, and end attachment details. 

2. 3.1.3.3 Overall Vehicle Forces/Accelerations at Time Zero, . - This block of 
output data is printed twice. The first time shows the six net loads (pounds 
and inch-pounds) at the airplane c.g., and the resulting six rigid body accel¬ 
erations. These c.g. accelerations are then used to calculate ttie rigid body 
acceleration at each mass point in the model. These mass point accelerations 
yield inertia relief loads at each mass point. If these inertia relief loads 
are included in the total airplane force/moment balance, the net c.g. loads 
and accelerations should be zero. The second printout shows that the c.g. 
loads/accelerations, including inertia relief, are indeed very small (less 
than E-16 for all accelerations). The above calculations are performed in 


2-123 







subroutine NETKOR, the purpose of which is to calculate the net forces acting 
on each mass. These forces are used in the NASTRAN static load solution. 
Inertia relief loads are included to guarantee that a balanced set of applied 
loads is input to the NASTRAN model. 

2 . i . 1 . i . . Individual 1 fees Ac» e 1 o rat i uns At iii.ie Eero . - 1' i guru 2- 1 0 

a I - ■ avows tiii 1:0 : maids and aece 1 erat ions lor each mass in the model. 

' he sp, i : i, d it a "it pm or ,.i, h -:,es i • as 1 >1 lews: 

i ::: • 1 : • i i it I ad-., . . c . axes 

1 i : 1 t <. i a.i ! I, ads, > . c. . axes . ! in si- an. tin- loads due to input 

t i-vt hi st or ies ot external loads at spec i I iid masses, per the 
Sno-seri s cards. This is the r.ethod used t.. input aero- 
d’.namii loads into the model lor the sample case. 

;. •: Aerodynamic lift, c.g. axes. These data reflects any aerodynamic 

lilt calculated by means of inputting It on the 1100-series 
cards. This option is not used in the sample case. The aero¬ 
dynamic loads calculated using the 1100-series aero data are 
not included „ne load calculations in NEITOK. 1 here)ore, 
these loads will not get into the NAS IRAN model to determine 
tin’ proper balanced initial conditions. 

• ir.i •: Inertia loads, c.g. axes. The inertia loads are calculated in 

NT!TOR, as described in Section 2. 1.1.2 above, to achieve a 
balanced set ot loads for input to NASTRAN. 

1 i -■ •: Net loads, . .g. axes. I hose loads are the sum of all the above 

1 i. i -. in Hi t 1 ads arc t ;.e input to the NASTRAN static load 

bit i ",i. 

I im h : \ c i erat i ns, mass axes. 1 hose .rre the rigid body airplane 

m cvlciMl ions at time zero at each mass point. As explained in 
Section 2 . 1. 1 . ■*, these accelerations are ea I culated from the 
airplane c.g. acceleration, which in turn is calculated from 
all the loads except inertia relief loads. The mass point 
acce!erat ions in line A times the mass point inertia matrix 
violds the inertia reliel loads. Those acce1erations are output 
in mass axes to facilitate comparisons with KRASH85 time-history 
cMit j ut at time zero. The accelerations for the latter are also 
in mass axes. I he two sets of accelerations should be equal 
lor a properlv balanced set of initial conditions. 

All quantities shown in this output have the units of pounds or inch- 
pounds lor loads, and g’s or rad/sec 2 for accelerations. The sign convention 







is positive forward, right, and down, with right-hand moments about those 
axes. These data are presented basically as reference information; the user 
need not examine these data closely. The determination of whether or not the 
balanced initial conditions are acceptably accurate can be made based on data 
that are presented at the time zero printout from program KRASH85. (Sec- 
t i o n 2.3.3). 

2.3.2 MSCTRAN Output 

The output data from MSC/NASTRAN are discussed in this section. Fami¬ 
liarity with these output data is not necessary to successfully run program 
KRASH. If difficulties occur in achieving a balanced initial condition, 
then a review of this data may be necessary to help isolate the problem. 

2. 3.2.1 Executive Control Deck Echo 

This is shown in figure 2-11, and consists of only four lines. These 
are generated automatically by program KRASH1C. SOL 24 refers to Rigid Format 
Solution No. 24, which is the small deflection linear static solution. 

2.3.2.2 Case Control Deck Echo 

This is also shown in figure 2-11, and contains only 13 cards. These 
are generated automatically by program KRASHIC. The output control card 
DISPLACEMENT (PRINT,PUNCH) = ALL, used in conjunction with the appropriate 
.101, cards, causes the output displacement vector to be written as data set 
XYZ.NASOUT.DATA in the user's library. If the user wants to eliminate or 
revise some of the NASTRAN output data, then Format No. 1020 in subroutine 
NAST, in program KRASHIC, should be revised accordingly. 

2.3.2.3 Input Bulk Data Deck Echo 

The complete input bulk data deck is reproduced in this echo, shown as 
figure 2-12. All these cards are generated automatically by program KRASHIC, 
in subroutines NAST and NAST10. The CONM2 (mass property), PLOTEL (plot 
data) and EICR (eigenvalue) cards are not used in the static load solution 
employed (SOT. 24). KRASHIC converts a KRASH85 input data set into a NASTRAN 










MODEL PARAMETER' 


OOOOOoOOO* 


OOOOOOOOOO'HOOO- 


«ooooooooo<moo 


lOOOOOOf'JOCsJ 


irjM^i/lsONOJUi/i' 




OOQOOOOOOOOOO □ O O 

f-'IOOOOOOOOOlL/IUIO OOO 

K^O-OCOf^OOOOf'JfJ^O OOO 

-JOO 

NvrtOJfHMMyNK^HOH^JJOO 


ioooooooooooooooqooooo o o 

^COiflM^OOOOOOCOCOUIUlLnOOOOO oo 

iNl^ JITKlO4it0OO>JlNfJNOOOOO OO 

jLn^'tni/iN^c'jo^-^ocOLfiLno'O'MOoooo co co 

iNO'NrviSHjffli/lajocoajNNvjiOiDC-o-ooooo 


OOOOOOOOOOOOOOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOOOOOOOOOOOOOO 


OOOOOOOOOOOOOOOOOOOOOOOOOOOO 
(OJ^H-tKlCjMlfl^^JNOfMNOl^l^SNMOHOOOO 
^ooooMNjsoowi/ifflii'a NfgMiflmmwHcoiocoo 
sj O O CJ CJ O' « Jiff HMKNSHrtHMNlMHffNNNN 


I if ij sfl -O J) U1 ^ I 




OOOOOOOOOOOOOOQOOOOO OOOOQOO 

fs.CO -^0000 

tfOOOONN^NOfflNUKOff'ff'NNNIil l/l CO H © ® CO (O 

JOOMNff O' r-» r^- fN. 

^HHNS^^<gffi-.rH^ J)NH«l/ll/li/li)OJ)K>^N^JNN 


oaoooaoaooooooaooooooooooaoo 

00000 oo 000 «t s j® 0000000 c 0 c 0 r ^>00000 

(O^-r-o-ocorjcoooOJ-^oooooor^fON^r^^oooo 

CONCJOOMNunOMffHlCOtjfJOOOfflOfflJlff oooo 
ONNOOff'JJNlflttHaMfflHHlflJll/lKIMMNO®®©® 


o o z ^ ^ ^ o 

Z ►•ooo o 

co a 

** O' >.1 OOO o 

► ^ cj O '■* u"i t <-• 

«-< —• < ff J1 Jl -0 

(.1 •'i a m tj 9 Ji o 

O -X O O *— O' ^ <\l in 

a • a; m cd ►< o o o- 

® o W lu. 

O 2 wi *1 ^ o O — < 


INNSHHhKIN.O'O'O'C 


>OOOQQOQOOOOOOOQOOOOOOOOOO 
>ooooooooi/linooooooiTitninK> .ooooo 
iinin^ioinooc-do^oooooo^vj-^r-.j-oooo 
>-c-oo'cooino'r-<N.rjoxi^)Ooof'jfM^kno'oooo 

IOOff'<NN®Nff JONNJll/ Jiff ff ff NOOOOO 


OOOOOOOOOOOOOOOOOOOOOOOO oo 

ff^/i®Ji(0«inff xi^mkii/i»o£i/ijicoO'h(ocjn coco 

CO<s/vj<\jcOrj^O'if(sOO^CO'OcOCO~yvJ-c\j>j-rv<sj^<r «-< f-< 

J10HffffJlNOJffO®0 MJlJl O-CMHffNffl^ ^ >0 

HMMNiNSffH®JlfffgMHHlf|JlCOJN^lMOOOHrt 




O O O O O o O I 


OOOOOOOOOO^OOO 


■ SrrtNlO-ffHNffff'OOfJN 
• ►♦OOOOOOOOOf^OO 
(HNMHOOOOOOfJOfJ 


u V O -t -J 

~ - U. O 2 

X x-- 


X o u u o 

LU u u u u 

> X N X N 


IMffJl/)N®ff'OH(SJMffJl-CN®®ffNffOOH^fflOO 

N M H H 

INKlff®<fiS®fl/|HN»rt^Nff^HPJJff'NNN®®U\Ul 
HHrtHHHiHH H H H H H 

«csiK>^i/lv0f^c00 k O<-*<s/fn^mv0r>-c00‘O^fsifn'tf , m^)^® 

HHHHHHHHHHNCJNNMfJNNfJ 


FIGURE 2-10. MISCELLANEOUS CALCULATED DATA (SHEET 














ooooncoocioOoanooocioooQaa na 
n a i ji o a w h m o .♦ f j h c j ® o j ^ ^ <o ifl o m m 

N O « rt M O —*C Lfl J CO l/l O O <J N <J fj O T ifl ^ ffl O MM 

l/l K CJ tj O O C J M O >N M J CO « h w Ifl C- CJfflHNOOOO 


000000000000000000000000 OO 

N i f m f •» (j « N W <r J ,-j « 8 ^ O (0 1 ,* J O K1 O M M 

o >-* —> m o <~t o if) yf O trt o o rj fw (J ‘v o sf i/l «r CO O mm 

i/l ift n fj n O O O -J m 5) ^ m ^ (0 « fj W Ol ff cj (0 H n o o o o 


OOOOOOOOOOOOOOOOOOOOOOOOOOOO 

OOOOOOOQOOOOOOOOOOOOOOOOOOOO 



OQOOOQOOOOOOOOQOOOOOOOOO OO 

■jfjfjNHS^HHj'oi/iNisoffOiONino'cOMM vj- 

Q -0 CO © © iNlft.ftfO«aHS^HH*ffN^HKl COCO 

Wff'HHKlNf/ff'OlOJfflOJOHH/I^N^ff'KlrtHOOtftf 

rf/gJlt3M[flMl/lHHMMM^NNJJfOJ'>f«lMNOOWW 


OQoooooaoaoQQooooooooooa o Q 

J 'J CJ fJ H N ^ M H f o M N O O' CO <0 N l/l O' (0 K1 1*1 <r sf 

O^COa /)NlflJ.»OMff^S«HHjfN^HM COCO 

f j © - rt fj rj it o a) jtcooHHijNjaMHHoo^'j 


IIT'JMI'JPJOONM 


oaoooaoooaoooooooQOOQaoQ 
a ® <o co o /i t/tio i/i o j-^O o -r -t -a i o m i/i h ^ o 

J (/ '/0 M .J- O O' N K1 N M lA M M -O 0 N O N ^ 

OCX) £> CJ M o «M/lNNO(JO</)OON<0'OHUlff'( 

l/lnrtMHNHMN^NNHHUUnNNIfl^lflNlHO-C 


oooooooooooooooooaaoQooo 00 

COCO 

i''i/l.TJ(OCffl/l^l/lWN(OwnjO > C.OOI/ll/lNJ O' O' 

-J Cj rj X>McOOU1-OMO r '-''-'in>-lr-<OOC'JX>MO-CO©'OOX>'£» 


Mfl"iHtf^CJNlfl^lO{yJHO'OON' 


aooooaonaoaaciaoaooaoaoaaoaoo 

tHrtMiJjHUMJ J'JHi^tOtO'J'J^CO'OONNMM 
M 1/1 -t O CJ iOJOJl/lOOWNMN O^I/tJ’MONNMM 
© J ^JlfJM(0N h l^C0l0Nf/l/lff'M(0«Nff‘ff'OO 


I 1/1 U1 .£> -t cs» J) iO r 



OQQOOOOQOOOOQOaaOQOOOQOOOQOQ 
H* -< H M (0 f U H H -J CO ^ O O OCOtOvf JOl'Jl/lO/lXIHH 

M o O -♦ O M o ^ XI ►•■' CO a O O tJ U J tu fj O a O M M (0 (0 

l/i a .o o 9 co a N - to s o © y ifl .©■ .j- cj csj tfi o m ©■ <-i cm o o m «-h 


— N O N O H o 

Crt . 

—I O' O CM O CsJ O 


000000000000000000000000 oo 

i H iO '' f I/I 'J o O N N N CO lil i/l ff o H O N f W (0 o o 

O C C CC'-hO ■Ji/lfflffli/li/li/lHM.fi^O oo 

c- o © ^ «-• ji/ioo-H-*^oc\j.j > yoooM<rior-~ixioo.ox> 

f;HH\rtNHHSO © 

OOOOOOOOOMOOO*-H»^^OOOOOOOOOCMOO 

OOOOOOOOOOMOOO^.-iCJMMOOOOOOMOO'X 


tl II II II II II 

X >- M I- »- K 
4 < < a o a 
a o a 


II II II II II II 

g X>NI-M— 

Z 444000 


LLI M o U> O <0 O 


J in O ^ CO ff l/l H “1 # M .J ^ H M X ff rj M M l/l 1/1 


4 ll M li II II II 

cr X > N X > N 

UJ U. Li. Li. L H H 


















ALL OTHERS IN A/P AXES 



i 


o o o o o o 
o o o o o o 


o o o o o o 
o o o o o o 


o o o o o o 
o o o o o o 


O O O o O o 
O O O o O o 


o o o o o o 
o o o o o o 


o o o o o o 
o o o o o o 


O O O O o o 
o o o o o o 


o o o o o o 
o o o o o o 


Q □ Q 

a co <t 
m in O' 

S N K1 
O' O' >t 

o o o ^ <t f" 


O o Q 
CO ® •0- 

r-« «-< O' 
K1 N"l 


O Q O 
O' O' O' 

r-< O' 
O' O' ro 
NN^ 
O O O « vO N 


ooo 

rv. 

k 0- 
r-'- ro 
O' O' sf 
O O O 0- O' N. 


O O O' 

10 in m 
ooo- 
OOONNN 


ooo 

1*1(0 0 
S N S' 
M r* r*l 
O' O' ^ 
OOO^^N 


O O O ( 


ooo 

O O st 
^ O' 
O' O 
1 M ^ 


OOOrtrIM 


O O O -4 <-* K> 


OOONNW 


O O O -0 O' M OOO^ ^ M 


OOOUUAK1 


o o O *0 0 r 


o o o o o o 
O O O o o o 


O O O O o o 
o o o o o o 


o o o o o o 
o o o o o o 


O O O o o o 
o © o o o o 


o o o o o o 
o o o o o o 


o o o o o o 
o o o o o o 


o o o o o o 
o o o o o o 


o o o o o o 
o o O O o o 


o o 
a a 

~0 CO 
Z'-. O' 

•o o' 

CO O' 


ooo 
ooo 
in f" -o 
in vT co 

O <f <T 


o o a 

•S O' >* 
MON 
in o k 
CO O' x* 


o a 
CO O 

in o 


I 

ooo 

-* * O' 
O' CJ -o 

0 in 

Csl O 0 


o a 
o o 

ss 

O -H 


ooo 
m o' m 

CNJ 0 Csj 
(*1 O N 
sj- n o 
> *4 o # 


o o ooo 


ui o o ifl o to o n o -j h k in co o O' ki in 

H 9- O ^ H N O' 0 O <\* CO <Si H H Q M H (\J H ^ o M (O N 


i a ana 
» O H O co 

i o o o- in 

i *-« 0- vj- m 

(O' o o co 

' O' O 0 N O 


o o 

O O' 
K! O' 

o' in 


sO N to 

in O' m 

W r* *1 CO O' 
HMOtO-tHT 


a o 

O' iy 

co O' 


o o o 

O' M if 

m h co 

K1 vj- <f 

M U1 S 43 (0 

0- <0 O co O' co 

O' N. O CQ *4 


CM O .H CM NHOHIflN 


O’ N O H 4) H 



FIGURE 2-10. MISCELLANEOUS CALCULATED DATA (SHEET 







































o 

O 

in 







o 

O 





rH 

rH 

UO 









NO 
















o 

O 

O 




o 

O 

o 



©oo 




o 

o 

O 




o 

o 

o 




o 

o 

O 



o 
















9 

ID 

o 




n 

o 

a 



© o a 




a 

a 

o 




© 

© 

Q 





a 

a 



o 


















f- 




o 

o 









3 





rH 







3 




o 
















in 

in 

rH 




m 

uo 

® 








rH 

o 




3 

3 

CM 





NO 

3 





















3 




m m 




O- O' M3 




M3 

SO © 




3 

3 


























o 

o 

o 




© 

© 

O' 







m 

uo 

© 




in 

UO 

rH 





r-'. 




3 

o 

o 

O 

o 

o 

O 

O 

o 

o 

9 

o 

o 

o 

O 

o 

CM 

CM 

m 

o 

O 

o 

3 

3 

© 



3 3 NO 

o 

o 

o 

NO 

NO 

M3 

o 

O 

o 

CM 

CM 


O 

o 

O 

3 

3 

© 

o o 

O 


o 

o 

o 

o 

o 

O 

o 

o 

o 

o 

o 

o 

d 

o 

o 

3 

1 

3 

CM 

o 

o 

o 

O' 

O' 

1 

■3- 

o o 

o uo in © 

o 

o 

o 

>3 

1 

3 

O' 

o 

O 

© 

3 

1 

3 

3 

o 

o 

o 

3 

3 

CM 

1 

o o 

o 

3 











CM 

NO 




CM 

CM 

NO 




CM 

CM 

NO 



CM CM NO 




rH 


NO 




rH 

rH 

NO 




rH 

rH 

NO 



rH 




o 

o 

o 




o 

o 

o 




o 

O 

o 




o 

O 

o 



© O O 




o 

O 

o 




O 

o 





O 

o 

O 



o 











a 

o 





o 

a 




a 

o 

a 



© a a 




o 

a 

a 




o 

© 

o 




© 

n 

a 



o 

















NO 

M3 




NO 

NO 

CM 



© o o 





3 










3 











3 




I s - 

r*> 

O' 




r"» 

N- 

CO 




NO 

NO 

M3 



rH rH O 




rH 


M3 




3 

3 

NO 





in 

uo 














CM 

NO 






NO 




CM 

CM 

NO 



rH rH NO 






CM 




m 






CM 





NO 






















O' 




N N ^ 

















CM 

CM 



© 

o 

o 

o 

in 

m 

r-~ 

o 

o 

o 

o 

O 

K 

o 

o 

o 

rH 



o 

o 

o 

uo in r- 

o o 

o 

O' O' r* 

o 

o 

o 

3 

■o 

rs. 

o 

o 

o 

NO 

NO 


o 

o 

o 

3 

3 

Cs. 

o o 

o 

rH 

o 

o 

o 



NO 

a 

o 

o 

3 

3 NO 

1 

o 

o 

o 

in in no 

O O O 3 3 M 

1 

o o 

ONHM 

1 

o 

o 

o 

O' 

O' 

NO 

o 

o 

o 

NO 

NO 

NO 

o 

© 

o 

3 

3 

NO 

1 

d d 

© 

3 






















rH 


3 







o 

o uo 




o 

O 

in 





CM 




CM 
















D 

o 

o 




O 

O 

O 



© o b 




o 

o 

o 




o 

o 

o 




O 

O 

o 



© 

















o 

o 




a 

a 

© 



© a © 




a 

a 





o 

© 

© 





© 

a 



O 































© m m3 





rH 

© 





© 

rH 



NO 






















r- 




N N N 




NO 


N. 




NO 

NO 

© 
























N» 





fN. 









in 

m 

CM 




NO 

NO 

NO 









CM 























•C'Ofl' 




r>. 

N- © 




rH 

rH 

3 





rH 

NO 




o 

o 

o 

o 

o 

O 

o 

o 

o 

o 

O 

o 

o 

o 

o 

■3- 

3 

o 

o 

o 

o 

CM 

CM 

>3- 

o o 

O Cm CM CM 

o 

o 

O NO 

NO 


© © © 3 

3 

© 

o 

o 

O 3 3 O 

o o 

o 

CM 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

rH 

H 

CM 

1 

o 

o 

o 

CM 

CM 

NO 

( 

O o O rH rH 3 

1 

o 

o 

o 

© © rH 

1 

o 

o 

o 


rH 

rH 

o 

o 

O 

CM 

CM 

CM 

f 

o o 

o 

CM 










CM 

3 

CM 




CM 


CM 




CM 3 

CM 

NO -3 


<M >3 CM 



rH 


CM 

NO 

NO 


rH 

NO 

CM 

NO 



CM 

NO 

CM 

NO CM 


CM 

o 

o 


o 

o 

o 

o 

o 


o 

o 

o 

o 

o 


O 

o 

O 

o 

o 


O 

o 

O 

O O 


© O O 

o 

o 


O 

O 

O 

o 

o 


O 

o 


o 

o 


a 

O 

O 

o o 


O 

















O 

o 

a 


a 

a 

o 

O © 



o 

a 


a 

o 


a 

o 


o 

Q 

Q 

© 




o 

© 

a a 


a 











NO 

CM 




rH 




CM 


NO 

O' 


O 3 







m 


f'- 

NO 


3 

O 

3 




NO 

rH 

CM 3 




a 




NO 

CM 




no 

in 




cm in m 


in 


CM 

o- 


Nv r*. 



*3 

CM 


© 

NO 


o 



3 

3 

CM 

rH 






CM CM 


3 

,—1 











-o 

a 





CM 




NO 


m © 



a? 

rH 


M3 

NO 


CM 



NO 



3 

3 







NO 


a- 









in 

CM 





3 


o 

rH 


© 

NO © 

© NO 


NO CM 3 

in 

© 


<3 

rH 

rH 


NO 


CM 

CM 


3 

3 


3 

rH 

3 

UO N- 


© 

n* 

3 

o 

o 


tt) 

H 


o 

o 

no 

n- 

sO 

in 

o 

rH 

O' 

r-C 

© 

CO 

o 

rH 

© 


WHO 

N Ml H 



o 

O' 

3 

rH 

uo 

CM 

o 

CM 

N- 

O 

NO 

3 

O 

rH 

o 

rH 

rH UO O 

o 

U0 

3 

o 

v 

in 


'O 

H 

o 

v 

* g 

rH 

cr 

rH 

o 

CM 

1 

in 

i 

CM 


CM 

1 

o 

CM 

rH 

1 

CM 

in cm o 

rH rH CM 
l 1 

NO rH 

1 

o r" 

i 

rH 

1 

CM 

rH 

3 

1 

o 

NO 

1 

3 eu 
i 

in 

CM 

o 

rH in 

1 

CM 

CM 

1 

o 

rH 

1 

















CM 



CM 



CM 


CM 


CM 3 


CM 





CM 



CM 3 






rH 
















o 



O 

o 


o 



o 

o 

o 


O O 


o 



o 

o 


O 



o 

o 


O 



o 

o 

o 



















a 

a 


a 



a 

o 

2 


a o 


o 



o 

Q 


o 



© 

© 





o 

a 























© 



o 

m 



O' o 


NO 



NO 

rH 


CO 









NO 


CM 



























CM 


CM © 












NO 





© cm 

rH 



















CM 



NO 



NO 

rH 

© 




CM 



CM 



3 



3 3 


r- 




m 




















NO 



© 



© 

t 



O' NO 


r*. 






3 



3 

rH 





in 





o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

© 

o 

uo 

o 

3 

o 

O 

3 


O © N. 3 



o 

o 


3 

o 

o 

o 

O 

O 


o 

o 

o 

o 

o 

3 

O 3 

o 


o 

o 

o 

o 

o 

© 

o 

o 

© 

o 

o 

o 

o 

H 

o 

© 

H 


o 

NO 

o 

o 

NO 

CM 

O >3 

o d >3 <3 

d 

>3 

o 

o 

3 

UO 

o 

rH 

o 

o 

rH 

NO 

o 

CM 

1 

o 

o 

CM © 

1 1 

O rH 

1 

o 

o 





CJ 

no 

CM 

CM 




NO 

CM 



CM 


CM 

CM 

CM 


CM 

CM 

NO 

rH CM 



rH 

CM 


rH 

rH 

NO 

rH 

rH 




NO 





rH 

CM 




© 

o 


o 

o 

o 

O 

o 


o 

o 

o 

O 

o 


© 

o 

© 

o 

o 


o 

o 

o 

o o 


© o o 

o 

O 


O 

O 

o 

o 

O 


o 

O 

o 

o 

o 


o 

O 

o 

o o 


© 


o 


O 

a 

o 

o 

o 


o 

a 

a 

o 




o 

a 

a 

o 


a 

a 

a 

o © 




o 


© 

O 


© 



© 

© 

a 

© 




© 

a 



o 

c 

*o 




C J 

CM 



o 

o 

m 








O' 




O' 

N- O 


n m n 

CM 

CM 


O 

O' 


© O' 



CM 

CM 

CM 






3 3 




o 


NO 


cm 

in 



NO 

3 

CM 




NO 

in 

UO 

NO 

O' 



m 

>3 

3 in 


O' K NO 


O' 


o 

© 

N- 

rH 

m 


o 

NO 

NO 


3 



c- 

o 

© CM 



& 





cj 


NO 


CM 

■o 


r>- 



N~ 

CM 

o 

3 

M3 




o 




O' 

CM 


3 

M3 

rH 

rH 



3 


© 

CM 



3 

NO 

rH 



3 


o 


in 

cm 

3 




NO 


NO 




rH 

H 

uo 

in 

C- 



NO 

NO 

CM O' 


n o 

uo 

O' 


NO 

© 

M3 

3 

o 


3 


f-r 

CM 



3 

© 3 



3 

0 

■o 

o 

o 

cm 

3 

o 

•-* 

o 

© 

3 

NO 

3 

Hi 

o 

rH 

NO 

■-* 

N> 

© 

o 

o 


O' 

CM rH 


O' 3 NO 

in 

CM 

o 



3 

3 

3 

o 

CM 

NO 


3 3 

o 

3 

3 3 

3 rH 

o 


O' 

Cm 

o 

CJ 

-i 

NO 

rH 

rH 

o 

m 

m 

O' 

rH 

NO 

o 

H 

CM 

»h 

rH 

rH 

o 

rH 

rH 

3 

O' CM 

o 

NO rH S. 

3 

rH 

o 

rH « 

3 

CM 

m 

o 

3 

NO 

CM 

3 d 

o 

r* 

CM 

rH 

(0IAO3 


2-129 













956180 01 -1.645120 01 4.784140 03 2.29263D 02 9.18382D 01 9.968400 03 






CM 

CM 

10 













o 




o 

o 

O 













o 




n 

a 

o 













PA 




CO 

CO 

S© 













to 




>3- 

•o 

CO 













<r 




to 

10 

*3- 













CO 




<0 

CO 

o 













PA 

O 

O 

o 

s© 

s© 

10 

O 

O 

o 

o 

O 

O 

O 

o 

o 

o 

o 

O 

cm 

i 

O 

O 

o 

rH 

1 

rH 

1 

CM 

O 

O 

o 

o 

o 

o 

O 

o 

o 

o 

o 

O 

PA 




o 

O 

PA 




o 

o 

PA 




o 

o 

PA 

o 




o 

O 

o 




o 

o 

O 




o 

o 

O 

a 




o 

o 

a 




a 

a 

O 




a 

a 

© 

CO 





P-. 

v© 




CO 

CO 

*3- 





n3- 

<r 





PA 

PA 

CO 




rH 

rH 

O' 




O' 

O' 

O' 

O' 




O 

O 

PA 




PA 

PA 

PA 




PA 

PA 

PA 

CM 




O' 

O' 





CM 

CM 

<r 




<r 

vt 

'i- 

fv 

O 

O 

o 

O' 

O' 

p'- 

o 

o 

o 

rH 

rH 

r^. 

o 

o 

o 

rv. 

r>. 

h* 

PA 

1 

O 

o 

O 10 

10 

PA 

i 

o 

o 

o 

rH 

rH 

PA 

i 

o 

o 

o 

PA 

PA 

PA 

1 

>3* 




CM 

CM 

V© 













o 




o 

o 

o 













a 




o 

o 

a 













rH 




rH 

rH 

0) 













CM 




O' 

O' 

i0 













fA 




rH 

rH CO 













rH 




CM 

CM 

O' 













CM 

O 

o 

O 

o 

o 

o 

o 

o 

O 

o 

o 

o 

o 

o 

o 

O 

1 CM 

1 

O 

o 

o 

CM 

CM 

CM 

o 

o 

o 

o 

O 

o 

o 

o 

© 

o 

o 

O 

CM 

PA 



rH 

PA 

CM 

CM 



o 

CM 

CM 

CM 



rH 

CM 

CM 

O 

O 



o 

o 

o 

O 



o 

O 

o 

o 



O 

o 

O 

Q 

o 



a 

a 

a 

a 



a 

a 

o 

a 



a 

o 

a 

CM 

rH 



o 

s© 

O' 

>3- 



o 

i0 

U1 

CO 




PA 

rH 

1 rH 

r*. 



r-* 

CM 


N© 



PA 

rH 

o 




>3- 

rH 

>3- 

rH 

rH 



>3- 

nO 

V© 

O' 



CO 

CM 

rH 

CO 



PA 

O' 

PA 

CO 

CM 



'O 

CO 

>3 

P-. 




CM 

CM 

O' 



O' 

rH 

O 

o 

O' 

o 

o 

10 

CO 

CO 

PA 

o 

o 

K 

PA -O’ 

O' 

o 

o 

r>» n- 

CO 

CM 

rH 

o 

o 

PA 

rH 

rH 

CM 

o 

o 

10 

CM 

CM 

O' 

o 

o 

CM 

O' 

CM 


o o o o o o 
oooooo 


o o o o o o 


o o o o o o 
o o o o o o 


O O O O O CM 
O O O O O rH 


Q D o a 

CM N O vO 

rv Lf» CM CM 

PA O' M 

10 rv k <nj 

pa o o O' pa o 


o o o o o o 
o o o o o o 


a a □ a 

O' & m <r 

<0 O' o co 

eg O' h- PA 

10 O 10 o 

H O O W O vO 


oooooo oooooo 

oooooo oooooo 


o o o a 

rH N O' O' 

O' S© 10 o 

4* M> f" 10 

vj- o rH O' 

S O O VO M 


M O O H H H V# o O >0 W N rH O O CM sO CM 


oooooo 

OOOOOO 


FIGURE 2-10. MISCELLANEOUS CALCULATED DATA (SHEET 5 OF 5) 















AUGUST 3, 1984 MSC/HASTRAN 8/ 1/83 PAGE 



FIGURE 2-11. MSC/NASTRAN EXECUTIVE AND CASE CONTROL DECKS (SHEET 1 OF 2) 






FIGURE 2-11. MSC/NASTRAN EXECUTIVE AND CASE CONTROL DECKS (SHEET 2 OF 2) 









KRASH MASS POINTS CONVERTED TO NASTRAN GRID CARDS 


o o o o o 


O-OO'CO'OOvOO-C^vOO^OOvOO'OOvOOOOoOOOOOOOOOOOOO'OO'OOO 

O O O O O O O 0 4 0 4 0 
r'*f\J<7-CM0'0JN1<NJO4OCSJlfle\J^<MOC\lOCNJC\J O o O O lf| O O O N U1 N s 
iriirir>- s 3-or^oinMa'oc'fv^ooncooo'csjr^ 
cooMtoocJoa>OvOMcjMocOKif^vfr^o^csj 
0>-<4r-IO>-40'eOOMMK>COtf'04 0'4cOr0 04 

rHU10r-40K>ir|'OrO#H(SJ«0>H-<fKrHKCMs09'(T 
C N f-t(M-^OOCSJO'MfSJ^)r-10 ' r HsJ'0 '>yK>ChMO 

xpr^9-9'ooep<Hvo«Hr^cOO'K l )or^oflO'00(M 


>^-»noor^^rrtCNj<f f HOi0 
lONOlflOOO-OONO-tOlflOlflOlflO^ONOtfl 
ONOtOONONOUlOftiOMOMONO^OOOMt 
• fO • 4 • 1/1 • »<0 -O' • O • >-« • <\J • fO .4 • l 

CO O tSJ 4 COH^HCOHlflH'firlitr 


IMONOI 

» • (0 • O' 

I ^ H H H > 


O CD CD CD CD • CD 

O O o o n r» 


ooooooooooooOOOOOOOOO 

OOOO O o O O O O O o o o o o o o o o o 

* , -«*C>j*r0*4*tf1*N0*r^* c 0*0'*O*rH*C\l*K1*4*in*s0*r^*C0*0'*O*r-t 

O Q Q O Q o O O O QHDHQhQHDHQHQHQHDHOHQNQN 

tfKKffttKaKCCIiaKKKKftaKaKQ: 

.«/V«Vv>tD*CD*CD*CD*tD*CD*CD#CD*CD*CD*CD*CD*CD*CD*CD*CD#CD*CD*CD*CD*C!>*< 


FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 








>00000000000000000 


«e -i in o 

CQ f-1 O' >}■ r* 

3 <0 O' -< -* 


Z HHHHNNtrtWrtHHHH-lfgNHHNNHHHH 

»H oooooooooooooooooooooooo 


ooooooooooooooooooooot 

ooooooooooooooooooooo< 


hhh^nnmmhhhhhhnnhhnnh. 

ooooooooooooooooooooo< 


► v></>aaa:a.a:a.G:ci.a:a.Q:Q.a:cia:a.a:a.tta.o:c 


FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 2 OF 11) 











INITIAL CONDITION STATIC SOLUTION 


ro • eg ■ <\i • .# • r- • ifl • W • • *o -O' • • <0 • so • o ■ ® 

mo^o>3 , o«oor«.orooooKocooo'oioo^o^OMoo'0<ro^( 

ors.<DO'r-«(NiO'co^a s oovorv.<ro'Ki 


h'OOOO'OCT'O 


ooeoeouiooo^ooo 

00>OUSfOOOOO'ff'(OK> 


oo-*^tOooocoo-L^.X)-«coor'~L/l>Of-«iflin 

oo®M^oooow>eoN<^iAff'Ui'3-»H 

CM CM 

iH rH rH 

o ■ o • o ■ o • o • o ■ o ■ o • o • o • o • o • o • o • o -o ■ o • o • o • o • o • 
oooooooooooooooooooooooooooooooooooooooooo 

>-4CgKt<^(n>Ah>®0'Oi-i«Mt04’Ln<X)N.®0'Or-t 

HHHHHHf-CMHHNPJ 


f— 

UJ 

• o -o • o • o • o • o - a -o -o • o • o ■ r < 

3OlOOOO(MOC0OrHOfMOCMO»-iO<MOOOO £ < 

[)HHNHMS>tOJ|NJUlNH(OM>'HOOHO >* * 

JHNHIflHMH J'HvOHsO HNHMH N I/I N U) tfl » 

- ui cr r» >»■ r-c >o ki 

3 «H X 

to 

jooooooopoooS 

300000000000* 

jr-i<MKi«finser^®a'0«H 

CNHMHNHNHNrHNHNHNHNHNNNN 

■ShilrZKih^hil-Eh-^hll-iKil- 

coxoxorzoxoxoxozoxoxoxox 

•CJ+U + O + O + U + U+ U + O + O + U + U+ i'VVV** 


2-135 


FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 3 OF 11) 












IT.SAMPLE. OA TA AUGUST 5, 1A84 HSC/NAST RAN 8/ 1/8J PAGE 

21 MAGG/28 BEAM TEST CASE ONLY-NOT VALID AIRPLANE MODEL 


a 


CSJ O' M-t CT- 


o o o 
o o o 
o o o 


CD U 
D O 

o o 
o o 


0 3 0 
© O O 

O o o 

fj CM CM 


CD O 

o o 
o o 
o o 


o o o 
o o o 
o o o 

TO m TO 


CD O 

o o 
o o 
o o 

TO NT 


o o o 
o o o 
o o o 
•o- 


CD U 
o o 
o o 
o o 


IT ►- 3 
o o o 
o o o 
o o o 

ui i/i in 


: S 


-0 0-0 
-* O sT 
NON 


I 


o o 
o o 
o o 


© o o 
o o o 

O O • 
MH o O 

o o 
o o 
o © 
o o 
- o 
o o 
c 
IA 
O' 

>r 


o o 
o o 
o o 

CM o 


o o o 
o o o 
o © • 

CM o o 

o o 
© o 
o o 
o o 
• o 
o o 


o o 
o o 
o o 
m o 


o o o 
o o o 
o o • 
moo 
o o 
o o 
o o 
o o 


o o 
o o 
o o 

S* O 


o o © 
o o o 
o o • 
>0 0 0 
o o 
o o 
o o 
o o 
• o 
o o 


o o 
o © 
o © 


o o o 
o o o 
o o o 

-« O 


o o o 
o o o 
o o o 

NON 


o o o 
o o o 
o o o 
mom 


© o o 
o o o 
o o o 
o o / 


SS3 ; 

o o O ( 
o o o * < 

: h h ri a . 


05 U 
o o 
o o 
© o 


10 b- D < 05 O 

o o o o o o 

o o o o o o 

*000*0*00 
QfNNNONHNN 


» o * * * a. * x: * * «* u * * * a. 


to t- 3 < tO U 

o o o o o o 

o o o O © O 

*000*0*00 
ttmmmcrmMHmm 
< < >- 

CO (0 < 

ko***a*x:**- 


m b- 3 < to o 

o o o o o o 

o o o o © o 

* 000 * 0*00 


WI-3 
o o o 
o © o 
* o o o 
oc in m m 




FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 4 OF 11) 











PBAR* 5000 5000 29.50000000 25250.00000000* 5000A 

* 5000A 58000.00000000 81250.00000000 

MAT1* 5000 10000000.00 5800000.00 * 5000B 


o o o o 

o o o o 

o o • o 

co o o 

o o o 

o o o 

o o o 

o o <$■ 

• O Kl 

o o 

in 


V- 3 < CD U 4 $ O 

ooo o oo ooo o oo 

ooo o oo ooo o oo 

* 000 * 0*00 * 000 * 0*00 
ttNNNKNHNN 
4 < l- < < V- 

CD <0 4 CO CO < 

• u * **o.*r**wo***Q. * r * * c 


OOO O OO OOO O OO 

ooo O OO ooo o oo 

* 000 * 0*00 * 000 * 0*00 

QCC0OC0QC<0<H<0C0 aO'O-O'Q'ff'HO'O' 

4 4 ►- 4 4 J- 

CO CO < (0 to < 

u***a.*r****u***a.*r**w 


CO K 3 
ooo 
ooo 
* o o o 

QC O O O 




FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 5 OF 11) 





















CBAR* 26000 26000 1502 1602 * 26000S 

* 26000S 0.750502420322 0.682910106752 0.0 * 26000T 


o © co o o m © o 
ooo - o o o • o o o • 

■ H ^ N • N H M 


K 3 < © U 

© o o o o 

o o o o o 

©0*0*00 
~o a. o <-* -o -J3 
C\J CM < OX K CM CM 
© < 

* * Q. * Z * * < 


© 2 < © a 

o o o o o o 

ooo o o o 

* 000 * 0*00 

< NN ( M < CJl-NN 


(/) h- D < © O 

OOO O O O 

OOO o o o 

* 000 * 0*00 
cx©©©a:©'-<©© 

© © < 

►u***a*z**« 


S z z .z z z 

* O 0*0 0*0 

W0K0*0»-0*0K0 
UiOZOUJOZOuJOZO 
UHLUHUNlUNUMliJM 

s s g s g i 

► u.*£*u.*Z*u.*Z* 




FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 9 OF 11) 






INITIAL CONDITION STATIC SOLUTION 


O O CO O O CM © O NO O OOO 0 0-0 O CM O O’-<O^-<OC0OOO<M( 
■OOO -OOO OOO - OOO -OOO - OOO - OOO ■ O CM o • O M O • < 

• <r ■ <r <r w • tn tn 'O • -o Cf N > n n co •ffl-off' • cr co o ■ o n h • h co n • cm o- i 

O CM O M O CM O NO o M O NrtOHO 


r-i r -1 vjD 

) H O (O O N 

> • O CM O • 

^ ^ >r • >y >o 

) tt ' H S H ff 1 

«H l/l 


O to o S O N 

oo-o • o m 

tfl • M SO • 

H J) H M H O 


‘ ISJ O H ■ N O H 


r. z 
o*o 
*01-0 


r z t: z 

0*0 0*0 


z ^ z z z z z z z 

0*0 0*0 0*0 0*0 0*0 0*0 0*0 0*0 
0!-0*0»-0»0h-0*0t-0*0h-0*0t-0*0>-0*0k-0 

ozouiozoujozoaiozoarozouiozouiozoutozo 

<ruj-iuiniuiiitj'fiut'flu>'ujN(jtoiuou^ujff'uoiiJOUHujH 

z a: r a Z a z a z a z QtHiHctHZH 

rtnnrinnnnnnnnortn 


azcczcezazacza 
ooooooooooo 
• u.*z*ii-*r*u.*z*u.*r*u.*z*u.* 


z z 
0*0 
* o o 
ut o Z o 

U CM U! CM 
a H I H 

o o 

u. * £ * 


z z 
0*0 
* o ►- o 
UJ o z o 
u M tU M 


0*0 
* o >- o 
u> o z o 
u w -f 

CC H Z H 

° 2 

U. * Z * 


z z z 

0*0 5 

* O H- o * o 

U* O z O uj O 

o 1/1 IU I/I u <o 

a ^ Z r-« o: h 

o 6 o 

u. * Z * u. * 


• -V - * N *- . • * vVl'- L 


FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 10 OF 11) 















input data set, using the following, NASTRAN t - ) ■ -un-n t . 

• GRID points 

• CBAR bar element s (with I'BAK p.r.ip.-rt ies .<nd MA'i i materials) 

• RBAR rigid bar elements 

• FORCE and MOMENT cards fur applied loads 

Although only a linear model is I o risk’d, the following KRASII85 nonl ineari ties 
are included in the NASTRAN model: 

• Oleo beam elements (initial position must be fully extended) 

• llnsymmet r ical beam elements 

A nonlinear KRASH model is acceptable (KR tables), as Long as the initial 
conditions are in the linear region. The executive and case control decks, 
plus the bulk data deck, are all contained in date set XY7.. NASBI.K. DATA, which 
is generated automatically bv program KRASfl 1C. 

2 . 3. 2.4 Sorted Bulk Data Deck lie.ho 

This is just an alphabet i cal l.v sorted version of the bulk data deck 
shown in figure 2-12. The last page of this is shown in figure 2-13. The 
KPS I LON value shown is a measure of the error in the static solution. Any 
value less than E-7 is acceptable. Generally speaking, any significant 
error in the model will result in a very large value for EPSILON (0.1) or 
will cause the NASTRAN solution to terminate with an error message. 

2.3.2. r > Displacement Vector 

Figure 2-14 shows a sample of the displacement vector output. These 
daLa represent the desired solution. The three translations and rotations 
at each grid point in the NASTRAN model are shown. The sign convention for 
these displacements/rot ations within the NASTRAN model is as follows: 











T3 Positive deflection up, inches 

R1 Positive rotation left wing down, radians 

R2 Positive rotation nose up, radians 

R3 Positive rotation nose left, radians 

All deflections/rotations are measured in an axis system that is parallel to 
the c.g. coordinate system defined in Section 2.2. 

The grid point identifications within NASTRAN are related to the KRASH85 
mass and mode points as follows: 

Node point (I, M) becomes grid point (100*1 + M) e.g. Node point 11, 2 
becomes grid point 1102. Hass point 5 becomes grid point 500. 

In figure 2-14, grid points 1199, 1498 and 1499 do not correspond to any node 
points in the KRAS1I model. In the KRASH model there are two transverse 
beams attached to mass 15 and one to mass 12; i.e., beams which connect 
laterally between mass 15 (and 12) and a phantom (unnumbered) point at the 
same location on the opposite side of the airplane. For these lateral beams, 
a grid point on the airplane plane of symmetry (y * 0) is established in the 
NASTRAN model in order to constrain the deflections of lateral beams. Grid 
points 1199, 1498, and 1499 are all such constrained grid points. 

The deflections and rotations for grid point 500 (mass point 5) are all 
zero. This is because mass point 5 was specified by the user to be the con¬ 
straint point in the model. This was done by inputting NBAL = 5 on card 60 
of the input format (figure 2-3). This can be seen on card sequence num¬ 
ber 90 in the input data echo for this sample case (figure 2-8). 

2.3.2.6 Load Vector 

Figure 2-15 shows the vector of applied loads for the sample case. 

These are the NASTRAN input net loads generated by KRASHIC in subroutine 
NETFOR. The sign convention for these loads is the same as for the displace¬ 
ments, as defined in the previous section. The loads shown for grid points 
201, 1102, 1498 and 1502 are the result of using F0RCE1 type cards in the 









•C O O X> •£> C O 0 -0 •£> -0 .0 >0 

yj f J J <f T J J -J 'J 

M W M M M M M M M M TO K» 

N N N N N W W fJ CJ M N N N 


^ >0 >C 4 >O'O'O'C 0-0^0-0 0 
uufiifluiuunuiinuunuiuiui 
>T <r 

»✓> m '-1 ro rO M ^ r/» fO ^ f -1 
rg c>j '•j (Ni c-j c\j «m f>J cj c\j r>i <\j tsj 


I^^OOOOOOOOOOrHrHOOOOOOOOOOO 

■ OOHrtMNifinUl'O 0 NOOHHHtgJI 0 Ul 0 0 NH 

IftJlflHHHHrtHHHHHNUlHHHHrtrlrtHHHN 


» oooooooooo oooooooooo 

(OOOOOOOOOOOOOOOOOOOOOOOOO 
lOOHHHM^inUlil-ONOOHHHM^l/'Ul -O -0^0 
INlflrtHrtHr-IHHHHHNLnHHHHHHrtrtrtHN 


><-«rHOOOOOOOOOO*-H*HOOOOOOOOOOO 

INl/lHHHHHHHHHHNIflHHHHrirtHHHHiJ 


1 III 111 Lli Ll) 111 111 111 III Li-I Li-1 Li.i LU «X 

it-Kk-f-K-t-i-H-k-^-^-k-araaaaaciaraaaoicro 

iOOOOOOOOOOOO«*«t«X«x«X<t«X<t<t«*«*<<*Q 

icacocacQcflocacococDcacDtfiz 

aaa&Q.aa.aa.aaQ.Q:o:B:c0Q:Q:aaQ:Q:Q:Kixuj 


U- O <M 

-J r». 

i/I H N 

K> V) o 

o a «H 

k> ui o 


i i i i i i i i i i i i • • i i i * t 
QZ^MW ?lfl ON(09'OHPjMsnnON®ff' 

a Di/tiftini/iifltfiflt/iiA o o ■*> o -c -o -o -o o 

«* O 

LJ 


M <f ID 

o -C -D 0 -o --0 




* - « * <" 


FIGURE 2-13. MSC/NASTRAN SORTED BULK DATA DECK 








r- 


7 * «, k u 1 n i ji it 




o- 

M 


CD 

< 

a 


co 

\ 


N. 

CO 


Z 

< 

01 

►— 

</) 

< 

z 

\ 

u 

£ 


O' 

<0 

O' 


h* ’-\ 

>Oai^. 














O' >3* >t O' 

** MM 

NI 



NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI O' 
















o 

o 

o 

O 

o o o o 

O 



O 

O 

O 

O 

O 

O 

o 

O 

o 
















ui 

UJ 

UI UJ 

UJ UI IU UJ 

UI 



UI 

UI 

UI 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ 
















in m m in 

O' O' ^ CM 

CM 



o 

o 

o 

NO 

o 

NO 

rH 

rH UI 
















NI 

NI 

NI 

NI 

CO CO NI O' 

O' 



CO co 

CO 

K 

p"- 

r- 

h* 


vO 
















m 

in m m 

N Mfl O 

o 



rH 

rH 

rH 

CM 

CM 

CM 

nO 

NO 

CM 
















in m m in 

m m h so 

M» 



m in m ni ni 

NI 

CM 

cm m 
















o 

o 

O 

O 

CM CM co 0 s 

O' 



CM 

CM 

CM 

s. 


rv 

m 

m 

O 




o 

O 

O 

O 

O 

o 

o 

o 

O 

o 

o 

O 

M> 

sO 

vO 

sO 

O NI NI s© CM 

CM 

o o 

O' 

O' 

O' 

m m m O' 

O' 

nO 

o 

O 

O 

o 

o 

o 

O 

o 

o 

o 

o 

O 

o 

o 

o in 

m 

i 

m m 

i i 

o O' O' h in 
iiii 

m 

1 

o 

o 

o- 

i 

O' 

1 

0* 

H 

1 

rH 

rH 

1 

in 

i 

m 

i 

ui 

1 

o 

o 

O 

ni 

NI 

NI 

NI 

NI 



NI 

NI 

NI 

NI 

ni 

NI 

NI 

NI 

NI 

NI NI NI CM NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

o 

O 

O 

O 

O 



o 

O 

O 

o 

o 

O 

O 

o 

© 

O o o O O 

o 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

© 

UJ 

LU 

UI 

UJ 

UJ 



UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

UI 

UI 

UI UJ UJ UJ UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

in 

rH 

pH 

© 

o 



in 

M> 

M> 

CM 

O' 

NI 

NI 

NI 

NI 

O' O' O' H CO 

CO 



i-H 

rH 

rH 

P^ 

N- 

n- 

CO 

<0 

O' 

rH 

nO 

rH 

M3 

o 

O 

m 

pH 



CM 

m 

o 

O 

M 

NI 

NI 

NI 

NI 

m m m ni o' 

O' 

in 

m 

m 

m 

m 

sO 

M> 

M> 

o 

o 

NO 

>X> 

nO 

O 

CM 

O' 

O' 

o 

CM 




|H 

in 

CM 

O' 

O' 

O' 

O' 

V* 

m m in h rn 

pH 


h*. 

r-. 

p*. 


o 

O 

o 

UI 

m 

o 

rH 

CO 

O' 

o 

CO 

CO 

'O 

O 



in 

M> 

m 

H 

© 

H 

r-i 

H 

pH 

H H H N 

N N N K| O 

st 

n- 

N* 



p'. 

O' 

O' 

O' 

nO 

sO 

O' 

NI 

r^- 

co 

O' 

CM 

CM 

pH 

pH 



o 

O' 

CM 

O' 

CO 

O 

O 

O 

o 

O' 

'O 

sO 

M3 

v© 

sO 

K 

rs. 


NI 

NI 

o 

CM 

NI 

CM 

CM 

CM 

CM 

O 

NI 

o 

o 

O' 

SO 

O' 

P-. 

ni 

CM 

CM 

CM 

CM 

v© M3 s© O NI 

NI 

o 

o 

o 

o 

o 

NI 

NI 

NI 

O' 

O' 

CM 

CM 

rH 

CM 

CM 

1 

CM 

1 

CM 

CM 

1 

H 

1 

o 

o 

«H 

cm ni m \o 

CM 

1 

CM 

1 

CM 

1 

CM MD >© vO H f>- 
1 1 1 1 1 1 

N» 

O' 

i 

O' 

O' 

O' 

T 

O' 

1 

O' 

O' 

O' 

1 

O' 

1 

CM CM * 

CM 













NI 

NI 

NI 

NI 

CM CM CM CM 

CM 



<M 

CM 

CM 

CM 

CM 

CM 

CM 

CM 

NI 
















O 

O O 

O 

© O O O 

O 



O 

o 

o 

O 

O 

O 

O 

O 

O 





o 


iiii 

UJ UJ ui 111 

^ o* O' o* 

MMMK1 

n- n. r^. 

CM CM CM CM 
O' O' O' O' 


I I I I I 

LiJ III ) 11 III III 

M M O' O' O' 
CM CM U| <0 CO 
O O CM sO so 
s© M3 H CM PM 
OOO'O'O 


I I 1 I I 
m iif hi ni in m ni in til 

NNNCOCOtOMMvO 

CJMMO'O'O'NNK) 

O'O'O'COCOCOOOCM 

c'O'O'ioLOiON.r^O' 

OOOO'O'OMMCO 


000000000000'0>0'0'OOK\K1NIAU|OONNNNN(MU|ID'0000 




UJ 

> 


o 

O 

O 

O 

o o 

o 

o o 

O 

0. 

0. 

NO 

nO 

1 

M) 

1 

•*© O H rH CM 

1 III 

CM 

1 

CM 

1 

o 

o 

rH 

rH 

1 

rH 

1 

rH 

1 

rH 

1 

rH 

1 

CM 

1 

CM 

1 

'f 

O 

O 

o 











pH 

rH 

rH 

O O 

rH 

rH 

pH rH pH O O O rH 

O 

o 

© 


rH 

pH 

© 

O 

O 

O 

O 

pH 

»H 

pH 

rH 



»- 


o 

o 

o 

O 

o 


o 

O 

O 

o o 

a 

O 

o 

O O O O O 

O 

o 

o 

o 

© 

© 

o 

© 

O 

© 

o 

© 

© © © 

© 





1 

1 

1 

1 

i 


1 

1 

1 

H- H- 

i 

1 

1 

1 1 4- H- H- 

♦ 

*► 

H- 

♦ 

H* 

♦ 

♦ 


H* 

H- 


H- 

1 

1 

1 

1 



z 


UJ 

UJ 

UJ 

UJ 

UJ 


UJ 

UJ 

UJ 

UJ UJ 

UJ 

UI 

UJ UJ UJ UJ UJ UJ UJ 

UJ UI 

UI 

UJ 

UJ 

UI 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ Ui 

UJ 





NO 

K 

in 

O' 

0- 


O' 

rH 

NI 

CO NI 

nO 


M> 

>© rH UI O <M CM 

<0 rH 


/M 

O' 

M) 

rH 

M3 

N. 

m 

r^i tO Ai 

PM 



UJ 

NI 

o 


o 

NO 

O' 


O' CM 

fX 

rH UI 

o 

o 

O O O > O CM 

CO 

CM 

O' 

O' 

oo 

N| 

<9 

pH 

O 

pH 

m 

v0 

O' 

'O f". 

I*" 



H 


NI CO 

m 

o 


NO 

CM 

M> 

o in 

CO 

SO 

N. N O N CO CM 

in 

UI VO 

v© 

m 

n. 

in 

00 

rH 

00 

s© 

© 

O' U| o 

NI 



z 



<0 CM 

NI 



m o- 

O' 

so 

O' 

nO 

MMHiHHO 

£ 

© 

n. 

N. 

O' 

rH 

O' 


v© 

N** 

O' 

pv 

O- CO rH 

O' 





CM 

sO 

NI 

CM 

nO 


O' 

CM 

K 



N| NI N O CM N 

co 

'O SO 

v© in 

O' 

m 

NI 

00 

NI 

NI 

M3 

CM 

O' 

CM 

sO 



UJ 


O' 

NO 

rH 

CM 

O- o 

O NI 

CM 

m 

•O O' 

NI 

NI sO N| rH 

o 

v© 

CM 

CM 0- 

'O- 

O' 

O' 

o 

O' 

00 

O' 

CM N. 

M> 

v© 

Q 

9 


O 


O' rv co O' rH o 

1 1 1 1 1 

o 

rH NI CO H CM 
1 1 1 1 1 


NI 

N. 

MUMNvO 

rH 

O' CO CO rH 

rH 

rH 

rH 

CM 

pH 

© 

© 

* © « 

1 1 1 



_J 












CM 

CM 

pH 

rH CM CM rH 

pH 

pH 



rH 

rH 

pH 

pH 

rH 

pH 

CM 

pH 

pH 




z 














o 

o 

O 

O O O O 

O 

o 



O 

O 

O 

© 

O 

o 

O 

© 

O 




< 


Q. 












l 

1 

1 

1 111 

1 

1 



1 

| 

1 

1 

I 

1 

1 

1 

1 




—1 














UJ 

UJ 

UI 

UJ UI UJ UJ 

UJ 

UJ 



UJ 

UI 

UI 

UJ 

UJ 

UI 

UJ 

UJ 

UJ 




a 


© 












r- 

CO 

o 

o o NI O- 

rv 

O' 



in 

O' 

m 

€0 

M3 

00 

CM 

O' 

CM 




01 


CM 











CM 

N- 

CO 

CO O NI 00 

V© 

o 



NI 

K 

NI 

O 

© 

© 

O' 

O' 

CO 






M 

K- 











CO 

O 

CO 

co ni O' m 

CO 

m 



h*. 

CM 

r*. 

00 

CO 

© 

O' 

© 

in 




< 














& 

CO 

K 

co cm o 

O' 

o 



CM 

fM 

CM 

NI 

f'. 

NI 

NI 

p". 

© 






o 












o 


UI 

M in 

O' 

o 



O' 

r-i 

O' 

O' 

O' 

O' 

'© 

O' 

CM 




o 




o 

o 

o 

O 

o o 

o 

O 

O 

o 

o o 

CM 

o 

'O 

M> O rH CO O 

NI 

O' 

o 

o 

NI 

N 

NI 

oo 

CM 

00 

O' 

O' 

<© 

o o 

o 

< 




o 

o 

o 

o 

o o 

o 

o 

o 

o 

o d 

s0 

1 

vO 

1 

rH 

1 

pH O O’ NI NI 

>6 

CM 

o 

o 

'i' 

NI 

O' 

CM 

1 

pH 

CM 

1 

NI 

1 

NO 

Pv 

1 

o 

O 

o 





CM 

CM 

rH 

NI 

NI 


O' 

CM 

CM 

pH rH 

CM 

CM 

CM 

CM CM rH pH pH 

O 

o 



o 

O 

o 

CM 


CM 


o 

pH 

iH 

CM 

CM 

p 

z 



o 

o 

O 

o 

o 


o 

o 

O 

O O 

o 

o 

O 

o o © o o 

O 

o 

o 

o 

o 

o 

© 

O 

O 

o 

O 

o 

O 

a 

O 

O 

2 

o 



1 

1 

1 

1 

l 


i 

1 

1 

1 1 

1 

1 

1 

1 1 1 1 1 

4 

♦ 

1 

1 

+ 

4 


1 

1 

1 

1 

♦ 

1 

i 

1 

1 

i 

w 



UJ 

UJ 

UJ 

UJ 

UJ 


UJ 

UJ 

UJ 

UJ UJ 

UJ 

UJ 

UJ 

uj uj uj uj ui 

UJ 

UI 

UI 

UI 

UJ 

UJ 

UJ 

UJ 

UJ 

UI 

UJ 

UJ 

UJ 

UJ 

UJ 

UJ 

>• 

t 



NI 

rH 

NI 

NI 

m 


CM 

o 

CM 

sO o- 

eo 

O' 

CM 

CM s© n© O CO 

CO 

m 

O' 

O' 

O' 

<0 

O' 

CM 

O' 

CM 

rH 

O' 

n- 

O' 

M3 

NI 

—i 

D 


rH 

O* 

4- 

sO 

O 

NO 


o 

m 

CM 

nO CM 

O' 

o 

O 

O O' N- CO N 

CO 

sO 

O' 

O' 

o 

O' 

o 

CO 

NI 

00 

O' 

O' 

V© 

o 

O' 

CM 

2 

~J 



rH 

O' 


CM 

m 


CO 

o 

O 

NI NI 

NO 

o 

pH 

■H O' M O O 

m 

v© 

fv 

N. 

CM 

>© 

CM 


m 

r- 

m 

pH 

© 

NI 

© 

K 

O 

O 



O' 

co 

CM 

sO 

H 


O' 

pH 

o 

NI rH 

n0 

NI 

n© 

.0 O' M O' to 

co 

CM 

O' 


m 

O' 

L0 

O' 

in 

O' 

PM 

O 

CM 

M3 

O' 

in 


CO 



CO 


o 

U| 

CO 


O' 

o- 


CM CM 

K 

CM 

O' 

O' UI 00 ro o 

s© 

CM 

CM 

CM 

O' 

m 

O' 


oo 

rH 

m 

pH 

NI 

O' 

o 

o 

UJ 

CO 

< 




o 

CO 

NI 

O' 

CO o 

o 

CO 

n- 

O' 

>0 rH 

NI 

O' 

CM 

CM pH rH 0- O 

NI 

O 


N> 

>* 

m 

O' 

O' 

NI 

O' 

O' 

O 

© 

M> 

© 

NI 

M 



NI 

CM 

rH 

r- 

NI O 

o 

NI 

rH 

rH 

•H O' 

CM 

rH 

rH 

pH O' CM CM •© 

pH H O 

>© 

CM 

CM 

CM 

N* 

CM 

fs. 

N© 

rH 

rH 

CM 

O' 

r*. 


<n 


2 

< 

< Ui 
t- CQ 

< 

a co 

• CM 
Ui \ 
-J CO 
a o’) 

52 

lO 


< 

<n 


hi r 


aOCDC9CDCDCDOCDCDCDCDCDCDC3CDCDCDCDOC50CDCJ>CDCDOCDCDCDCDCDOO0CDCD 


OOOHOOOHOOOOOOHCMiOO'OHOOHeOO'OiHCMOHCMOHOOOO 
MOOOOOOOOOOOOOOOOO'OOOOOO'O'OOOOOOOOOOOO 
HWftlM^UJin'«NC00'OHHHHHNNM'0^0 , 'tlfllfllfl'0'0'0NN«)0'OH 
^ HHHHHHHHHHHHHHHHHHrtHHHHNN 

M 

O 

a 


2-147 






£hk 






FIGURE 2-14. MSC/NASTRAN DISPLACEMENT VECTOR 












LT.SAMPLE.DATA AUGUST 3, 1984 MSC/NASTRAN 8/ 1/83 PAGE 

21 MASS/28 BEAM TEST CASE ONLY-NOT VALID AIRPLANE MODEL 






o 

o 


o o o 
o o o 


ni ni eg 

o o o 


I 


Nl 

a 


o 

in 

in 

co 

o 


h- h- rH 
O' |v» 

<t CO H 

in o' vo 
co o- ui 


M3 

m3 

m 


Lu LU UJ 

m cm o 
m o co 
m o- o' 
*h co ui 

N CO 


OOOOOOOOOOOCMOvTO'NlOCMOO'O' M> O O 



o 

o 

o 

o 

O 

O 

O 

O 

O 

o 

O 

M3 

o 

O' 

m 

O' 

o 

O' 

O 

O'’ 

1 

O' 

rH 

o 

o 



CM 


CM 

CM 

CM 

CM 

CM 

CM 

r—i 

CM 

CM 


CM 

CM 

H 


rH 


rH 

rH 

O 

rH 

o 


o 

O 


O 

O 

O 

O 

O 

O 

o 

O 

O 


O 

O 

O 


o 


O 

o 

O 

o 

o 


4 

4 


4 

4 

4 

4 

4 

4 

4- 

4- 

4 


4 

4 

4 


4 


4 

4 

4 

1 

4 


LU 

Ui 


UJ 

Ui 

Ui 

UJ 

UJ 

UJ 

LU 

Ui 

UI 


UJ 

UJ 

UJ 


UJ 


UJ 

UJ 

UJ 

UJ 

in 


m 

Nl 


m 

m 


m 

O' 

n 

CM 

o- 

Nl 


Jv 

H 

't 


CO 


M3 

co 

M 

O' 

rH 


co 



O' 

CD 

o 

M3 

m 

<r 

O' 

Ul 

CM 


CM 

o 

CO 


o 


CO 

*—4 

rv 

<-H 

rv 

cn 

CO 

O' 


m 

CO 

m 

Nl 

rv 

in 

ui 

Nl 

N. 


Nl 

H 

i—1 


m 


m 

CO 

M 

O 

O' 


K 

m 


>0- 


CM 

M> 

o 

O' 

CM 

rH 

CO 


CM 

rH 

■o 


m 


CM 

ni 

o 

ui 

«H 


<0 



r-H 

O' 

in 


CM 

M3 

CM 

CM 

CO 


O' 

fv 

rv 


iv 


CM 

CO 

O' 

rH 

rv 


O' 

sD 

o 

CO 

CM 

Nl 

CM 

M3 

ni 

CO 

O 

r—1 

o 

m 

O' 

M3 

o 

Nl 

O 

M3 

rH 

O' 

M3 

CO 


fv 

m 

o 

rH 

H 

CM 

CM 

CM 

m 

fv 

CM 

in 

o 

O' 

rH 

o 

o 

Nl 

o 

O' 

O' 

m 

m 

rH 













rH 


rH 

rH 

o 


O 


CM 

CM 

CM 















o 


o 

O 

o 


O 


o 

o 

O 















4- 


4 

4 

4 


4 


4 


1 















UJ 


UJ 

UI 

UI 


UI 


LU 

UJ 

UJ 




O O' J 

o <r o- 

rv.rv.ro 

rv ni in 

cO -0 rv 


OOOOOOOOOOOO'OCMCMNlO-t 


O O' © 

CO M H 

m -o O' 

O CM H 
H O CM 
O N >J O 


o 


O 

O 

o 

O 

o 

o 

o 

O 

o 

O 

o 

rH 

o 

CM 

1 

rH 

1 

CO 

O 

rH 

o 

CM 

1 

CM 

1 

CM 

1 

O 

O 

b- 


CM 

Nl 

N't 

Nl 

Nl 

Nl 

ni 

Nl 

Nl 

Nl 

vt 

Nl 

O' 

O' 

vt 

't 


N! 


N! 

N1 

«t 

m 

CM 

L> 


O 

O 

O 

© 

o 

O 

o 

O 

O 

O 

o 

O 

o 

a 

O 

o 


O 


O 

O 

o 

o 

O 



4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 


4 


4 

4 

4 

4 

4 

UJ 


UJ 

UJ 

Ui 

UJ 

UJ 

UJ 

UJ 

UJ 

LU 

UJ 

UI 

UJ 

UJ 

Ul 

UJ 

UJ 


UJ 


UJ 

UJ 

LU 

UJ 

LU 


co 

o- 

m> 

rv 

o- 

O' 

o 

o- 

M3 

O' 

CM 

CO 

Ul 

CM 

CO 

o 


CO 


N1 

Ul 

O 

vt 

N1 

> 


rH 

<t 

O' 

co 

O' 

CO 

o 

N- 

M> 

CM 

M3 

o 

rv 

O' 

O' 

Ul 


O' 


N! 

o 

o 

o 

M3 


b- 

ui 

o 

vt 

rH 

Nl 

rv 

CM 

CO 

O 

N- 

M3 

in 

Ul 

O' 

O' 

N1 


CO 


rH 

rH 

CM 

M3 

m 



Nl 

ui 


rH 

CM 

in 

CM 


CM 

Nl 

ui 

o 

rH 

Nl 

rH 

N1 


O' 


o 

o- 

O 

rH 

O' 



CM 

O' 

V 

ni 

Nl 

CO 


O' 

CO 

rv 

Cv 

M> 

rH 

Nl 

CM 

rH 


CM 


rH 

<0 

O 

co 

m 

a 


CM 

o 

u 

in 

O 

M3 

CO 

m 

O 

in 

rH 

O' 

o 

co 

M> 

Nt 

O 

rv. 

o 

o 

rv- 

CM 

sO 

CO 

< 


tv 

>5- 

rH 

M3 

O’ 

M3 

CM 

Nl -t 

CM 

rH 

in 

rH 

rH 

rH 

rH 

o 

>t 

o 

m 


rH 

rH 

>* 


I I t 1 I I 


ooooooooooo 


4 4 


m ii) iii hi hj m in l!| hi hi iii 
O'H^)vO«J»OC0'0^KlH 
I <tMCrCOM<fNxjMCMM 

Hff'ONCOHCOrtlflHff' 
WNMCONMO'MNl/tN 
M N COO'Nl^ vO U1U1 >t N 

oooooooooooor^vor^moooo'or^oo 




O 

o 

O 

O 

o 

o 

O 

O 

o 

o 

O 

rH 

M3 

N1 

>t 

O’ 

O' 

1 

rH 

O' 

CM 

f 

rH 

1 

M3 

1 

o 

o 



o 

rH 

o 

rH 

o 

rH 

rH 

rH 

rH 

rH 

rH 

rH 

rH 

CM 

CM 

rH 


rH 


rH 

rH 

rH 

o 

o 

2 


o 

O 

o 

O 

o 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 

O 


O 


o 

O 

O 

o 

o 

O 


4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 


4 


4 

4 

4 

4 

4 

M 


Ul 

Ul 

Ul 

Ui 

UJ 

Ul 

UJ 

UJ 

UJ 

in 

Ul 

Ul 

UJ 

UJ 

LU 

Ul 


UJ 


UJ 

UJ 

Ul 

UJ 

Ul 

V- 


O 

CM 

N1 

co 

O' 

O' 


CM 

vO 

>t 

Ul 

rH 

n 


CO 

rv. 


O' 


Nl 

CM 

Ul 

O' 

Ul 

3 

rH 

M3 

CM 

rv- 

M3 

CM 

CM 

N! 

M 

vt 

rH 

st 

>t 

vt 

rH 

O' 

CO 


CM 


O’ 

CO 

vt 

O' 

O' 

—i 


CO 

U) 

o 

rH 

Cv 

CM 


CM 

O' 

rv 

CM 

Ul 

CM 

CO 

n- 

o 


M 


r*v 

rH 

O' 

Ul 

rv 

o 


r^ 

Ul 

CJ 

O' 

rv. 

O 

N1 

iH 


o 

CO 

CM 

CO 

o- 

o- 

•vO 


rH 


Nl 

O 

rv 

O' 

CO 

CO 


M> 

Ul 

CO 

O' 

't 

M3 

M 

't 

CO 

ro 

N! 

rH 

CM 

N1 

rv. 

o 


O' 


co 

Nl 

o 

Ul 

o 



m 

rH 

>t 

CM 

CO 

O 

CM 

O' 

m 

rH 

rv. 

N1 

CM 

rH 

vO 

rH 

o 

Nl 

o 

O' 

O' 

vO 

O' 

Nl 

M 


rv 

M 

K1 

CM 

m ^ 


m 

<0 

M3 

CM 

CM 

CM 

rH 

rH 

CO 

a 

M 

o 

CM O’ Nl 

CM Nl 


< 

h 

(0 


2 

O 


b- 

M 

a 


D.O0Ot50O0OOOO0OOUtD0UO0CD00U 

> 

h- 


OOOrHOOOOOOOOOCMOOOCOOCMOOOOO 

WOOOOOOOOOOOOOOOOOOOOOOOO 

HNCgM«J-lfl'0NC0^OHHCMKl«J’^irilfl^NC0C'O 


IriHHKHHHHHrtN 


o 

a 


2-148 




lV-V-V-VJ 


FIGURE 2-15. MSC/NASTRAN LOAD VECTOR 














NASTRAN input. These cards apply a constant axial force between two defined 
grid points. The F0RCE1 cards in the sample case are used to account for 
nonlinear effects in oleos and unsymmetrical beams. There are no externally 
applied loads at node points, only at mass points. 

2.3.2.7 Forces of Single-Point Constraint 

Figure 2-16 shows the NASTRAN output that summarizes the forces of 
single-point constraint. This shows the forces and moments that are applied 
at the model constrai t points to balance the model. For point 500, con¬ 
straints are specified in all six directions, so corresponding forces are out¬ 
put. Note that the loads for the symmetric degrees of freedom (Tl, T3, R2) 
are all very small, indicating that a well balanced set of applied loads is 
being used as input. This is the result of including inertia relief loads 
in the calculated net loads used as input to NASTRAN. The constraint forces 
in the anti-symmetric directions (T2, Rl, R3) result from the geometry of 
the model. A half-airplane model is used, and wing loads come into mass 5. 

The constraint loads shown correspond to the missing loads that the right 
wing would have supplied. The same is true for grid points 600 and 900. 

Grid points 1199, 1498 a 1 1499 are center-plane grids as explained in 
Section 2.3.2.5. The single-point constraint forces shown for these grid 
points are the reactions at the center of transverse beams in the KRASH 
model. 

2.3.2.8 Forces in Bar Elements 

Figure 2-17 illustrates the NASTRAN output that summarizes the bar 
element static loads. The sign conventions for these loads are shown in 
figure 2-18, along with the corresponding KRASH85 beam element sign conven¬ 
tions. The KRASH85 loads that correspond to the NASTRAN bar element loads 
shown in figure 2-17 are as follows: 









AS TRAN 

1 OAi! 

CORRESPOND INC 
KRAS 118 3 LOAD 

MIA 

-MZT 

M2 A 

MY I 

MLB 

MZ.I 

M2 B 

—MY. I 

SI 

FYJ 

S2 

FZJ 

FX 

FX.1 

T 

MX.l 


NASTRAN plane 1 corresponds to the KRASH85 x-y plane, plane 2 corresponds to 
the x-z plane. Comparison of the loads in figure 2-17 with the KRASH 
"STRAIN FORCES" output at time zero will show a very close agreement. Beams 
which lie entirely in the airplane plane of symmetry (y = 0 plane) are 
treated differently in NASTRAN and KRASH85. In NASTRAN, the loads are for a 
half-beam, while in KRASH85 they are for an entire beam. This applies to beams 
1000-9000, 19000 and 23000 in figure 2-17. (The NASTRAN bar element numbers 
are 1000 times the corresponding KRAS1I85 beam element numbers.) Beam 24000 is 
missing in the NASTRAN model; this is a I)RI element which is modeled as a 
RBAR rigid element in NASTRAN. 


2.3.2.9 Element Strain Energies 

Figure 2-19 shows the NASTRAN output of bar element strain energies, in 
inch-pound units. Missing elements (1000, 25000, 26000) are those that have 
less than 0.001 percent of the total strain energy. These strain energies 
agree with the KRASM85 output at time zero, except for oleo and unsymmetrical 
beam elements. The use of FORCE 1 cards in NASTRAN to model these nonlinear 
elements causes the strain energies calculated by NASTRAN to be incorrect. 

The KRAS1183 strain energies for those elements are correct. 













sO S0 M 

O O O O O O 
♦ ♦♦♦♦♦ 
UJ LU Ui Ui UJ 
^ vO O' vO O' O' 

M (0 o 'O w N W 
a H N 03 ■tf M ^ 
fs £0 'O M M 
(OMvOONW 
sJ* Ifl O' CU M 

<m p- 4 ro m m 

i 


Ul 

w 

<SI K* 

0£ H 

»o 

Ifl __ 

OJ o o o o o 

<r o o o o o 


N vO 'O W l/l 

o o o o o o 

♦ ♦♦♦♦♦ 
Ml tu UJ UJ Ui LU 
frNH't Ifllfl 
H <f N M M ^ 

{»> f-< tsl 0 s vQ CM (Ni 

(0 Ifl O H N N 

in >0 H H N N 

H N O <6 N ^ 

,-i .-t O' «J csi 


4" 

^OOOOOO 


I o o o o o 


ifl>t <r 
c> o o o o 

u LU LU Ui Ui 

^NO'MO 
M O K1 O' lil 

u O' H CU N Kl 

(U N O' N H 

o O' O' O' CO 

HHCOHnOO 

H N vj vO N O 

I I I 


m o © o o © 
<r o o o o o 


a (9 O (9 (9 (9 (9 


OOOOJ JO J 
M o o O 0 s <** 

|/» C" »H «{f 






LT.SAMPLE.DATA AUGUST 5, 1984 MSC/NASTRAN 8/ 1/85 PAGE 

21 MASS/28 BEAM TEST CASE ONLY-NOT VALID AIRPLANE MODEL 


X o 

< u. 











© 

lO 

LT 

-T 

LT 


M 

• j 

< » 


m 

m 
















O 

c 

O 

. 


o 

O 

.J> 

O 


0 

0 
















4- 


+ 


+ 

4- 

f 

1 



4 

4- 
















L J 

LU 

L-J 

UJ 

UJ 

UJ 

LU 

L J 

UJ 


Ul 

-ij 
















O 

V 

C' 

•j 

/—< 

>.i 

■ 7 - 

NT 

NT 


X© 

O 
















r j 

L-T 

u. 

O 

c 

1 X 

NT 

CJ 

•’ J 


0 

•© 
















rl 

- 

?x 

O' 


1/1 

NT 

CJ 

f ! 


<0 

CJ 
















ix 

- 

C' 


0 

co 

' J 

C'J 

' J 


t T 

rx 
















v -p 

LTj 

o 


rx 


0 

uT 

LT 


O 

m 







o 

o 

o 

o 

o 

c- 

o 

o 

O 

3 

0 

1 J 

■*> 

CSl 

rH 

O 


CO 

O 

- 

LT 

0 

O 

0 

0 

0 

0 

o 

o 

o 

o 

o 

o 

o 

o 

O 

o 

m 

NT 

1 

•-T 

i 

NT 

rH 

1 

ST 

CJ 

CJ 

1 

O 

fx 

X© 

0 

= 

0 

0 

0 

0 


<SJ 

CL 

CSJ 

3 


t 

* 

NT 

3 

m 

3 

'O’ 

3 

rH 

O 

3 

CJ 

NT 

st 

T 

3 

CJ 




m 

o 

o 


o 

o 

o 

o 

o 

O 

o 

o 

o 

O 

o 

O 

O 

O 

O 

O 

O 

0 

0 

0 




0 

1 



4 

-r 


4 

-► 

+ 

■r 

4- 

+ 

4- 

4 

4- 

4- 

4- 

4- 

4- 

4 

4- 

4 - 

H- 




H- 





UJ 

HI 

UJ 

UJ 

LU 

UJ 

UJ 

UJ 

UJ 

UJ 

LU 

UJ 

UJ 

UJ 

i*J 

LU 

Ul 

UJ 

UJ 





o 


m 

a 

Li 

rH 

CJ 

o 

! J 

C J 

•T 

o 

Ul 

CJ 

X© 

rx 

© 

CO 

—T 

LM 

co 

0 

'J’ 




O' 

rj 

o 


CSJ 

J5 

CJ 

NT 

rH 

3 

vD 

m 

rH 

V© 

X© 

3 

NT 

O 

X© 

O 

O 

O' 

3 

pH 









rH 

NT 

O' 

CM 

CJ 

m 

NT 

o 

fx 

X© 

O 

CJ 

3 

|Xx 

© 

O' 

O' 

N- 







o 


o 

NT 

O' 

3 

rH 

CSJ 

u> 

o 

NT 

© 

«4- 

0- 

O 

rH 

l—i 


O 

CO 

N* 

O' 




NT 


►n 

3 


NT 

rH 

rx 

c 

CJ 

L> 

rH 

O 

3 

n 

O' 

O 

v© 

CO 

OD 

Ns. 

0 

O' 

in 





rH 

co 

rH 

O' 

O’ 

m 

N. 

CO 

CSJ 

O' 

r*H 

O' 

co 

3 

-0 

Ox 

rH 

lO 

0 

rH 

m 

rH 

co 

0 

0 

0 

rH 


CsJ 

H 

nt 

CsJ 

CJ 

CJ 

CSJ 

CJ 

cO 

rH 

NT 

r.T 

x© 

rH 

m 

rH 

NT 

rH 

CSJ 

in 

x© 

S* 

0 

0 

0 

pH 


l i 1 i 


CJ NT 

o o 


a; 

< 

co 

u 


nJ" 


'3’ 

2f 

O’ 

NT 

xj 

O’ 

•J- 

'J- 

NT 

NT 

NT 

NT 

0 

0 

0 

NT 

NT 

NT 

0 

CSJ 

CJ 

O 

O 

O 

O 

0 

O 

O 

O 

O 

O 

O 

O 

O 

O 

0 

0 

0 

O 

O 

rH 

0 

rH 

rH 


4- 

4* 

+ 

4* 

•* 

-r 

4' 

4* 

4- 

4- 

■r 

4* 

4- 

4- 

4 

4- 

+ 

H- 

1 

4 

1 

| 

UJ 

UJ 

UJ 

LU 

UJ 

UJ 

UJ 

UJ 

UJ 

Ul 

LJ 

UJ 

LU 

Ul 

LU 

LU 

UJ 

Ul 

Ul 

LU 

UJ 

LU 

UJ 

CO 

CJ 

O’ 

N- 

sr 

O 

CJ 

C J 

\4> 

xO 

o- 

O 


m 

CJ 

CJ 

rH 

xD 

O 

lx. 

O' 

CO 

CO 

CJ 

NT 

co 

•T 

0 

in 

N. 

CO 

O' 

CO 

-O 

O’ 

X© 

O' 

O' 

a- 

CJ 


NT 

■3- 

O' 

S© 

xO 

0 

CO 



0 

N- 

O’ 

O' 

rH 

NT 

© 

O' 

rH 

NT 

in 

LT 

■ J 

fXx 

N. 

C' 

sl- 

CO 

CO 

m 

N- 

rH 

m 

c- 

0' 

xO 

CO 

fx- 

■t 

co 

CO 

O 

•* 

co 

CO 

rx. 

fx. 

co 

s3* 

rx. 

X© 

© 

O' 

0' 

O 

x© 

a 

N 

in 

s^- 

x© 

O 

■& 

0 - 

rH 

Q 

rH 

rH 

co 

LO 

<r 

O' 

0 

NT 

NT 

rH 

m 

M 

O' 

rH 

in 

rH 

Ns. 

rH 

CJ 

CJ 

Nx 

O 

fx. 

co 

CO 

CJ 


NT 

0 

0 0 

O rH 

rH 


or 

< 


fXLnrHrHrHrHrH3rH3CS)CSi3CJin333rHin33LnO< 


lilt 


ooooooooo 

44 + 444444 

in i*! ni ni hi m Lii hi hi 

cjNTNT3rxfxo33 

r-i^-<rOv3-f^ocsJC0C0 

OC 0 H-tK 1 NUTHH 

CQNHHOvJ’COO'O' 


LL> Hi 

in 1X1 

CsJ W 

O O 

o o 

CO CO 

_JOOO©OOOOOrH3in0'rHO©NTNTOrHNT©O©OOO 


NT CsJ 
O rH 
4 I 
UJ LU 
si" H 
O' © 
LO rH 

CO © 

^ 3 


cn 


a 

O 

0 

O 

0 

0 

0 

O 

0 

0 

© 

1 

CJ 

O' 

1 

© 

1 

st 

CJ 

1 

rH 

1 

© 

1 

© 

1 

0 . 

5 . 

CJ 

O 

0 

O 

O 

rH 

1 

pH 

1 

h 



<3- 

m 

© 

© 

© 

© 

© 

© 

CJ 

© 

© 

in 

in 

in 

st 

3* 

0 

O 

rH rH 

m 

m 

0 



m 

m 

z 



O 

0 

O 

0 

0 

0 

O 

0 

0 

O 

O 

0 

0 

0 

O 

O 

0 

O 

O O 

0 

0 

0 



0 

0 




♦ 

4- 

♦ 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

1 1 

4 

4 

4 



4 

4 




UJ 

UJ 


Ul 

LU 

UJ 

Ul 

Ul 

Ul 

UJ 

Ul 

UJ 

UJ 

LU 

Ul 

UJ 

Ul 

UJ 

UJ Ul 

UJ 

UJ 

Ul 



UJ 

LU 



CSl 


sT 


O' 

O' 

•3- 

O 


CJ 

a) 

CSl 

sf 

CSJ 

CO 

O' 

CJ 

rH 

rH 

O O 

3 

NT 

NT 



3 

3 

z 




CO 


3* 

rx. 

rx 

\3- 

CO 

NT 

m 

NT 

3- 

© 

h- 

rH 

© 

NT 

NT 

co in 

CJ 

st 

rx 



NT 

NT 


CO 


CJ 

NT 

3- 

NT 

m 

0 

st 

© 

rH 

rx 

3- 

csj 

csj 

O' 

NT 

•3 

rH 

rH 

co rx 

rx 

© 

O' 



CsJ 

CJ 


1 

Z 

O' 




rH 

n* 

rx 

N- 

O 

NT 

NT 

m 

rH 

CSJ 

CJ 

O 

m 

m 

m rx 

rx 

rH 

rH 



CSJ 

CJ 


0 

< 

co 

CJ 

in 

in 

m 

O' 

© 

rH 

CJ 

NT 

O' 

O' 

O 

© 

CO 

© 

O' 

O' 

rH CSJ 

0 

rH 

rx 



fx 

rx 

-j 

z 

-J 

CSl 


co 

0 

O' 

3- 

m 

CO 

O 

rx 

rH 

0 

CO 

NT 

CJ 

3 

O' 

O' 

© m 

m 

© 

CO 

O 

O 

rx 

rx 

UJ 

1- 


fx. 

O' 

CJ 

© 

© m 

NT 

CSJ 

csj 

NT 

1 

NT 

1 

m 

1 

CSJ 

rH 

CO 

n. 

OsJ 

Csj 

m © 

O' 

O' 

1 

rH 

1 

O 

O 

CSJ 

1 

CSJ 

1 


z 











© m 

© 

© 

© 

NT 

NT 

CM 

csj 

rH 

O' 

m 




m 

m 

cr 












0 

O 

0 

O 

O 

O 

0 

0 

O 

O 

0 

0 




0 

0 


Q 











4 

4 

4 

4 

4 

4 

4 

1 

1 

1 

1 

4 




4 

4 

< 

J" 











UJ 

Ul 

UJ 

UJ 

Ul 

Ul 

UJ 

UJ 

UJ 

UJ 

UJ 

Ul 




LU 

UJ 


1 











in rx 

0 

O' 

m 

O 

m 

3 

3 

rH 

© 

© 




O' 

3 

co 












© 

O 

m 

NT 

0 

NT 

NT 

O 

O 

CJ 

0 

m 




Csj 

CJ 


z 











CO 

m 

NT 

CO 

O' 

O' 

0 

CJ 

CJ 

rx 

O' 

3 




NT 

NT 













O' 

rx 

co 

CO 

csj 

NT 

O' 

CSJ 

csj 

© 

rH 

© 




NT 

NT 


CO 

</ 










fx 

rH 

O' 

UT 

© 

NT 

0 

CJ 

CSl 

fx 

CJ 

0 




CJ 

CJ 

z 

-J 

0 

O 

0 

0 

0 

O 

0 

0 

O 

© 

rH 

© 

O' 

rx 

© 

fx 

CJ 

CSJ 

0 rx 

m 

CSl 

O 

O 

O 

NT 

NT 

w 



0 

O 

0 

0 

0 

O 

0 

0 

O 

3- 

NT 

CJ 

NT 

NT 

O' 

O' 

pH 

rH 

0 

■5 

pH 

rx 

O 

O 

O 

m 

m 


z 

o 


o 

(/) 


K 

to 


z 

o 


a 

z 

o 

u 


CsJ 

< LU 

I z 

Q < 

Z • 


rH 3 
O O 
4 4 
UJ UJ 
in CsJ 
CO rH 
CO 3 
rx O' 

co © 

si- 3 


in © 
o o 
♦ 4 
UJ UJ 
O' © 
© 3 
m nt 

pH >t 

CSJ LO 

3 co 


© © 
o o 


rH NT 

3 in 

O pH 

co rx 

rx o 


© © © © 

o o o o 

4 4 4 ‘ 

UJ UJ UJ UJ 
CSJ 3 0 rH 
pH O CSJ H 
CO H ffl M 
v© I s - 3 O 
3 © rx o 
3 m 3 co 


V© sO 

o o 


minmincsjcsjrHsOsoinrH 

ooooooooooo 


4 4 4 4 4 


4 4 


m m 
o o 

4 4 


UJLiJlUUJlUUJlUUJUJUJUJUJUJ UJUJ 

vocsjo'r^r^csjinmocsjsosrpH mm 

(OsfivO^'WNvt'tCOO'sOsf'fl Nl M 

(MrilflvOCONOOCONNvDH CSJ CM 

'O-tKIMO'O-t'fO'vOrtrlO CSJ CSJ 

'tONM'fCO'O'OOO'KlHCO Cx fx 

(MflO'O'OMNCSIHmO'vOSOONN 


a 

rx 

1 

rx 

3 

CSJ 

CO 

rx 

m 

NT 

CSJ 3 

1 

© 

1 

3 

1 

m 

1 

© 

3 

3 ’ 

3 

1 

3* 

l 

CO 

rH 

1 

pH 

1 

3 

1 

3 

O 

O 

CJ 

1 

CJ 

1 










© 

© 

m 

© 

© 

NT 

NT 

CJ 

CJ 


© 

pH 

m 




m 

m 










O 

O 

0 

0 

0 

O 

O 

0 

O 


O 

pH 

0 




0 

0 










4 

4 

4 

4 

4 

4 

4 

4 

4 


4 

1 

4 




4 

4 










LU 

UJ 

UJ 

UJ 

UJ 

Ul 

Ul 

UJ 

UJ 


UJ 

Ul 

UJ 




UJ 

Ul 










rH 

© 

NT 

3 

NT 

m 

O 

3 

3 


m 

rx 

© 




3 

3 










3 

3 

CO 

rH 

NT 

m 

rH 

3 

3 


3 

m 

m 




CJ 

CJ 

UJ 









© 

© 

3 

CO 

© 

NT 

3 

O 

O 


3 

© 

3 




NT 

NT 

7. 









© 

3 

rx 

rx 

NT 

0 

fx 

rH 

rH 


0 

NT 

© 




NT 

NT 

< 









CO 

NT 

CO 

rx 

3 

rx 

rx 

NT 

NT 


CJ 

CJ 

0 




CJ 

CJ 

-1 

0 

0 

0 

0 

O 

0 

0 

0 

O pH 

3 

3 

© 

O 

0 

3 

© 

© 

O 

m 

NT 

CJ 

O 

O 

O 

NT 

NT 

a 










* 














• 


• 


ooooooooofnmo'csj>i*cocommopHi«nN>ooomm 


ooooooooooooooooooooooooooo 
ooooooooooooooooooooooooooo 
Z ooooooooooooooooooooooooooo 
uj • rHcjNi3m©rxco30rHcjNT3in©rxc030rHCJNTm©tx«o 

Z o HHHHHHHHHHCSJCSJCvJNCSJNMCSI 


2-152 



FIGURE 2-17. MSC/NASTRAN BAR ELEMENT FORCES 


















BAR ELEMENT FORCE S 





»* 5, ■ 2'* W* 


i ■■ rawr* 




r 




o 

nt 


u 

tx 


CO 

\ 

0 10 

> 

rH 

o o 

0 

N 

H- + 

UI UJ 

O' 

UJ 

CO 

r—i r—l 

Z 

M> M3 
<r O' 

UJ 

1 


z 

< 

oi 

>- 

0 

< 

z 

\ 

o 

0 

r 


CM CM 
NT NT 
O' O' 


CSJ 



O 

O 

i-4 

O 

rH 

O 

O 

O 

rH 

o 

rH 

rH 

rH 

rH 

r—i 

O 

rH 

rH 

rH 

O 

o 

o 

o 

o 

O 

O 

o 

O 

O 

o 

O 

O 

o 

o 

o 

O 

O 

o 

o 

O 

o 

O 

O 

1 


1 

4- 

4- 

1 

4- 

1 

4- 

4- 

4* 

1 

4- 

1 

1 

4- 

4- 

4- 

4> 

1 

1 

4- 

4- 




UJ 

UI 

UI 

UI 

UI 

UJ 

UI 

UI 

UI 

UI 

UI 

UJ 

UJ 

UI 

UJ 

UJ 

ui 

UI 

UJ 

UJ 


CO 

h- 

CM 

CO 

h» 

CO 

M3 

o 

rH 

o- 

CM 

M3 

O' 

10 

o 

CM 

o 

o 

O 

CM 

't 

M3 

CO 

CO 

CM 

CO 

O' 



M> 

N. 

10 

o 

CM 

M3 

CO 

CM 

M3 

f'- 

O' 

O' 

rH 

CM 

CM 

O' 

LT| 

h- 

to 

CM 

CM 

H 

CO 

O' 

rH 

n3* 

rH 

rH 

N- 

CM 

O 

NT 

vt 

CM 

CO 

rH 

O' 

sO 

<0 

a- 

st 

sO 

O 

NT 

O' 

CM 

O' 

O 

rH 

CO 

CO 

CO 

nt 

O 

rH 

rH 


o 

NT 

N» 

CM 

O' 


CSJ UT Lf> 

M3 

CO 

o 

CM 

<0- 

NT 

r». 

rH 

LO 

rH 

rH 

rH 

rH 

rH 

r-i 

M3 

NT St 

M> 

NT 

10 

rH CO 

O 

CM 

rH 

CO 

rH 

rH 

10 

CO 

N. 

rH 

NT 

10 

10 

N- 

o 

UI 

rH 

rH 

O' 

CSI 

CSI to 

rH 

rH CO 

r—i 

rH 10 

CM 

r—i 

CO 

CM 

f". 

M> 

CM 

CM 

rH 

rH 

O' 

o. 

r4 

rH 


< 

tt 

►“ 

0 


< 

o 


wm co 


z 

H* 

M> 

CM 

O 

O 

rH 

O 

NT 

sO 

0 

CM 

0 

St 

CM 

O 

h» 

O' 

M> 

rH 

0 O 

O' O 

O' 

CM 

O 

L H 



u. 


M3 

St 

0 

M> 

M> 

!'*. 

NT 

NT 

O 

0 

rH 

O' 

O' 

0 

s£) 

(H 

O' 

0 N' 

CM 

O' 

0 

o 

T. 


co 

o 

NT 

N- 

h* 

M) 

0 

0 

CM 

ui 

St 

N. 

0 

O' 

K 

CM 

O' 

O' 

r—i 

CM 

CM O' 

0 rH 

O 

0 

o 

r + 

0 

O h 


O 

NT 

0 

O' 

CM 

M> 

FM 

CM 

NT 

O 

St 

<r 

NT 

CM 

rH 

NT 

o 

O 

CM NT 

O O 

O' 

O 

o 

\ 

UJ 

a 0 

z 

UI 

O 

O 

iH 

NT 

rH 

rH 

rH 

O 

0 

rH 

CJ 

rH 

0 

NT 

0 

O 

O 

O 

o 

O 

M> NT 

rH 

O' O 

rH 

0 

rH 

o 

o 


w Z Z 


0 

D 

O 

3 

< 


0 

a 


0 0 

0 LU 

Z Z 


a 

0 


o 

o 

z 


z 

< 


a 

a 


< 

> 


> > 
O 0 
a O' 

LU LU 

z z 

UJ LU 


< < 
h- H 
O O 


> 

0 

rH 

CM 

NT 

NT 

NT 

NT 

NT 

CSJ 

s* 

O O M o 

CM 

CM 

CM 

rH 


NT 

rH 

NT St 

0 

a 

o 

O 

O 

O 

O 

O 

O 

O 

O 

o 

O 

O 

O 

O 

O 

O 

o 

O 

O 

o 

O 

O 

O 

O 

O 

UJ 

4- 

4- 

4- 

4* 

4* 

4- 

4- 

4- 

4- 

4- 

4- 

4- 

4- 

4- 

4- 

4* 

+ 

•4 

4- 

+ 

+ 

4- 

4- 

H- 

+ 

Z ui 

UJ 

UJ 

UI 

UJ 

UJ 

UJ 

UJ 

0 

UI 

UJ 

0 

UJ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

UI 

i 

CM 

0 

CM 

N. 

O 

n- 

o- 

N- 

sO 

O 

NT 

CM 

M> 

0 

OJ 

r^. 

O' 

O 

N* 0 O' 

NT 0 0 

rH 

O 


O' 

Ps. 

NT 

O' 

NT 

O 

0 

CM 


O 

O 

O 

CM 

NT O* 

M> 

M3 

rH 

o- 

r>- 

r>. 

O' 

M> 

Z sr 

St 

O' 

O' 

O' 

O' 


CSJ 

N* 

rH 

NT rH 

COOM 

0 

O 0 NT 

O' 

O' 

O 

O 

o 

O' 

M 

NT 

CM 

CM 

O' 

r*» 

o 

0 

CM 

0 

NT 

O' CM CO 

o 

rH 

0 0 

NT 

NT 

O' 

sO 

UT 

rH 

M3 

CM 

< 

O' 

N*. 

O’ 

M3 

CM 

o 

NT 

O 


NT 

NT 

0 

NT 

0 

vf 

O' NT 

CM 

O 

fN. 

O' 

rH 0 

rH 

NT 

ce 

M> 

CM 

o 

M3 

O' 

CM 

NT 

O' 

ut 

NT 

M3 


O 

NT 0 M3 

CM 

M3 

CSJ 0 0 

NT 

M3 

O' 

O' 

0 M) 

r* 

NT 

N. 

CM NT NT St 

NT 

CM 

rH 

M3 

rH n± 

NT 

M3 

CM 0 rH 

CSI 


CM 

NT 

CM 

rH 


HHHHHHHHHHNCVJNCJWN 


1 

w 


>» 

fc 


-J 

3 

a 

z 

0 

« 

o 

O 

0 


0 


0 


II 

0 

O 



M 

0 

u 

3- 

Q. 


< 

> 

h 


H 

0 

0 

1 

0 


h- 0 

K 

z 

Z 0 


o 

0 4 

Z 

w 

Z L) 

< 

h- 

0 0 

< 0 

M 

-J Z3 

0 

a 

0 0 


QOOOOOOOOOOOOOOOOOOOOOOOO K 

MOOOOOOOOOOOOOOOOOOOOOOOO o 

I oooooooooooooooooooooooo I— 

HfSJNT<0 , U)M3F'-®G'OrHCSINT>0;UTM>r^C0pOrHCMNT^»C0 ga 

0 


or 

< 

CO 


UJ 

o. 


< 

o co 

• CM 
UJ N 
-i 0 

a. 0 
r < 
< z 

O 

• rH 

I- CSJ 


2-154 


•v' v” - 

»jCmjfm 


b»A.^k; 




FIGURE 2-19. MSC/NASTRAN ELEMENT STRAIN ENERGIES 











2.3.2.JO Grid Point Force Balance 


Figure 2-20 shows the NASTRAN output that tabulates all the forces and 
moments acting at the grid points. The totals shown at each grid point are 
not always zero; the loads due to RBAR rigid bar elements are not included 
in the balance. Therefore, mass points which have node points connected to 
them, as well as the corresponding node points, will show nonzero total 
loads. (Grid points 200 and 201 in figure 2-20 for example.) Mass points 
without node points (such as 500 or 600) will show zero total loads. Due 
to this anomaly in the grid point force balance output, these data are onlv 
marginally useful. 

2.3.3 K.RAS1185 Output 

2.3.3.1 Initial Output 

The initial output of KRASH85 is identical to that of KRASHIC, 
described in Section 2.3.1. These data were illustrated in figures 2-8 through 
2-10. The only exceptions to this are the mass and node point coordinates, 
as well as the initial mass and node point deflections. The values shown in 
the KRASHIC input represent the values before the last iteration of KRASHIC/ 
MSCTRAN. The values shown in the KRASH85 output are those following the 
last iteration. There will be slight differences in the deflections between 
those two outputs, unless a very large number of iterations are used (>10). 

Figure 2-21 shows this section of the output from KRASH85. Note that 
the initial deflections and corresponding coordinate positions are slightly 
different from those shown in figure 2-9. As an example, the initial node 
point z deflection for node point 11, 1 changes from -.3946611 in figure 2-9 
Co -.3946607 in figure 2-21. These values represent before and after the 
tenth iteration. The corresponding node point z coordinates show no 
difference between figures 2-9 and 2-21, since thp coordinate values are 
shown only to .00L inch. The differences are much finer than that. 

Also, the initial deflections are in data set XYZ.NASOUT.DATA, which 
is always shown at the botton of the KCHO of input data. If all deflections 






I 


in this data set agree between the KRASHIC and KRASH85 outputs, then further 
iterations cannot improve the accuracy of the initial conditions balance. If 
the two sets of data do differ, and the user is not satisfied with the quality 
of the initial balance, then further iterations cent Id improve the initial balance 

KRASH85 includes some additional miscellaneous calculated data, in addi¬ 
tion to that described for KRASHIC in Section 2.3.1.3. Figure 2-22 illustrates 
this output, which is calculated prior to time zero in KRASh’85. These data 
include 

• Beam uncoupled, undamped frequencies 

• Beam damping constants 

0 Euler angles, beam IJ to airplane 

•_ Load interaction curve load ratios (optional) 

The beam frequencies output are the undamped, uncoupled individual beam 
frequencies associated with the six degrees of freedom of each beam. The 
frequencies listed under the headings (1), (2), and (3) correspond with the 
three translational degrees of freedom (x, y, z) and those listed under the 
heading (4), (5), and (6) correspond to the three rotational degrees of 
freedom (<f>, 6, ip). The frequencies are computed using equations 1-55(a) and 
l-55(b) from Volume I, Section 1.3.5.3.6. 

The frequency values summarized should be reviewed for indications of 
potential stability problems which may occur with the numerical integration 
routine used in the program. For example, high frequencies combined with a 
relatively coarse integration interval may result in numerical integration 
instabilities. In general, beam member frequencies should satisfy the follow¬ 
ing criteria: 

1) Member frequencies < 500 Hz 

2) The product of the maximum beam member frequency and the integration 
interval <0.01 


2-156 










INITIAL CONDITION STATIC SOLUTION 


r - v* .• 


o o o 
o o o 


o o o o o 
O O O © o 


o o o 
o o o 


o o o o 

oooo 


o o o o 

oooo 


r«. -o 

CO CO O' 

yf O O O nT Kl 


oi/iooino 

0^00^0 


o o o o 
o o o o 


o o o o 
o o o o 


NOOONi 


♦ ♦ I 

Ul UJ UJ 

Ul Ul <NJ 

CM CO CO CO 
OC CO CO -O 
N N * 
co CO Kl 

<r ui 


M J t J H IT 

H -t H Ifl 

cr cm ^ -y 

mir o oifl 

H CQ vO cO X5 

X N «t N w 


o o 
CO CO 
co CO 
O' o 

o o 

O rM *•« 


Ul ^ O' r-t 
O' 5) d H 
Ul Kl m 
J M rt N| 

CM CM co 
a> # <r ^0 


CM sO sO CO 

o o o o 

UJ LU Ui UJ 
Ul H o Ul 
(0 N 'J Ul 
CO >?■ Kl >f 
CO •T >}■ -f 

y- Ul Ul CM 
CM CO CO O 


ifl i O' J N J 
Kl O <T >H O O 
H Ul M ^ M N 1 
W CJ H o f CO 
Ul Ul Ul CO CM CM 
NMONNM 


O' J H O 
N K 1 O' CO 
Ul Ul CM Ul 


O' -J CM O 
lilNHO' 
NOON 
O CM U) Ul 
CM O' O CM 
•«>f «f N 


•O O -T CM 

■J ■JOU1 
u\ T -h a 


cm r>. , 


Ul K. fM O' i 


O CO CO 


iH O' O' fM 


vj- CM sO CO CM CM 


NOON' 


CM Ul Ul Kl 


o o o 
o o o 


O O O O o 

o o o o o 


o o o 
o o o 


o o o o 
o o o o 


o o o o 
o o a o 


) <0 •& 
1 ui 03 

< O O O <-• O' 


(A Ul CO 

M 3 vO CM 

O fM o O Cm Kl 


o o o o 
o o o o 


O O O o 

O O O o 


O O 

CM o 


OHOOHN 


♦ + I 
UJ UJ Ui 
CO MS O 
M H rt Kl 
H- Ul Ul CM 
M KWI 
CM CM st 
CM CM N 


>f O N |J N 
-J HUl'ON 

O Ul ^ Ul o 

Ul M O' o- H 

O' fj H U) vO 

O N O H 


■fi O Cm 
O' O fM 

O i o 


K1 K1 ^ O 
O O O 
■* + + t 
UJ UJ UJ UJ 

fM fM ^ M) 

CO ui sD CM 

H o O CO 

H O' Ul M 
MHOS 
Ul «J- 


<t y* O' Kl 
y* yO O' Ul 
M O N rt 
CM Ul CO -t 
Kl O' O' X> 
O H Ul H 


UJ UJ UJ UJ UJ UJ 
Ul O' O' O CO K 1 

vT CO O' <M O' co 

O' Pm <M Ul Kl Kl 
N Ul <0 Ul CM O 
■f CO O' O fM r-C 
>0 U> Ul Ul fM O' 


o fM fM CM 
CM Kl yO yf 
Ul Ul Kl Ul 
Ul .T CM Kl 
O H J> CO 
» Ul CO O' CO 


UJ UJ UJ UJ 
^ N O H 
Pm K\ Ul U| 
10 U| O O' 

vj- O' O fM 

>J- -H CO CM 

ki co <r ui 


•0 OlrtH 
NO Ul 4> Ul 
00(0 0 


N N H 


■J fM LC1 o - 


<0 lA H N 


H 4 H H K 1 N 


(M O H H Ul Kl 


MHHH 


O Q O 

odd 


o o o o o 
o o o o o 


o o o 
o o o 


o o o o 
oooo 


o o o o 
oooo 


yO yQ CM 

O O O' 

O' O' fH 

CM CM ui 

O O Ul 

rH O O O rH >J- 


CM CM yf 

Kl Kl fM 

r4 *■4 yf 

fM fM K 

O' O' y- 

OHOOHUl 

O cm o O CM ^ 


OOOO 

dodo 


oooo 

oooo 


OOO-C OOOr-4 


UJ UJ UJ 
O O' 

• -O Ul y? 

■ CO CO -4 
K N O 
-o -o y 
U1 ui Ul 


UJ UJ UJ UJ UJ 

CM O' O' yf yf 

CM ui Kl O' CM 

Ul co O Mil 

Ul fM x> CO <0 

Ul -0 <T O CM 

H ui Kl Kl O 


Kl CO -0- 
fM ^ CM 
O Ul Ul 

CO Ul CM 
vf O 


UJ UJ UJ UJ 
CO O' fM Ul 
M 3 Kl O CO 
«H O CM O 
O' M 3 Ul -t 
O' vT vt CM 
CM Kl •O ^ 


UJ UJ UJ UJ 
O' fM Ul CO 
CM O Kl CM 
fM CM Kl 
fM Ul O Ul 

<t y* yO CO 

CO M> O fM 


r-C O O O - 


I 

UJ UJ UJ UJ UJ UJ 

Ul O' Ul Kl «M 

Kl CM Kl CO CO 

N (M ^ T -J H 

Ul O O CM H ifl 

M JM) H K ^ 

Ul o O Kl Kl Ul 


Kl Ul v* O 
Kl CO ^ (0 Kl 

yf & CO Ul 

Kl CM O' H Ul 

Kl fi CM M yQ 

CM O M Cl H Kl 


CM Ul M 3 M 3 
Kl rM rH M 3 
CM CO CO fM 
H If Ul O 


«e -c o eg 

V? rM O O' 
O' 00 CM >H 
fM Ul ^ Ul 
CO Kl yf Ul 
Kl M) .O y? 


O rM 
O M3 


Nf'.r-J Kl PM sj- Kl r-* Kl CM * 


CM -O’ M) *H Ul vO -0 CM O' fM M 3 CM CM r-C O CM CM Kl Kl Ul CM CM Ul CO CM CM rM 


O Q 
a < 

00 o 


a o 

4 CL 

o oo 


o a 
a 4 

</l o 


o a a o 
to a. 4 »— 
4 CO * 


a a a ct O 

a. 4 4 4 fr- 

4 CO (0 CO * 


a a o 
a < >- 
4 tO * 


a. cc a o 

a 4 4 i- 
4 CD (0 * 


a a: a o 
a 4 4 >- 

4 C 0 t 0 * 


o a a a a o 

i 0.4 4 4 1— 
U. 4 CO 00 CO * 


aOKKQIO 
O. I 4 4 4K- 
4 U. (D CO CO * 


o. a tr o 

a 4 4 K- 
4 (0 CO * 


a a a o 
a 4 4 K 
4 CO CO * 


o o o 
© o o 
o o o 

H (SJ Kl 


o o 
o o 
© o 

CM Kl 


o o 
o o 
o o 

Kl y 


o o o 
o o o 
o o o 
<t Ul o 


o o o 
o o o 
o o o 

Lfl MJ O 


o o 
o o 
o o 

yQ fM 


o o 
o o 
© o 

fs (0 


o o o o o 

o © o o o 

CM CM CM CM CM 


HrlH OOOO 

o o o oooo 

CM CM CM ----- 


Kl Kl y y y y 


o o o o o o 
o o o o o o 
Ul Ul Ul Ul ui Ul 


o o o o o o 
o o o o o o 

<J> O yQ -Q -Q yQ 


oooo 

oooo 

N K |M S 


oooo o o 

oooo o o 

<0 <0 (0 CO O' O' 



FIGURE 2-20. MSC/NASTRAN GRID POINT FORCE BALANCE 









HHNM'i'lfl'0S®0'OHNM4 , irXlKC00'O« 


noooonoaooooooaoQOooa 
ooaoooooooooooo-sooooo 
NOOO'O'^OOOO'fOOOOOO-J-COOOOO 
MOOOCOlOOOOK* OOOOOOf'-f'-OOOO 

oomk>>ooooo<ooooooi^i-(oooo 

UlO'OO'JOOOJUliOHOtOO'fflOoOO 


HB'HNHMMMNrtMKIr 


QQQQQCJOQOQOQOQQOQQQOQ 
OOOOOOOOOOOOOOOOcgQOOO 
>OOUUflNOOOtOO)COMff'NlSJ(00oOO 
MOON>'HsOoooa>a i^jhnki-j-cooooo 
QO'JM/ lOOONMSWJtOHMflOoOO 
OO‘fl'0NM^0HOKI(M(Vli1O^'f >0QOO 


000000000000000000000 
OOOOOOOOOOOOOOO £00000 
X\J’OC0f > --0f^'0<0<^OMOl0MC0U>OOOOO 
HHtONNOCrtfl'^MHHHfflQHNOOOO 
IflOM'O'-IMinONiflNUlNON^HHOOQ 


HfflHHtfCOfflfflO'N' 


000000000000000000000 
- KKUOMOOOM<rMlflNO'0'OCOWlflHeOM 

NOO'NlONfvJUlNMMNvfOM'ON^NNCO^ 

e-s<oiflONs^eo(MOio^^a'S>owHNs 

HHOOOHONlflO'IOONUl-fl-Jff'HJ’IOM 

M<S»{SJCJ<VJCNj<SJ<SiCSJ<SJrHCdfsjrsJf\JrHp-«0'cO(Njfg 


ooooaaoo 

NC-lftO'fiff'tflM 

'OlflO'^'OCOfO^i 

K%rs.M<0'HC0'Ofo 

ajHONOHHfg 

OOOOOOOOOO*Hr^MC0'»f^l/lK*OOO 


OOOOOOOOOOr 


N^lflNNUflrtOOO 


000000000000000000000 

- (>-nn4)OOOn^h DcsiaMOO'iProocsir'- 
* -JNff'0'OOJ'OQvJN(Dff''JHNOc0NOW 
Xff'ff'O'ff'OOffOQONOB'JOOHHNIM' 
(OO‘ff'ff'OOMO'flNHNN^Hff'NNff'5'9' 

HN^>O(0O'HHnH<0t0ff'HHNO'(0NNN 


oaoooaaaaoaaooooooooo 

OO<HO>0OOOOOOv0OOOOOOOOO 

Ol/lC0‘«Ml/lN^OftJOI/ll/lOMOOOOOO 

tOJKlONC5C'MQNNO(Ol/l'JOUlNtOOO 
uiouimho-hO'nh ioNNW-JHirMOo 


HaHHCgNO-tMAXTHinf 


CMCMCJCMCMCSJCMCSJCMCSiNCg 

oooooooooaoo 

000000000000 

OWMMNHS4>««(0(0S 

Off'MMN'CrtO'BM'filO 

MHN^^INrfvO 

iH^OONOOO'HSff'^) 

CO«OfflfflOMN^O-fiN^ 

HrlHHNNNNNHNH 


JNNNNNNNNN 

>000000000 

joooooooao 

>'0>0No®sflui0'o 

)>fi^OHN^MOO 

lNMfl«NrfiJ©0' 

>FHrHr-iiHOOrHrHO 

(WMNIfl^^NNIflO 

(HHMlflNNMMino 


: NNNNNtgMKINNNN 

I 000000000000 

1 

OOOaOQOOOOOQ 

- OHNNOMTIOrHfJO 

I - O(0(0(01/1N^H^N®M 
lXHBO'9'lfl>tlflO'fOMH 

I 1/IM-OvSHMJHI/lff’Nff' 
: NMOtOi-tO'HHMHHS 

r>-' r~ 00 eo a> O' rH i-J r>-' n! a- fg 


'EHHNMHHHNHNHiH 




0 

HHHHHHrtriHHNN 2 






.-.>1 


FIGURE 2-21. KRASH85 OUTPUT, INITIAL MASS/NODE POINT DEFLECTIONS (SHEET 1 OF 2) 


















VEHICLE TRANSLATIONAL VELOCITIES IN GROUND AXES I IN/SEC) 
VEHICLE ROTATIONAL VELOCITIES IN VEHICLE AXES 1 RAD/SEC I 
EULER ANGLES OF VEHICLE RELATIVE TO GROUND I RADIANS I 


HHHrtHHHHHHWN 


OOOOOOOO 
— UlO-HNO-OHlfl 

^ lOeOMOfflNNvO 

** IflSHIOHMDN 

VI 

Q- ONco<rwNt/io 

aoooooooooovOK\^><sio-Lnovoooo 

ooooooooQoin<T'r-tLn-T»-<LnLnooo 


M M frt M 

O O O o 

I I I I 
M O O O o 
— VI h CO o 

a 'floifln 

< CJ ^ -O CM 

x o eo so o 

^ (SJ H H 

DNNOMC 


ooooaaaa 

MNlflCONff'MO 

NOM'OO'COOCM 

N^HWO'lflSO' 

lOOOOOOOOO'OMNUINNin-OOOO 


> 000000000 - 0 , 


NNHHN-OOOO 


oaaoaaaaonaoc 

^(SJNHlflONNCO(OHlfl< 
•fiN«OUIOSNU|UU04JC 
UI^J-ONO hO-JO-NJ- 
a NN^ MOlflJOMf 

INlNW'OO'tflMHO'jO' CO C 


INItOrtN^N^HHi 


nnhhhhwh 

oooooooo 

■ I I I I • * • 

oooooooo 

N^^St/ltONN 

WOO-CKIO-J® 

©KIVICON.COO'UI 

OOOOOOOOOOCMrHOMKICOvJ-vOOOO 

0000000000-O^KI-0^<MK1h~000 


ooaaoaoaooooooc 

NOMJ><fCO«COa5'3 - NHNO's 

OUIN'ONO'N\(00(0>t4)0< 

OOOMKIJrlOlflNNlfiCONlC 

ff'J®(vrvNcOO-Off H ® M O' ( 


a o o a o o < 

t S vO ^ ® S v 
O ^ vf N NU 
; >o S N CO Ifl N l 
I M M H o H C 

I vj Kl Kl N -0 ?■ I 
OCMMSotf < 


OOOOOOOO* 

- OOOOOOOO! 

t fflOOMJJW-Cl 

l NCOIOMOMflOl 

I OCOOO'iUNNffli 

■ ®NNNONNNl 

OO'O’OtOO'NMNl 


>«0'(00(ON9''flHMHOM>fff'0'(0® 


O-OHHMNf 


oooaooooc 

iJNNOIfl(0'J®‘< 
-JOOCOO-J-OMC 
OHH^-OvOWWf 
KInOsOO'Csj^iTIVIC 
l C'JO'O'KlMinceO, 

oo'csjcsi^-oui^foc 

OrHHHWHNNCjr 


♦H £HHNWHHr(Nr<NH 


INM^lfl-OSOff'OHOjr 


2-159 


FIGURE 2-21. KRASH85 OUTPUT, INITIAL MASS/NODE POINT DEFLECTIONS (SHEET 2 OF 2) 















■>56170 01 -1.665150 01 6.784160 05 2.252640 02 4.18585D 01 4.46840D 05 


o o o 

<T <T <0 
in m ^ 
CO CD O 
o o o -© -o m 


QOOOOO oooooo 


000000000000000000000000 
“OinN'ilO'O JO' 1 J^OCO'CNHCO^MMNin.O(Otf 
<tONONHto>rinoNci)-fl(ON>jMOoini‘j t m co m 
— co to ff iflMMgwO'NUiHsCO-tn^oo^'OOH^-o 

^IMNNfvJJNlONinOM-JinNininUUfl-TlM ^ N (SI o o 


>-iNNsO>0Q)in(0^7 n c in m n a) - 


IfJN^HNMQO 


O O TO 
O' O' <r 
O O O O' O' fx 


000000000000000000000000 
J J N h H M N f J O' If) 


O O O 
H H ® 
o O l/> 
*-6 —< CO 
NNff' 
O O O -T O 


oooooo oooooo oooooo 

oooooo oooooo oooooo 


oooooaoooooooooooooaaooo 
“ c o cnj o- uiaDONHSXNinjO'j -o ® f j j n o « ifl 
vj-cocoKicMinco-o^-csjcr #mnco •eoi/liror''^NiOKi 
- H M m O N 9 .f fj N l«J N K 1 S M t> o w M o 

Xinaino-WUOM^N^MM-C J)NUllfl«MNNHHOO 
ff'MNN»nNtfK|NN»ir<HH9'HHHjU1^ ( nNNOO 


O Q O O 

—I O -O O' 

N N 

-« & -o *o 

tsi <r co c 

9 o o ui ffl e) 


o O O o 

>»• o m in 

60 T* -« O 

O' CO «SJ n 

K ^ (M N 

Kl O O I s *. TO 


aoooaooooac 

■ C taJ-OinMtrtNNNf 
isinm-flo m o m m o • 
■COOOf^COOKI^tflC 
NNff'fl'rt(sN^O>C< 


lOOOOOOOOOOOO 
.CMC p-H CO O' O CO O' O' H W ^ 

O'COHONNCOOCOO'Om 

INMJQNN’J'filONOOOl 


OOOOOO 

OOOOOO 


cg^)inj9'W(0'O<OKl( 




OOOOOOOOOOC 
)“r<wooiflintfNin'-'< 
I N S N JpC^fNinjO' 

» n®h«bno»9'M 


IQOQQQOOOOO 

jO'KiO'C'coinoo'ro^ 

19hNN^JH iflDOOO 


icOHNN^H<0in-t^oo 


OOO O O O o o o o o 

ki o x> O' -T -o s >-• <-• 0 

in h u co c o <o O' -o-oo 

C *1 f J 9 N ffl ^ ^ N in 

r^f6.csj kfl O in O «*• O —< O' 

0 0 0*10 <-* O O <s< o >0 N O O C -0 M 

o o ^ ^ ^ O O -n M M HOON<N 


OOOOOOOOOO 

■yivtNtOOinr'rorNin 
C|/l<TH(0^O'inHNN 
■ HOfflmHNHHOin 
infvjinO'^csicococMco 


OOQOOOOOOOOOOOaO 

NMflinpCtfOOCDOttNN^HH 

oo'co-9»T'jininNj^HinN9'9' 

inMcoMnomm^inHcoo^NN 


I H^mincoHKNpnNioo'O'O'iflN'tvtHiniflMHcoinin 

'ZOOOOOOOOO»-<OOOr>Cr-«r-lOOOOOOOOO<M 


-/COOOOOOOOOO' 


llNM-Tin-CNCO^OHl 


< O O O O O O <V 




FIGURE 2-22. KRASH85 OUTPUT, ADDITIONAL MISCELLANEOUS CALCULATED DATA (SHEET 1 OF 3) 






















QQQOaQQQOQQQaQDDOOQDOQQQ 

— ^ Lfl O ® f> ilflNHlftlrtNO(0<0c0MlflMOOH 

^(DOl'Uftf'f'lOHO'NNO'OlflONOOvtNlflHinO 
• fjN^lTMNCOoOOMriHJO'O'i'OO'CCOlflfOO 
^HOK»tfl(DNOSN'OU|C'CON(OOON<JS(0'JNt 


<T 

cj 

~ 

<SJ 

eg 

H 

eg 

- 

to 

- 

~ 

eg 

(V 

eg 

~ 

- 

- 

r-i 

•X) 

s© 

ro 

3 

■t 

ro 

O 

O XS sO 




3 

it 

in 

•t 




-t 

it 

•t 

<r 

it 

st 

11 

11 

it 

vt 

it 

3 

ex 

eg 


•t it 

O 

O 

o 

o 

o 

o 

o 

o 

CD 

o 

o 

o 

o 

o 

o 

O 


o 

o 

O 

o 

O 

o 

o 







o 

o 

o 



CD 

a 

o 

© 

© 

© 

a 

Q 

o 

© 

a 

n 

a 

© 

a 


a © 





ui 


f) 




in 



m 

ej 





Ul 

© 


o 

it 


rg >—4 

3 

tv 


o 

■J 

CJ 

O' 



0 

eg 

-X) 


O 

X> 

a 


O' 

rv 

CO 

0 

Ul 

it 

3 


rg r—4 




o 

to 

in 

o 


O' 

tv 

ro 

3 

o 


eg 

r-i 

X) 

X) 



o 

to 


eg 


© © 

a 



X) 

o 

in 

•0 

tv 



© 

er» 


to 

Ul 

CO 

(-4 


3 

O' 

© 

it 

Ul 



rv rv 

r-4 

0 

to 

eg 

to 


•o 

in 

to 

•t 

rv 

© 

rg 

to 

eg 

Ul 

eg 

eg 

<-* 

ro 

eg 

h 

it 

eg 



' H 

rg 

H 

H 


O' 

* 

* 


eg 

eg 

to 

<r 

to 

rv 

Ul 

eg 

cg 

cg 

O' 

© 

© 

3 

to 

o o © © 






it 

3 




3 

to 

tO it 

to 

to 

to 

to 

ro 

to 

ro 

to 




►O ro 

o 

o 

o 

O 

a 

o 

© 

o 

o 

O 

o 

o 

o 

o 

o 

o 

o 

O 

o 

O 

O 

o 

O 

O 


a o 

o 


o 


a 

CD 

o 


a 

a 

a 

CD 

a 

Q 

a 

Q 

Q 

a 

Q 

a 

Q 

Q 

a 

a 


Q a 


Ul 


© 

CJ 

O 

to 



•X) 


•© 


r-i 




to 

to 



in rv 







•n 




tv 



in 


iO 

O' 

-X> 

CO 



O' 


eg 


eg © 


ro to 



o 





rv 

O' 

tv 

eg 

to 

o- 



Ul 

X> 

X) 



© it 






o- 


in 

o 

in 




to 

rv 


Ul 

r-i 

3 

eg 

to 


rv 

O' 

it 

rv 

o 

© 


© © 

X> 

vT 

to 

rO 

o 


eg 


o 

•-» 


»*< 

»-< 


•O 

to 

o 

o 

ro 


M 

eg 

it 

o 




t 

in 

X> 

it 


to 

vt 

X) 

fv 

O' 

-* 


O' 

r-i 


•H 


eg 

eg 

eg 

>t 



o 

O eg eg 

© 




>t 

in 





•t 


to 

to 

3 

it 

3 


it ro 

to 

to 

eg 

eg 


Cg cg 

o 

O 

o 

© 

O 

o 

© 

o 

o 

O 

o 

O 

o 

© 

O 

o 

O 

o 

© 

o 

o 

o 

O 

O 


CD O 





O 

Q 









Q 

© 





o 






rv 

a 









O' 



cr> 

© 

o 

© 

vD 


<0 

O' 

vt 


rv 


© © 


tv 



CJ 

Ul 


o 


O' 






eg 


O' 


x> 



rv © 



rv 




O 

C 

o 


in 

eg 

x> 

in 


in 


X> 



© 

rv 

O' 

3 

© © 







to 

© 





X) 




O' 





Ul 

to 

to 


eg 


eg eg 

a 

© 

X> 

CM 

tv 

CO 

a 

3 

x> 


a- 

O' 

eg 


© 


© 

© 

Ul 

it 

<r 

ro 

<r 

© O 


•o 

<Si 

cu 

tn 


© 


eg 

eg 

it 

-o 

O' 

(—4 


x> 

Ul 

U| Ul 

ro 

rO 

© 

O' 

eg 

rg 

o 

O eg CJ 

© 




3 

m 





t 




to 

to 

it 



ro 

to 

ro 

eg 

eg 


r0 ro 

o 

O 

o 

o 

O 

o 

© 

o 

o 

o 

o 

o 

o 

o 

o 

o 

Q 

© 

o 

o 

o 

o 

O 

O 



o 



a 

O 

o 

© 


© 

o 

o 

Q 

© 

o 

a 

o 

O 

a 

© 

a 

a 

Q 

a 

© 


© a 




in 

O 




tv 

r-v 


Cl 




Ul 

>0 

XD 

r—i 

X) 


it 








c 

m 

to 




-0 

CJ 

<0 

eg 

O' 

«t 


O' 

O' 

3 

o 

to 

eg 

rv 

© 


ro © 












M 

eg 


3 


•t 


-O 


it 

cg 


C0 


^ x> 

o 

to 



to 

a 

to 

O' 




to 

O' 

to 

c0 

o 

<1- 


3 

x> 

o 

© 

rv 

CJ 


r-i r-i 

o 

it 

CO 

in 


o 

•o 

■-< 


X) 

m 

© 


it 


it 

© 

© 

Ul 

o 

x> 

© 

it 

© 


O eg eg 

a 

to 

M 

in 

■ J 

a 

eg 

to 

<0 

tH 

eg 

Cg 

to 

it 



Ul 

Ul 

ro 

.-g 

eg 

eg 

eg 

rg 

o 

o © © 





3 

3 





it 




it 

it 

to 


to 

it 

it 

it 

to 

ro 3 

it it it 

o 

© 

o 

o 

O 

O 

O 

o 

o 

o 

a 

© 

o 

o 

o 

o 

o 

o 

o 

o 

o 

O 

o 

O 



o 



© 

c 

a 

a 



© 

a 

© 

© 

a 

o 

© 

a 

© 

o 

a 

© 

© 

© 

© 

Q 

O C) CD 



m 



in 

Ul 


0 


o 


to 


o 

it 





o 

to 


Ul 



tO 



<T 


co 

to 



ui 

eg 


O 


© 

fO 

i© 

l© 

to 




CJ 

© eg 

eg ro ro 


to 


0 


to 






> j 

c 

to 

eg 

© 

eg 

eg 

O' 

o 


eg 

3 

to 


© © © 

in 


m 

r- 

O' 

3 

to 



eg 



o 

to 


Ul 



r—i 


O' 



Ul 

O 

O it it 

O 

U' 

© 

£> 

a> 

eg 

o 

o 

m 

O 

<0 


o 

© 

CO 

eg 

Ul 

Ul 

H 

© 

o 

•—4 

Ul 

1 




fJ 

eg 

fJ 



eg 

fj 

eg 

eg 


rg 



eg 

eg 

ro 

ro 


eg 

ro 

3 

3 

CO to ro ro ro 

o 

O 

o 

O 

o 

o 

o 

o 

o 

- 

© 

o 

o 

rg 

- 

« 

© 

© 

o 

o 

o 

O 

O 

o 

o 

0 

0 

2 

o 

o 

o 

O 

o 

o 

o 

o 

o 

o 

- 

o 

o 

o 

rH 

- 

eg 

ro 

- 

© 

o 

o 

o 

o 

o 

eg © eg 

ej 

fO 


in 

n 

fx. 

cr, 

a 

r. 


eg 

to 

it 

m 

X) 


© 

© 

O' 

eg 

t 

o 

o 

rg 

X) 

0 

0 

9 









—< 

• •* 

f 




r-i 

•-* 



rH 




eg 




r-i 




© 

o 

tv. 


o- 

in 


eg 

to 


eg 

3 



eg 

i0 

O' 

eg 

eg 

eg 

© 

© © © 











t -1 


rg 



r—i 

M 

r-i 




rg 




H 'S H 


cj 



in 

0 

tv 


O' 

o 


t j 

to 

it 

© 

3 

rv 

CO 

O' 

o 

r-i 

eg 

to 

■t 

© 

x> rv. © 










i-i 

tH 


<-* 

r~* 



'■g 

r—i 

r—i 

eg 


eg 

eg 





looQaoooooaooQoooooa 

0'0'0'0'0'0''Jl/l«J0 , lfl0'K9'0'0'(0o'O 

i©©©©©©egegrveg«trvrv(oco©i , V't© 

IHHilHHHHOOHrlrlKlHHHHOt/lOO 

iMMMMMMHNNNfJHlflrtMMHHHOO 


►iMaooaacsaoooaaoooaooooo 
< _ K 1 eg N xf ^OtOMflOMJNN^lilrOMONj 
O'>'0Ot0MMiiiC'0'Ni/\r'JlK'^ i N N rrt ifl CT 
O~>*0i0©©r0©rva'.tt''tr0rgit-tegcgcgrv.^i0 

luOOlfl(0Lfll<)OOO'OOHlllHM>1NNNMO( 

Hhrt^HN«uiHNHHr(HHH<(>a'NWNN «0( 


eozooooooooo*-iooo--<«-i^«oooooooo 

{/)JCOOOOO0OOOO»-«OOO*HMfJ»0i-iO0OOO 

UJ 

z HrtHHHHHHHHHHrl CJ eg 

4 

M«-4cgroit© i «rv©O'©rgegrOiteg > trgrgegia0'fgcgcg 
QC HHHHHrlHH i-« 

UJ 

D t-i HHHH^HHHHrlNNNNN 













Mr-1 O O 
O O O O 


I 1 


a o o a 

N K O O 

m in <o co 
o o o o 
9'ff'NN 
Mrtlfllfl 


CO CO H M 


O O 

I I 

o a 

O'. 0*. 


CJ (M 

n© vfl 

K Pv © © 


M M O O 
I I 


ONOO 

O N O M 

'•>0 0 0 

r-, M 

U\ U) U) tl) 


sO PS <0 
N N CJ N 


< 

a 


o 

< 

o 


UJ 

> 

a 

D 

U 


u 

< 

O' 


a 

< 

o 


w _ 

Q (/) 

< a 
O < 
-J O 


z z 

ujOQ 
M Z 
£ h IU 
< U 

Ui < “) 

CO cn 


o z 


< < 
ui: 
CO 


*2 


3 ; 
u 


O'J’MMMOIOO'OMMMMMM 

ooooooooooooooo 

• III I I I I I I I I 

aaooaaoooaoooaa 

M^OW'tONOCOHIfl^HCO^ 

OOMOOOOOlflMOO'CO'OCO 

ooi/unootfONooff'C'O'O' 

ONMWOOO'OtOO^^^^CO 


MHsOHl/lHHH'j’lflNNNNH 


^MMrHiHlflM'OOiHMMM 

OOOOOOOOOOOOO 


6 a 

M D 9 

)- Z 
KUUI 
O Z 
a. m m 

o * 


I I I 


I 


I I I I 


QQoaaaaaooooo 

NMOlfl'OO'CO^OO'lfl.flC' 

ocoo'ff'a'mo'inocoff'OH 

Nff'tf^C'NO'OOO'O'OO 

COO'NNO'^O'NOO'tflftlfl 


o o 

I I 

a a 

oi >± 


K> i 


o o 
U) *H 


NO'MCO^CylO'NHtf NMNN(0 




I/) 

M M M M M M 


2-162 




A . V. 


FIGURE 2-22. KRASH85 OUTPUT, ADDITIONAL MISCELLANEOUS CALCULATED DATA (SHEET 3 OF 3) 









While these criteria are suggested as guidelines, their exceedance does not 
necessarily mean that instability problems will automatically occur. 

Beam structural damping coefficients are computed within the program 
for each of the six beam degrees of freedom. The damping coefficients are 
computed from equations (1-54), Section 1.3.5.3.6, Volume I. 

These damping coefficients are printed only to provide a record of the 
actual data used in the calculations. The interpretation of the proper damp¬ 
ing values should be based upon inspection of the damping ratios (actual 
damping/critical damping) summarized in the section entitled "INTERNAL BEAM 
DATA" (Section (2.3.3.2.2)). For typical aircraft constructions, dumping 
ratios in the range of .01 to .10 are appropriate. Higher values should lie 
used only to represent mechanical damping devices, such as hydraulic, or 
friction dampers in landing gears or viscoelastic engine mounts. Values 
greater than .05 are probably only justified as representative of the fric¬ 
tion damping associated with relative motions of riveted and bolted structure 
under conditions of severe loading and deformation. 

The Euler angles define the initial orientation of the beam axes relative 
to the airplane, according to the convention shown in figure 2-5. These 
angles should be interpreted in the following manner. Assume the beam axes 
arc oriented such that x is forward, y to the right and z down. Then rotate 
PS 11 JO radians about the z axis, positive nose right, forming a new set of 
x' and y’ axes. Then rotate THEIJO radians about the new y' axis, positive 
nose up. This final position defines the orientation of the beam axes with 
respect to the airplane. For vertical beams, which are denoted by VBM=1 in 
the beam data formatted output, the above procedure is followed with one 
exception. The initial orientation is such that the x axis is pasitive up, 
v axis positive right and z axis positive forward. 

It should be noted that during the time history analysis, these angles 
vary with time and are part of the print output. Any question regarding the 
current beam orientations should be resolved by examining the current values 
of the beam orientation Euler angles. These are interpreted the same as the 
preceding discussion, except that the initial starting orientation is the 






ground axes rather than the airplane axes. Since the initial attitude of the 
vehicle may not be parallel to the ground axes (generally it is not), the 
time zero value of the beam orientation Ruler angles mav differ from the 
angles listed in the MODEL PARAMETERS section of the output. The latter is 
provided as a definition of beam axes orientations that is independent of 
vehicle initial conditions (and hence represents a true model parameter), 
whereas the time varying values represent the actual beam orientation during 
the analysis. 

The load interaction curve load ratios tabulate what proportion of the 
1 and .1 end beam loads are used to calculate the intermediate loads at the 
location specified for each load interaction curve. 

2.3.3.2 Time History Output 

This section of the output prints the time varying response quantities 
at each print time interval, including time zero. This output consists of 
the following groups of data: 

• Title cards 

• Analysis time 

• Mass and node point displacements, velocities and accelerations in 
six directions for all NM lumped masses and NNP node points, in mass 
axes and ground axes 

• Mass impulses (G-sec) based on filtered accelerations 

• internal beam strain forces, total forces (strain + damping) in both 
beam and mass axes and displacements in six directions for all NB 
internal beams 

• External spring compressions, ground deflections, axial loads, and 
ground contact loads (3 directions) in ground axes and mass axes for 
all NSI’ external springs 

• l)RT number for all DR1 beam elements 

• Overall vehicle c.g. translational velocity (3 directions) 

• Volume change data, including current volume, current volume/initial 
volume, and the changes in length of the three lengths of the volume 
(optional) 


2-164 





• Energy distribution by type 

• Energy distribution by mass (kinetic and potential), beam (strain, 
damping) and spring (crushing, friction) 

• Mass energy deviation 

• Stress output for internal beam elements, including ratios of current 
stress/failure stress for two failure theories 

• At t=0 only, the differences between actual initial mass accelerations 
and the theoretically exact values, for all NM masses. 

• Mass location plot (time=0 and at specified intervals) 

Figure 2-23 illustrates a portion of this output for the sample case, 
for one typical cut in time. It should be noted that all this output is in 
inch, pound, second and radian units except XACCEL, YACCEL and ZACCEL. These 
are in g's. A more detailed description of the specific items printed out 
at each time follows. 

2.3.3.2.1 Mass and Node Point Data . - X, Y and Z are the ground coordinates 
of mass I or node point I, M. The data for each node point are printed below 
the data for the mass to which they are attached. XDOT, YDOT and ZDOT are the 
ground axes components of the translational velocity of mass I or node point 
I, M. U, V and W are the corresponding components in mass fixed axes. UDOT, 
VDOT and WOOT (not printed for the node points) are the time derivatives of 
U, V and W. Note that these are not the translational acceleration compo¬ 
nents, but are used in Euler's equations of motion. XACCEL, YACCEL and 
ZACCEL are the body-fixed-axes components of the translational accelerations 
of mass I or node point 1 , M, in g units. XACF1L, YACFIL and ZACi' T L are the 
same accelerations after passing through a first order filter with an input 
cutoff frequency. All the above quantities are positive forward, right and 
down. 

I’l( I , THETA and PS f arc the Euler angles defining the orientations of 
mass I with respect to the ground. These are positive right-wing-down, nose- 
up and nose-right, respectively. PHIDOT, THETADOT and PS I DOT are the time 
derivatives of the same angles. P, Q and R are the body axes components of 


2-165 








TIME = 0.050000 NUF®ER OF INTEGRATION INTERVALS = 200 


HQ O U- 

cn ►-* tr a o 
a. to cl < 


O -J 

< O >- M 

K < O LA- 

WhOQU 
x uj a <x 


N N N O 

o o o a 

i i i 

a a o q 

^ N N N 
(M cm r>. 

N1 H H flD 
O' CM <SJ lA 
O' CM <M (M O 


o o o a 

NOO « 

LA -O' 'O’ >-< 

<v< CO eo rs. 

O' O' O' O' 

O' O O O' O 


Q Q a Q 

-O CM CJ Co 

O f-» F/i 
<--l O O •£> 
ifl ^ <g 
O' i—♦ *—« N. o 


Q □ Q Q 
-C O' O' O' 

NT N N O' 

O' (SJ (si o 
N M O 
(0 l/l HI i O 


□ Q a n 

O- C0 (O O' 

O N N Ifl 

O' cm cm f^- 

OKUAO 
O' -O sO ■£> O 


Q a a a 

Ifl H H M 

^ O' -0 r-l 
0 - 0-0 0 
O O O CO 
Ul H H o o 


MO O La. 

x m a o o 
ax a < 


O O o 
N a 2 a u 

N z 3 


o a o o a 

(SI CSJ -O LA 

CM r-4 O' lA 

sT-VO'<y^- 
h*. cs» vj- ^ 
J'JOOvT 


o a o o o 

O'O'NOMJ.J- 
(SI O N. vf O 
HNllflSO- 
N O' -O O' 
<f ^ OHO 


O Q O O 

cm m> no O' 

(SI J O H 

•OHIilO 
Kl -O (0 M 
K1 O O N 


a a a o o 

LO W O Hi H 

>0 <SJ N K -t 

O' M M U O 

O N- CO O CM 

M LA H o H 


o o a q a 

ST Sf o v 0 KT 

O S H> H) CO 

(SI CM O CO O' 

I/I H O >f ^ 

(S» nO CM NO NO 


O O O Q Q 
O O' 4 (O 

cJ-CsIfs.^^ 

O O' vO O (O 
LA sr C0 la 

H Ifl H (0 ■C 


o a a a 

•o co >-i <sj 

o H -Cl 
o H (O -o 
NO >0 LA NO 
NU1HN 


a a o a o 
N O M H N 
H M I/) H lf| 
fSvDCO-O-O- 

>» o co oo o 

CM M> K1 rH CO 


O O O 
V Q > Q O 
> > < 


O O u 
X a D a u 

* 3 5 


o a o a o 

M N H O' M 

NO CM CO O' CO 
NH H O- J 
O CM CM CM 
© — <-* © O 


o o a o o 

CO CO M <M rH 

N -T O' M O 

N S H M ^ 

O' CM (M O' O 

O' H H (S O 


o a o o 

CM O' •£> 

O' O LA LA 

H H l/l N 


o a o a a 

HOOl/lN 
O H >J rt H 

O O' NO O' o 

O <M <SJ vj- CM 

O H H ^ ^ 


O Q O Q a 
M> O N O H) 
vO -O -c O O' 
O O LA O vj 
O NO CM N NO 
CO H H -O nO 


o o o o o 
fM no NO -f 
O' LA •-« LA 

H i*J S (0 
O M N H <J 


a o a o 

CM co cm o 
LA O M) CM 

vj H l/l ^ 

LA NO CM NO 
N H H O 


o o a a a 

O' O H C0 H 

(0 O Ifl 1/1 N 
O' NO O' O' 
O' ro cm r-. -* 


FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 


















TIME = 0.050000 NUMBER Of INTEGRATION INTERVALS = 200 


m Q o ll_ 

1,1 h a q g 

a. in oc 4 


O O o 

X Q D Q a 

X z> 4 


O o O O CO 

OOOON 


o o o o k 
o o o o in 


O O O O rH 

O O O O K 


OOOOJ- 
O O O O rH 


C3 O O Q Q 

^ o m co co 

M W N W f<J 

in co cm m i-i 

O' H N ^ S' 
J N l/l O U1 


m » 


i co in 


4 a Km 

K 4 O u. 

W h O Q U 

ZUJ O’ 4 


I 


o o o o 


o a a o 

-»i/uno 

H M K1 ij 

00 CO CO K* 

to O' O' in 

>0 0 0 0-0 


o o o o 

a> cv (m to 
M (fl M Wl 


o o o o 

O O Q O 


O' M N1 O' 

0 - co co m 

O' vfi >C H ( 


CO O O «H 
hi O’ O' CM 
>0 in in <m 

O' rH m X O 


a o o a a 

o ■? h o o 

hi O O CM M 
CO CO K o 
fj O O M >t 
O CO to N O 


CM m m O' C3 


N lO K1 N O 


N O ^ N M 


I 


o o o o o 

O O O O rH 


O O O O rH 
O O O O rH 


o o o o 

O O O O rH 


O O o O CO 

o o o o hi 


Q O Q C3 a 

fM CM vj- O' rH 

N O' N ^ 

■J rt N N ffl 

n» <m cm w m 

hi O O M 


S. -O >o H r 


o o u 

M o I a u 

rsi X 4 


a a a a a 
o- >j- o in m 

m O' n o O' 
h MO ^ H 
co co cm in m 


a a a a a 

rH H v© rH N 

rH O tO M 

co in o o' m 

o o' o k m 

ki co co hj in 


o a a o a 

N M O O' rl 
hi O rH O' O' 

0- ^ 0- k m 

O hi M) CM K 
>0 CM rH rH M) 


O O O O O 

O' m rH vj- CO 

M N to K 1 O 

O' rH rH CM O 

'O 'D co co in 

C-lONlOO 


O Q O O O 

M M H O N 

rH O' O W K 

CO vj M M o 


O J M -J O' 


r; ir_ vrj w- 


hi .o 
m cm 

in co 
in o 


o o 


o a 

CO CO 

O' O' 

co m 
o c 

CO O' 


m ki 


o o o o 

CM M3 CM hi 
O' >0 K N. 
K >D O' O' 
cm o cm m 
o m in m 


o o o o 

k rH <r 

o co o m 

K hi O 
M O' N O' 
VO O' O' M 


O O Q Q 

OtOOIfl 
N >J Kl O 
m O' k O' 
M3 O' O' hi 


>0 co 

K1 O 
O P- 
CM O' 


I CM hi O' hi 


rH CM hi rH I/! 


« hi 0" <M K HMjHr 


rH CM CM U1 


I rH O' 


o o o o o 


O O O 

V Q > Q O 

> >4 


o o o o o 
o o o o a 


o o o o o 
o o o o o 


o o o o o 
O O o o o 


o o o o o 

a o a o o 


o o a o o 

o C0 CM K O 

in o co mo¬ 
rn o m o m 

co n o >o cm 

rH O M3 M in 


o q o a 

O CM CM O' 

in rH O' o 
MOCO'J 
tO O O' o 
rH K O O 


a a a a 

O' O' in rH 

in cm m >0 
K hi M) co 
rH M3 CM O' 

hi r-* o w 


a a a a 
o- o- in rH 

Ul CM hi M3 
K hi M) to 

rH M3 CM O' 

hi N o in 


a o 

K M3 

r*» co 
k o- 


I rH O' rH rH P 


rH rH CM hi 


( rH CM M 


O Q O O Q 

o (0 h Ml CM 

O' CM O' CM rH 


a a a o o 

in k o- h >o 

H H M S co 

CM O’ O' in M3 

o CM rH o O 

O rH rH O O' 


o o q o a 

O CO K rH in 

CM M3 m M3 O' 

O CM rH m CO 

rH CM H «f H 

-fl 


a Q Q o o 

O O O' I-H O' 

k m mi hi k 

w o n O' m 

CM rH O' vO rH 

N- rH O O' O' 


a o o o o 

Ul O' M) CO hi 

hi hi in CM CM 

o o o co o 

O' hi hi CM CM 

O' rH rH CM o 


o a a □ 

O' <m o co 
hi O’ M> O' 
>0 O' O- hi 
>0 CM CM O' 


CM r 


o a o a 

P" © O' hi 
hi in M3 CM 
hi M3 M) rH 
hi CM CM rH 

i—t i-i <0 


o o o a 
K O O' hi 
hi in M) cm 
hi s0 M3 rH 
hi CM CM rH 


a o 

m o 

h> O' 
o hi 
CO hi 
O' rH 


cm hi m <j- co 


l hi co 


in hi hi rH hi m hi hi rH CM 


rH hi hi r 


I hi 



FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 2 OF 11) 












eg eg eg o 
o o o o 

O Q Q Q 
M M (0 O 
O vO U1 N 
\t O' H O 
S O' CO O' 
H N O' \0 


N O O H 

o o o o 

I 

Q Q Q O 
NIOOH 
N CO O O' 

in <0 ^ 'O 

H D3 O' N 

N ^ ifl CO 


eg k> ro o 



FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 3 OF 11) 













TIME = 0.050000 NUMBER OF INTEGRATION INTERVALS = 200 


l-H o O u. 

H w a o u 

a. to a < 


«t a »- w 

►- < O u. 

uj u o a u 


H O O u. 

i i-4 a o o 

a. x a < 


O O U 
N O 2 Q O 
N Z < 


O O U 
> o > a u 
> > < 


o o a 
X a D O u 
X D < 


a a a a a 
o w ui 
eo h m ifl h 
^ ff s 

N M <0 


o o o o o 
if Ifl o cm un 
H M C 1 Mfl 
K o S N ^ 
M (T O' J) O 
H Lfl 4> N CO 


a o a a a 

O' O CSJ 'O 

S O' iO to o 

U1 Ifl O M M 


O O O O O 

H J S J rt 

in Q f -O if 

pH Nl O O pH 

if .f m eg %o 

sj- o- cd 


N H H O O 

o o o o o 

I I I 

o o o o o 

O (0 M H J 

rO O' CO J O 

c 0 m eo eg in 

o o <r o 

^ K1 ^ ^ ^ 


a o a o a 

g) in o -o ~o 

■j> O' o m tn 

commo-o- 
eg if to eg O' 

m m m m O' 


a a a a a 

HlTNff J 

o ki n"> eg <0 

«-* r ■* o ,f 

to co © <g m 

tn s. o m g> 


o o o o Q 

J) m n a -o 

pH co if eg cO 


a a a o o 

>o n- o o rs. 
eg so eo »n fn 
eo O' eg >o 

M l/> H J H 
J W S M O' 


o a □ a o 

vf -* -f f eo 

ki in m o o 

O- co co eg in 

eg o <r <-* -o 

co eg s o eg 


o a o o 

NHOO 
N O il N1 


O O O O 

m o- eg m 
»o ^ to <r 

>r to Mn 
pH M -O M 

in if h h 


a o a o a 
m co .}• so co 
O' co cj in O' 
m i0 Ki h h 
eg co 10 ,© ph 
iO in « f 4 


DQQDD 

NNf ON 
N- CO N f O' 
fO CO M O' O 

vf eg co in co 
to CO n n gi 


o a o o a 

«f eg co to -o 

to to eg eg if 

m '0 o h co 

N iO O N (0 

N co O' eg to 


eg eg eg eg pH 

O O O o o 

o a o o o 

■f <0 f if 

O' n m o eo 

n- in .o <j- co 

Ntn N H N 
N M 1© eg eg 


□ a O a o 

-o c- j3 .o eg 

fg rv ^ o pH 

•-* O' ~4 .f CO 

O tO O' to O' 

if f i eg o 


o o o a 
eo in h o 
H 4) eo -o 

in to to to 

tO C0 O -O 

co eg n» co 


o Q o o 
>o o *x> rH 

eg f o (0 


o o a a 
•* <o -o if 
O' tn co 
N in 4) to 
N m n eg 
fg eg «o eg 


a o a a 
vD c 0 eg 
NNif H 

H O' n co 

DtOC-O 
f J -fiO 


O D O Q Q 

O M f O M 

eg in n m o 

id O' CO N o 

O N M Kl 4) 

if m co -h if 


o o a o o 

41 if N H o 

N C4 ^ C4 f 

pH iO O' pH pH 

a O J to 41 

4)41(000' 


Q O Q O Q 

-o en m m o 

O O' o -0 O' 

H (O 4) H to 

N O M in H 

in a co O' eg 


a o o a a 

N 4) O' 43 M 

S s fg in co 

n eg 4i eg 

in o' in it 

f a eg h eg 


o o o a a 

eg m in co n 

fg O' O' pH CO 

co eg O' n o 

HtOOSJH 

eg f o n m 


Q O Q Q 
o m h O' 
f H o 41 
h to m 4i 
co eo o h 
H O' to co 


eg O' to eg 
in in eg to 
H to to (M 

eg n o to 


■n ej a cO in 

eo to eg o m 

-O pH pH pH O' 


co f O' co h 

to eg h n f 

in ^ ^ en 


eg if if o 
n n- eg O' 
h eg cm h 

pH pH pH in 


DQ D O □ 
rt rl H N to 

co in «0 'O 

if 4) 41 H 

pH PH pH Ln lO 

pH pH rH O i0 


O O O O 
O 4) Kl O 

i 0 o m m 

O' 41 H f 


0 0 0 3 0 

in c- to o f 

f m n co 4 > 

eo f N 41 H 


eg m if in 
fg pH 0 in 
if to o to 


y.' 




n n .v , 




FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 4 OF 11) 
























FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 6 OF 11) 

















Sol3D O'* 0.0 -S.7t>JID 04 0.0 -J.70...D Oo 


ooooqqooo q oq 

i/I i h « X> coo y cm cj 

nui w o a co n tj w o t y 

y (0 m O' -o .» t- cr c ^ in 1/1 

OOOOOOCOhlM—«ifit0CjyyOOOOOOOOOO 

aoooc;of''>cj-<yMrMinrHrHoooinooooinui 


ooooaaooa a a a a 

0 6 U Mu'! H M J J rH <f CJ CJ 

in o m o i/i j f j o c k o >f ^ 

o^fjNHtnnHH in c- m i/i 

OOOOOOiHjrc 0 >HtAM« 0 OOO noooooooo 


lOHomooooinm 


kOOOOO n □ O O OO 

- ? c* tA ul o c- o o in >© -o 

■ O cr o- 0 r-< in -o in cO oo 

i m n m in c hi y y y -oo 

IN^NNNOIANHIAOOOIO 


o tc m m 

O M CJ m 


lOff-JCOfflOOMN 


QoooooQoaoooaooQoa o a 

ooi'KiinfflinHo joookwiomio ~d o 

U1 f J 0 CJ 0 HONNflHHfH(J.S4N O O 

ntJAUllON4l0lA/IMN1««NO CnI 4/1 0-0 

IflUlOOOHNHO'^MKlNlflOMOHOOlOlfl 


oooooooao oo 

HinO'Nlf-lHNNS ^ N 

Nrt/ia NriHMKl hi ® 

ONOOHJ>M.1KI -or^ 

OOOOOOOma-DOOCMCMOCMOOOOOOOO 


IOOOOOQOOOQOOOO OO 

ii/iroooN(Oj<oinm^MH in cm 

inNO«ON^O-aNN>J(0(0 C" r-i 

lllWHHMffin^ONN'OMlfl pH CM 

lrtNNON*ilflHH^tfJMHOO^OOOO 


ooooooooo o 

-©h1hl®OOrH»HrH -0 

^inN-ir^mmui in 

c-. c n /o c a w m m o 

OOOOOOOyycjyhlOOO-OOOOOOOOO 

ooooo-Ho-Hcj-jinocjcJOinoooooooo 


ooocoooaaooooaoooooo o 

JO'.J O fMH« OhJCCMOh^ONH -0 

h- ® M O >-l fJ —« CJ 0 OHffNOO^HU'CS in 

® , 'i , 'inMOiO'-'c-unnHfjO'WNSNON -< 

n rj to (j y o o m hi y f'-.-Myyinc^hiyr'-.Hoooy 


oooooorMooOrHrHrMooooooooocjco 


OOOOOOOrHOOOrMrMCMhlrHoOOOOOCJOCM 


y a> oN®a innMM ju^HHN/ia'fjfjMinininin 










-o -o m o -o 

y 

y 

y 



















o o o o o 

o 

o 

o 

O 



o 





o 

o 









o o o o a 

a 

o 

o 

a 










N 








o CO o y -< 

0 

CO 

t 










rH 











hi 


o 


















h> hi a n o 

•r 

y 

CO 












0 

0 

O 

o 

0 

0 

o 



O ^ 11 H l/l 

o 

o 

y 

y 

o o 

O 

hi 

o 

o 

o 

o 

O' 

y 


o o 

o 

o 

o o 

o 

o 

o 

fh. CM rH J- hi 
III 1 

CM 


iH 


o o 

o 

y 

i 

o 

o 

o 

o 

y 

y 









N o o ai -o 

hi 

y 

m 

in 

■o 







in 

m 









O O O o o 

O 

o 

o 

o 

o 


o 





o 

o 









o o o o o 

a 

a 

a 

Q 

a 







o 

a 

N 








as </ in m n 

i/i 

-0 

—« 


O' 









2. 








O N /-• H J 


CJ 

hi 


o 


o 





M 










■O ^ CJ N CM 

i/i 

CM 

y 


c- 







hi 



o o 

o 

o 

0 

0 

o 

o 

o 

h m co m in 

y 

O' 

® 

co 

o n 

o 

hi 

o 

o 

o 

o 

y 

y 


o o 

o 

o 

o o 

o 

o 

o 

CM hi CM hi y 

y 

-0 

7 

7 

o —I 

o 

y 

o 

o 

o 

o 

y 

y 


hi O 

0 

o 

c* h-. 

n 

in 

-0 

c-- y .© in m 

in 

in 

m 


m 








m 


o o 

o 

o 

O O 

o 

o 

o 

o o o o o 

o 

o 

o 

O 

f 

o 

o 

o 

o 



o 

o 


O O 

o 

a 

o o 

o 

o 

o 

o o o o a 

o 

a 

a 











> 

® fh- 

i/1 

CO 

-J 0 

o 

y 

y 

■-< C0 O CO -D 

CJ 

o 

O' 

O' 











-o hi 

sT 




hi 


hi <—1 M O' CO 

—i 

n 

in 

in 



O' 


N. 



o 

y 



O 

o 

CO o 


m m 

in N h CM H 

r>. 





O' 






O' 

y 


hi y 

m 

a 

-o m 

in 

o 

CO 

h ^ ^ o m 

y 

-o 

r-N 

N. 

hi o 

m 

m 

CM 

CM 

o 

o 

O' 

y 


r-- m 

hi 

r>. 

i 

hi cm 

r-. 

r-» 

CM 

H ff rl ij CJ 
1 t I 

y 


m 

ui 

•H o 

O' 

1 

hi 

m 

y 

o 

o 

CM 

CM 


y y 

M5 

-0 

c. rv. 

h. 

-o 

in 

h -O -O -O l/| 

m 

in 

•£> 

M> 

m -o 

-0 

m 

hi 




m 

m 


o o 

o 

o 





o O o o o 

o 

o 

o 

o 

o o 

o 

o 

o 

o 



o 

o 

n 

o a 

o 

a 

O O 

O 

o 

o 

o o o o o 

a 

o 

o 

o 

o o 

o 

a 

a 




o 

o 

V 


o 


O r-i 



ni 




o 



CJ 










m 

-o 

rH hi 


hi 

o 

y cm y in m 

in 

IM 

o 


cj 


O' 


n. 



O' 

y 


K1 O 

in 


o m 



in 

■o y y cm m 

o 

hi 

a 

O' 





h* 



O' 

y 


o 

N1 

CO 

rH ® 

in 

M> 

1-4 

O CJ H N O' 

O' 

m 

CJ 

CJ 

y ih 

r» 

ui 

hi 

O 

o 

o 

O' 

y 


O CM 

y 

1 

hi 

-0 hi 

CJ 

m 


HUlHrjy 

O' 

1 

CM 

in 

in 

n. -i 

i 

hi 

m 

y 

o 

o 

CM 

CM 









r-- -o -o -r in 


y 

hi 



















o o o o o 

o 

o 

o 

o 

o 

o 
















o o o o o 

o 

o 

o 

o 

a 

a 








MX 








hi O 0 H CM 

CO 


CJ 





















o 


hi 

o 
















m h j) hi hi 

m 

o 

y 



sO 









o o 

o 

o 

o o 

o 

o 


o o m o in 

i/i 

o 

y 

y 

O hi 

I- 4 

o 

o 

o 

o 

o 

o 

o 


o o 

o 

o 

o o 

o 

o 

o 

hi hi H H CM 

1 1 1 

m 

CM 

CJ 

CM 

O r-4 


o 

o 

o 

o 

o 

o 

o 


CJ y 

hi 


in in 

in 

4* 

y 

in y m y hi 

hi 

hi 






CJ 







o o 

o 

o o o 

o 

o 

o 

o o o o o 

o 

O 

o 

o 

O O 

o 


o 

o 








o 

o o 

o 

o 

Q 















N hi O 

CM 

r-'. 

Mno 

n- 

m 

O h N CM -O 

MJ 

o- 

O' 

C' 


O' 








U- 

C' CO 

-o 




-o 


-O f-M -O ® O' 

o 

O' 

O' 

O' 

® C-. 

CM 








-< o 


i/l 



s0 

hi co co y O' 


CJ 

CJ 



hi 


cb O' 






CM in 

m 


o 

hi 

CM 

hONrlhl 

r-i 

m 

y 

y 

O' hi 

r-i 

o 

CM 


o 

o 

o 

o 


® cm 

m 

m 

i 

^ * 

r-i 

hi 


V ^ H V H 

h. 

1 

m 

in 

m 

O' m 

i i 

y 

i 

o in y 

o 

o 

o 

o 









in hi y y y 

CM 

CM 

hi 



















o o o o o 

O 

o 

o 

o 

o 

















o o o o a 


o 

o 



















in O' CM O N 

r- 




r- 



















m 

O' 

O' 

CJ 

















h hi /i y O' 


CM 













0 

0 

o 

o 

o o 

o 

o 

o 

o y y y cj 

CM 

Ih. 

co 

co 

O r- 

o 

o 

o 

o 

o 

o 

o 

o 


0 

0 

o 

o 

o o 

o 

o 

o 

H /) H CM y 

1 1 1 I 

hi 

r-. 


H 

o m 

o 

o 

o 

o 

o 

o 

o 

o 


K1 y 


-f in in 

in 

in 

y 

y ki hi hi y 

hi 


m 





CM 

M 




y 


o o 

o 

o 

o o 

o 


o 

o o o o o 

o 

o 

o 

o 

o o 

o 

o 

o 

o 




o 


o o 

o 

o 

a o 

o 

o 

o 

o a a o o 

o 

n 

o 




o 

o 





a 


hi hi 

y 

CO 


-0 


CO 

•o <y in M o 

CJ 


-o 



r- 


CM 





n 


CM CJ 

m 

hi 

■o in 

o 

® 


h h CO hi O' 



CM 


<r n» 








m 


o o 

CO 

-D 

CO hi 


m 

CO 

in hi h h y 

hv 

i/i 

•n 

O' 

® CM 

i/i 

O' 

O' 

m 




rH 


CJ y 

-o 



hi 


hi 

HUINHy 

O 

1-4 

y 

O' 

vO co 

y 

hi 

hi 

M 

o 

o 

o 

y 


hi r-i 

hi 

y 

rH r-i 

i 

i 

CM 

m o y cj i/i 
i i 

y 

r-i 

CJ 

CM 

1 

hi r-i 

O' 

hi 

1 

O' 

1 

rH 

o 

o 

o 

i 

Z 

0 

0 

o 

o 

0 

0 

o 

o 

O 

1 

0 

0 

0 

1 

—i 

f-i 

o 

o 

0 

0 

o 

o 

o 

o 

o 

CM 

o 

o 

£ 

0 

0 

o 

o 

0 

0 

o 

0 

0 

O-IOOO 

- 

r-i 

CM 

hi 

rH O 

o 

o 

o 

o 

o 

CM 

o 

CM 

“> 

CM hi 

y 

m 

■o r>. 

CO 

y 

o 

—i cj hi y in 

-O 

N. 

CO 


a CM 


o 

o 


-o 

>0 

o 

O 









HHHHH 


rH 



—< rH 



CM 

I'M 





M 

rH CM 

hi 

y 

m -o 

r- 

<0 

y 

in h cj hi y 

CJ 

y 



CM -O 

O' 

CJ 

CM 

CJ 

in 

m 

m 

m 









rH r-l rH r-1 

r-i 

—i 


"H 



rH 



rH 

r-i 

rH 

rH 


A'.'- --- 


FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 



















LOADS ARE THOSE ACTING ON THE HASS, IN MASS AXES, ♦FWD.RT.DN 
FOR EACH BEAM, FIRST LINE IS MASS I, SECOND LINE IS MASS J 



FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 8 OF 11) 













1510 04 -1.4974D 04 -4.8560D 03 1.9138D 06 -6.19J9D 05 1.71820 06 


o o 
o o 


o o 
o o 


o o 
o o 


o o 
o o 


O Q 

CO O' 

O' fO 

rv eO 


o o 
o a 


K> 

CM -H 

N1 CM 


O O 

o d 


o o 
o o 


a a 

CM CO 

XI o 

O C" 

O' a 


O' o o o 




o o 
o o 


o o 
o o 


o o 
o o 


o o 
o o 


O' a 

• Z 

CM UJ 


O 

o <n 


O'* O' 


O o o o 


o o 
o o 


o o 
o o 


o o 
o o 


o o 

d d 


o o 
o o 


o o 

CM CO 
cm r*» 
m -o 




'7* '•* 7 * IT'. FI ' 1 


OOOOOOOOOC^r-4 0 0 O OMUIlflOM OOOO# 


<J'NHNNMfl-fiS(OCOU100'OCOUllflHO'rtoO O CM 

ajrM^-fMCMKi^'^oo'ininincO'OooM^odddd^io' 


>COZQOOOOOOC)OOOOOOOOrMr 


•-* O O O r-l r-1 o 


I 


oaaaaaonQ 

< HOKHOMMO o 

I <fHB'«.0(0(MUUn 

'J-O'Ocomocoo-o- 

000000000-0 0' CM O to CO 03 H H 


o o 

Q O 


oooo 

ooooooooor^^iHpMroO'ino'O'ocMCJooocM 


r-li-«W»-| I -l»HOOOCMOOOO<H^HOOO 

OOOOOOOOOOOOOOOOOOO 

. I II 

*<OQOOOOOOOOQOQOOOOOO 

f-CMJaKHO'OOO'lflHIflOJJHXlON 

uiweHUixtfitMHX-o^O'O'-f-fifl-oxeM 

I-JO'tflHNMHO HMOJO-JCO-O-flCMNO 
KCOlflff'NNNNM-tO'f-OMWJO'CMtMM 


CO CO 
O CM 

•o m o 


H M o 
O' CO vj- 

co a in 


Nt'IHrlUlO'HrlHl/I^IHNCMff'KI^^rtNHOHNH 


OQOOOOOOO ooo 
x> in cm co -omcM-ox) m m o' 

lO f n N O HI -J ff- O' -0 10(0 


OOOOOOOOOO'CMCMO- O N1 H S S O O- I 


tOQOOOOOOOOQOOOOOaaOQQO 

■tOl'I-OI/ll/IJ'fflON-OWl/l^-ONCOOOI/l^O-O 

;lOO'OCO-ON(OOM»^j-rtft/-ONa3<9>OrtHN 

IWNOWCONHlO-ONNtOCO-feO'O'f-JCOO'^j) 

•OWHSMOM-DOCOHO-JMCOa-HHt/lCO-J^ 


ooo 
O' in m 

1—1 CO -C 

so m o 

't o m 


WN-fHMrtHtfCMHNNIOMMNN<MHiri(ONO'HN 


OQOOOOOOO Q a o 

-oHsmsuiNo-o' no- in 

. -fiiAo- -DHtoMHH ocn to 

OCONNHia-NHH >0K O' 

OQOOOOOOOCMO.-iCO^'tOO'O'Oi-I^OOOCM 


oaaooooaor 


Itf lflWNW-« JOrtrtOOOM 


^NKIHNHNNHrtHHHHNOOOOOONNO 

OQOOOOOOOOOOOOOOOOOOOOOOO 


QQOOOOOOOOOOOOOOOOOQOOOOO 
OIC||flO-NMH(MNlfllflO'Xlfl-fOI/linCOHCM{OCO®U3 
NO-oinoKKONN-e-rwo'rtNOHNNS^tOHM-jH 
SKIvtr'O-WtOMtM-O-CO'O'HSi'' - - * • - • * - 

mcMo-r - • — — — 


-O-t OHCON-CMlflNN 


SHNS-ONNJMHI/I 

O'OHHONff'UllflMffl 


WNlflN^CONCONH-JOtt'ON-fNNHNa'MMflH 


OQOOOOOOO 

IflUlNo-JHOMN 

•Hoo'incor^ooo 

N-tHIMrt-OHinifl 


o a 

in cm 
o m ^ 
m co so 


ooooooooocMin-o-nO'Ominmocgininooo' 


OQoooooooMvtino''j-r-ir-isr^ocMrMinoor^ 


i 


> o o o 


OQOOOQOOOOQOOOOOOOOQOO 

Hi -0 H OUlMO'XKlKIKMOJfO C HI H H N O' CM CM 

x-flNtofflNHrto-jNffl^fMHco-jx-oeo^-co 

H^S^HI^OMOOCONO'OO'HOOUINn® 

O-fX-CNN-OlflON^tfO-CMO-t-fNNIflUl 


OOO 
N O M 

r- cm ^ 
co CM CO 
m n- st 


H -O rl H I 


tflfllMHNHrtlfllfll 


SSHHri^KHN 


ZOOOOOOOOO>HOoO>-4fHiHOOOOOOOOO 

ZOOoOOOOOOO«^OOOfHrHCMK\MOOoOOO 


IC-IKI-tlfliNlOf'lflHNl 


liHCMXJ-NPjNifl 



FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 9 OF 11) 
















































kinetic poiential strain damping crushing friction 

MASS ENERGY PCT ENERGY* PCT IJ I J M N ENERGY PCT ENERGY PCT I K M ENERGY PCT ENERGY 


ooooooooooooooooooo 

OOOOOOOOOOOOOOOOON-M 


00000000000000000*3-^ 

OOOOOOOOOOOOOOOOOr-«*3- 

OOOOOOOOOOOOOOOOOOO 

do000000000000000£0- 


OOOOOOOOOOOOOOOOOCvlrH 

OOOOOOOOOOOOOOOOOCOCO 

OOOOOOOOOOOOOOOOOOO 


ooooooooor-<M^oaoorvrj<NiOoooooooo 


oooooooooooooo ooooooooo OO 

£30000000000000000000000 op 

rjScOr'.oaDMOKTo3'3-«0<rin'^r <c ^2^£f^J^p^;___.55*5 
^ m to h ^ j 0 'c-jou^cs)co*j--Hr^r^cMOf^i^Nr^<'Jooocoa) 

<\lM(0®-0(ClHH*0HUlHNlf|N'CN-3Nff'H(M\JOOOHH 

OOi-trHOO'-J-f^O»-«00^'tf'f'JMO'Of s -f**f^'Or^OOOO«J-ND 

OOOO0"r-»p-<OO'-*«-**-«i-4«'*OOOOOC'JK>OOOO©O»H 


OOOOOOOOOOOOOOOOOOOOOOO 

oooooooooooooooopoopoop 

M Li o- SOfflO(0^<0C0N.JMor'l9'0'‘fl^WON 

SooMHN«SfjfjMMr-N^<0»0ON0;oift(0 

O-ff-MniAHKIOOff OCOf'JONN'JCOHCOONHl 


I^COHCOON- 


OOOOOOOOO^OOOM^i^OOOOOOOOOtsJOO 

OOOOOOOOOOi-hOOO*-*«-»C'J*">»-«OOOOOOC'JOCyJ 

HHrlHHrtrtHHHHrtH CNi fsj r-* 
rHCJrOsrm«0N.C00'kflrHCgK1st<M*3-rHrH(M*OO'CJ<Si<NJU>l/*lflin 

HHHHHrlHH iH H H rl H 

HMrfl>3in'ON(O^OHNK1<3lfl>ON»<rOHNM-3lfl'C^® 

hhhhhhhhhhnnnnnnnnn 

O' N1 H a £)H10 fANH0'N-0!TJ-S1/1NONO 

o l/l (O /)0331flMIOO'NM/|NW30000 

r-* iH 

OOOOOOOOOOOOOOOOOOOO 

oaoooooooooooaoooooq 

rj OvOCOOr^Or^^HOji/1C'rj r ^0-*3 - -O'O ; £>rH 

UlHMi-MflNWr((0lfl<0N^C0OWMff-O>r 
FO r*1 O N ^OHFrtNvCJ-Hff'vjO'NHOCO'/lO 

fJHW-tNHHHO-NNMHi-HJIITHlflNHO 

SJfflNONf'JO-MHM^COf'O-Caj-COHl/lO 
O *3- ® ^ H3<fi/iRlM001fl3Hl/imNOQo 


OOOOOOOOOOOOOOOOOOOO 
0-0 0 f(JOiHOO ON3ffl^ f 'K' H 3'J 
pjWU1i'-®HNr*.(OUlNlsiOON<OW(0^0 


J'0^0'MM3M03HO'MO^NOU1(0>-' 

HNOMflNaJONT-MNUlMlflrtMOWrt 

( -4»-«f“4OOOOrHi-*r-1©O«-lP**-«O*-«C0 , HO 

OOOOOOOOOOOOOOOOOOOO 

OOOOOOOOOOOOoOOOOOOOO 

OOOOOOOOOOOOOOOOOOOOO 


FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 11 OF 11) 





















the angular velocity of mass I, using the same sign convention as for the 
Euler angles. PDOT, QDOT and RDOT are the body axes components of the angular 
accelerations of mass I. None of these orientation quantities is output for 
the node points, since these are the same as for the mass to which a given 
node point is attached. 

XIM^ULSE, YIMPULSE, ZIMPULSE are the accumulated area under the filtered 
acceleration response curve (G-SEC). Normally the user should plot these 
data to evaluate its meaning. 

2.3.3.2.2 Internal Beam Data . - The STRAIN FORCES and TOTAL FORCES (STRAIN 
+ DAMPING) are both output in the same format. FX, FY and FZ are the forces 
in beam axes acting upon the beam at the j end of the beam. Equal and 

opposite forces act upon the beam at the i end. MX is the torsion acting at 

the j end; again an equal and opposite torsion acts at the i end. MYI and 
MYJ are the bending moments at each end of the beam, acting about the beam 
y axis. MZI and MZJ are the moments acting about the beam z axis. In general, 
the moments acting at the i and j ends of the beam are not equal. The i and 
j ends of the beam are at masses i and j, unless the beam connects to a node 
point. In this case the i end of the beam is actually located at node point 

I, M, and the j end at node point J, N. M or N equal to zero means there is 

no node point; direct mass connection is used. The sign convention for these 
loads is shown in figure 2-18. 

The total beam forces can also be output in a format which shows, for 

each beam, the loads acting at the I and J masses. This output is titled 

COMPONENTS OF TOTAL BEAM FORCES ACTING ON MASSES I AND J. For each beam 
the first line of output shows the forces on mass I, the second line shows 

ma. . J. These loads are positive forward, right and down, in mass axes, 

with moments using right-hand-rule about those axes. The loads are those 
acting on the masses, not the loads acting on the beams. 

The beam X, Y and Z deflection data are presented in relative form, i.e., 
the values represent deflections at the j end minus those at the i end. The 
beam rotation data are given in both (J-I) and (J+I) terms. This is done 


2-177 



because the strain forces arc- calculated using both sum and difference terms. 
Note that these angles are all in degrees, rather t ban radians. If the 
actual rotations at the j and i beam ends are desired, they can be calculated 
from the output data as 


THETA(J) 


THETA (.1+1) + THETA (J-I) 
2 


THE!" (i) 


THETA(d+i) - THETA(d-I) 
2 


Similar equations apply to PS1. 

The beam lateral deflections Y and Z which are printed out are not 
simply the (.1-1) values. The and i rotations of mass I cause Z and Y 
deflections at end .1, which in themselves cause no beam loads. These deflec¬ 
tion components are removed from the output deflections. The output deflec¬ 
tions are the following 


Y 


output 


(Yj - Yi) 




Z 

output 


(Zj - Zi) + 1*0i 


The Euler angles defining the current orientation of the beam axes are 
also output in degrees. The column of integers titled VBM define which 
beams, if any, are treated as vertical beams. For vertical beams, VBM=1; 
for normal beams, VBM=0. For normal beams, the following procedure is used 
to determine the current beam axes orientation. 


• Start with the ground fixed axis system, with X positive forward, 

Y positive right and Z positive downward. 

• Rotate PS1 degrees about the Z axis, using right-hand-rule for 
positive rotations. 

• Rotate THETA degrees about the new rotated Y axis, using right-hand- 
rule for positive rotations. 


2-178 








the init ia1 


For vertical beams (VBM=1), the same procedure is used, i 
orientation of the X, Y, Z axis is different. in this case, the initial 
orientation is X positive up, Y positive right and Z positive forward. 

For either axis orientation system, there is actually a final rotation 
of PHI about the X axis. PHI is not shown primarily due to output format 
line width limitations. However, PHI is normally rather small and will not 
affect the user's interpretation of the orientation of the beam axes. 

2.3.3.2.3 External Spring Data . - For each external spring, the spring com¬ 
pression in inches and compression load in pounds is output. These are 
along the spring axis, which is oriented parallel to one of the mass axes. 

The ground deflection is also shown; this deflection will be zero if the 
ground flexibility is input as zero. The ground contact point loads are 
given in two coordinate systems, ground axes and mass axes. If the spring 
in question is on a slope, then slope axes are used instead of ground axes. 

The output titles for these quantities are self-explanatory. 

2.3.3.2.4 DRI and e.g. Velocity Data . - For each beam element which has been 
defined as a Dynamic Response Index (DRI) type element, the .J mass and DRI 
number are shown. Volume I, Section 1.3.12 explains the theory and usage of 
DRI elements. 

The overall vehicle c.g. velocities, in ground axes, are always output. 
These velocities are calculated such that the total vehicle weight, with 
these velocity components, would yield the same linear momentum as that 
existing in the total system of NM masses. Section 1.3.9 of Volume 1 
explains how these values are derived. This output, particularly the time- 
history plot of same, is a very useful indicator of the overall vertical 
motion of the system. Since the system kinetic energy is a scalar quantity, 
there is no way to separate the kinetic energy due to horizontal motion from 
that due to vertical motion. Therefore, for analyses in which the horizontal 
velocity is much larger than the vertical, system kinetic energy is not very 
useful in determining when the vertical impact velocity has been absorbed. 

The vertical component of the overal c.g. velocity can be used for this purpose. 









2.3.3.2.5 Energy Distribution Data. - The first output in this section of 
data shows the current total system energy, kinetic energy, potential energy, 
strain energy, damping energy, crushing energy and friction energy. The next 
section of output shows the contributions of the individual masses, internal 
beams and external springs to these system totals. The system kinetic energy 
should reduce to zero at the conclusion of the analytical run. From a prac¬ 
tical standpoint, however, one can expect individual elements to oscillate 
slightly after the vehicle comes to rest, leaving some residual kinetic 
energy in the system long after the responses of interest have occurred. In 
general, it is anticipated that if the analysis shows a 75 percent reduction 
in kinetic energy, the most significant events will have been adequately 
described. 

If the vehicle is impacting on a flat surface (no slope) and a substan¬ 
tial portion of the initial kinetic energy is due to forward velocity (parallel 
to the ground), then a much larger percentage of the initial kinetic energy may 
remain after the significant damage phase of the crash. The remaining energy 
is accounted for by the vehicle sliding along the ground with a substantial 
forward velocity. In this case, the vehicle eg translational velocities, 
printed earlier, provide a better indication of whether the major response 
phase has been adequately covered. In general, the ZDOT or vertical vehicle 
translational velocity should be reduced to zero, indicating that the vehicle 
has ceased its downward motion. This situation can also be seen when the 
system potential energy reaches a minimum. 

The potential energies include the effects of user-defined input time 
histories of either loads or accelerations, applied to specified masses. 

That is the significance of the (+) at the end of the POTENTIAL ENERGY head¬ 
ings. Earlier versions of KRASH did not include the effects on the energy 
balance of the loads or acceleration input. These versions do not have the 
(+) in the potential energy heading. 

The individual internal beam strain energies provide the user with 
valuable insight into the temporal and spatial flow of energy in the vehicle. 


2-180 




Generally speaking, the strain energy concentrates initially near the point of 
impact, and as the strain energy grows it also becomes diffused throughout the 
vehicle. After the peak responses in the system occur, the overall system 
strain energy will decrease from its peak value as the internal beam elements 
unload. 

Certain individual nonlinear beam elements may indicate negative strain 
energy. This circumstance may occur when large deflection loading and unload¬ 
ing occurs in the coupled bending degrees of freedom (z-0 or y-y), with non¬ 
linear KR curves applied to these directions. This phenomenon is discussed 
in Section 1.3.16 of Volume I, and is due to the approximate nature of the 
nonlinear element analytical model. In practice, these negative strain 
energies are of such small magnitude relative to the overall system strain 
energy (usually less than 1 percent) that they do not invalidate the overall 
analysis. Furthermore, these negative energies tend to occur toward the end 
of the analysis, during the unloading phase, after the primary responses and 
damage of interest have been determined. The plastic hinge option should be 
used in lieu of KR tables in the coupled bending directions; negative strain 
energy will not occur with the plastic hinge option. It should also be noted 
that negative strain energy does not occur for linear beam elements, or for 
those that are nonlinear only in the uncoupled degrees of freedom (axial and 
torsion). 

The damping energy of the internal beams is usually small in relation 
to tiie strain energy, typically being less the- 20 percent of the strain 
energy, until late In the run when the strain energy has decreased substan¬ 
tially from its peak value. Note that damping energy always increases with 
time, since it is a dissipative energy that is not stored and released as 
with strain energy. 

Crushing and friction energies result from the deformation of the 
external springs and flexible ground for the former, and from sliding fric¬ 
tion along the ground for the latter. The friction energy is also dissipative 




2-181 








ami hence mount on i ca 11 y ini-rras i hk, whereas the crushing energy peaks ami 
decreases similar to the strain energy. fa general, a rather large percentage 
of the total svstem energy may he represented by Lite crushing, energv. Ihts 
situation is only natural since the external springs represent the structure 
in immediate contact wit'll the ground that undergoes substantial deformation. 

In a typical vehicle crash analysis, the system crushing energy may be 
larger than the internal beam strain energy. However, they both represent 
actual airplane structure, the only distinction being location on tile vehicle. 

The final energy information printed is a summary of the’ deviation of 
file total energy of each mass in the system from 100 percent. Ideally these 
variations should all be zero, but in actual practice errors associated with 
the numerical integration process result in deviations from the ideal. This 
information can be helpful for pinpointing areas of the mathematical model 
that may be causing numerical accuracy problems, and alerting the program 
user to the possible need for a finer integration time step. 

In typical applications, a few individual mass total energies may 
deviate 2 to 5 percent from the 100 percent ideal, while the total energy 
of the entire system remains within 0.5 percent or less. This accuracy 
is generally considered acceptable for the numerical integration process. 
However, the program user is free to adjust the integration time step to 
suit his men personal criterion For the accuracy of the individual mass 
i ntegra t ions. 

Internal Beam Stress Data. - The stress data output are shown in fig¬ 
ure 2-2'*, which is taken from the t = 0 output of the sample ease. (Stress 
data output was not selected for the sample case, so none was output at 
I l).b used for figure 2-23. At time zero, ail output is printed regardless 
el what the user requests). 

ibis output consists of ratios of current stress to failure Level stress 
(corresponding to initial yielding), for four locations on each beam, using 
two lailure theories. These theories are the maximum shear stress theory and 
the theory of constant energy of distortion. Section 1.3.17 of Volume 1 pre¬ 
sents tlu' method of calculating those ratios. Also shown in the output are the 


2-182 




ratios of current compressive/tensile stress to the corresponding yield stress 
and the ratio of current axial compressive load (when it is compressive) to 
the critical buckling load. 

The stress data can be used as a guide for estimating the time at which 
the element begins to yield. When such a state is reached, a stillness reduc¬ 
tion (actor (KR) may be developed for the affected member which then can be 
used to approximate the nonlinear response characteristics of that member. 

I he user is cautioned to exercise extreme care in the interpretation of data 
l>resi ntlal in the summary since they do not include the effect of stress con¬ 
cent ru t i ons, geometric shape factors, and detail attachment practices at 
joints. In addition, limitations of the program require that gross regions 
of the vehicle structure be modeled using relatively simple structural ele¬ 
ments. thus, the more gross the structural region the less accurate the 
stress values. Also monitoring the response of a structural element which 
may exhibit a buckling mode of failure will require special consideration. 

In this case the critical buckling load becomes significant and a stiffness 
reduction factor should be developed which will approximate the buckling 
character ist ii’s of the element. 

Furthermore, the user should realize that once an element has yielded or 
buckled, the failure theories followed become invalid and, consequently, the 
most meaningful use of the stress data is to identify which element may fail 
and at what point in time se h failures are apt to occur. 

J.3. i.2.7 initial Mass Acceleration Krror Output . - Figure 2-24 shows this 
output for the sample case. This information is only output at time zero, and 
has signiiicanco only if balanced initial conditions are used (KRASHIC and 
MSC IRAN arc used to calculate balanced internal beam loads). lor each mass 
in tho svstem, t he difference between the ..ctual time zero acceleration cal- 
.ulatid in KKASIIHI and the theoretically correct value, based on airplane 
ri.-iil hod\ aeve 1 oral ions at time zero, is printed. A summary at the bottom 
shows t !t> largest value and cor respond i i.g mass number for each of the six 
.ireeI oral ions. 


2-183 








RD-A161 8(1 KRASH 85 USER'S GUIDE - INPUT/OUTPUT FORHAT(U) 3/3 

LOCKHEED-CALIFORNIA CO BURBANK N A GAHON ET AL. JUL 85 
LR-38777 DOT/FBA/CT-85-18 DTFB83-83-C-888B4 


UNCLASSIFIED 


F/G 1/3 


























microcopy resolution test chart 

NATIONAL BUREAU OF STANDARDS - 1963 - A 

















DEVIATION* PERCENT'* 


• 6 T -T) T 1 -*1 
>300000 

>000030 
> ui f o n 

*-* -f t>. t*. 4 T 
' ^ O CO H CJ ^ 


o o o o o o 

vX O -H O -O O 

k/i m ro o m a 
n o ff c\j j 


X lO H rg O x 


a \ 

—i • v» 
«* a a 
>-« a _i 


ooooooooooooooooooooo 

ooooooooooooooooooooo 




' M tg (g M ^ ifl 


i a o o o 

I C' N S O 

> O O rv 

> -l O' o -* 


i o a o o 
i ao c j f~- co 

Or-iOt'- 

I M r H 


i o o o a 

O 3 

itg )<> 9 3 

o in a r-t 


2 000000000 '-» 000<-«"-*>-<00 

2 ©OOOOOOOOOrMOOO*-"*-*^* - ' 

HNM^in^SOO'OHNMX^ 


FIGURE 2-24. KRASH85 INTERNAL BEAM STRESS DATA AND INITIAL MASS ACCELERATION 
ERROR OUTPUT (SHEET 1 OF 2) 











































The reason that the time zero aece1erations are not "exactly" equal to 
the t heoret ical 1 v correct values is because the accuracy of’ the KRASH IC/MSCTRA! 
iterations is I imited bv the number of signil Scant I igures used in the input 
and output data sets used with XASTRAN. The accuracy shown in figure 2-24 is 
representative of a typical large transport airplane model, using ten itera¬ 
tions of KRASH1C/NASTRAN. In general the results are quite good, with most 
translational aece I era t ions accurate to within K-"> g's. Errors of this 
order should have no appreciable influence on the subsequent time history 
results, particu1ar1v for crash impacts which typicalIv involve mass accelera- 
t ions of t ive p's or more. 

DR I masses are excluded from the largest value summary because the DR I 
beam elements always start with zero internal load and deflection in the axial, 
direction. In subroutine NETFOR, where the theoretically exact initial 
acee1erations are computed, it is assumed that the DR1 mass is rigidly 
attached to the vehicle. 

2.3. 1. '3 Summary Output 

At the conclusion of the time history printout several summaries are pre¬ 
sented, which include: 

• Summary of internal beam yielding and rupture 

• Summary of mass penetration into a control volume 

• Summary of external spring loading and unloading 

• Summary of plastic hinge moment formations 

• Summary ol energy distribution 

• lime histories of interaction Loads/summary of maximum load ratios 

• lime histories of vehicle c.g. motions 
I he summaries are illustrated in figure 2-25. 

Internal beam element yielding and rupture are summarized at the end of 
the run. For each occurrence of yielding or rupture, the time, beam identifi¬ 
cation and beam direction of yielding or rupture is output. Directions 1-6 


2-186 










correspond to beam axis directions x, y, z, I, 0 and 'i, the latter three being 
rotations about Liie beam x, y and z axes. In addition the beam tension and 
compression rupture is noted. if a beam has a special KR curve that starts at 
a nonzero value, then this summary will indicate yielding at time zero. This 
output provides the user with a concise summary of the onset of beam non- 
linearities and beam ruptures. 

Also included in the internal beam yielding summary are occurrences of 
interaction loads exceeding the user defined load envelopes. In figure 2-25, 
SUMMARY OF 1 ETERNAL BEAM YIELDING AND RUPTURE, the first item for beam 18 is a 
conventional beam vieiding in the 1, or axial direction. The second item, for 
beam 19, is a conventional beam rupture due to exceeding input maximum load 
levels, again in the axial direction. The third line, for beam 9, is an 
example of load interaction curve data showing up in this summary. The 15 
under YIELD signifies that for load interaction curve number 15, an exceedance 
of the defined load envelope has occured. The 3 in the right hand column 
means that load line number 3, for interaction curve 15, was the specific 
interaction line that was exceeded. if the input load envelope is exceeded 
by the factor RITRAT (See Section 2.2, figure 2-3, card 2800), then the load 
interaction curve number will be printed under the heading RUPTURE. It should 
he noted that load interaction curve outputs in the YIELD column have caused 
nothing to happen in the time history solution; outputs in the RUPTURE column 
would have triggered an actual beam rupture during the time history solution. 

Any mass penetrations into the mass penetration control volume are also 
summarized. Both the mass penetrating the control volume and time of 
occurrence are noted. Since MVP = 0 in the sample case, this output is not 
illustrated in figure 2-25. 

Che summar\ of external spring loading and unloading provides the time of 
occurrence, the spring designations (mass, node, direction), type of event, 
initial del lection, maximum force and unloaded deflection and force. 

ihe summary of plastic hinge format ions identifies the time, beam number 
and mass number at the end where a plastie hinge formation takes place. In 
figure 2-25, beam 1 and mass 2 goes through cyclic plastic hinge motion. At 


2-187 







SUMMARY OF INTERNAL BEAM YIELDING AND RUPTURE 

BEAM BEAM DIRECTION FOR TENSION!♦1 OR 

TIME IJ I J M N YIELD RUPTURE COMPRESSION!- 


2-188 




' * * C ‘ ’ O-/ 


*/ v s' 


FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 1 OF 10) 
















PERCENT PERCENT PERCENT PERCENT PERCENT PERCENT PERCENT PERCENT 

MAXIMUM TOTAL OF OF OF OF OF OF 

ENERGY SYSTEM KINETIC CURRENT POTENTIAL CURRENT STRAIN CURRENT DAMPING CURRENT CRUSHING CURRENT FRICTION CURRENT 

TIME DEVIATION ENERGY ENERGY TOTAL ENERGY* TOTAL ENERGY TOTAL ENERGY TOTAL ENERGY TOTAL ENERGY TOTAL 


OOOOOOOOy 


N f j N O O x> uT ni j eg 

couaioi/ijcao n o 

OO'K^NHHHNMrA^ 


OOOOOOOOOOO 


8 )MJff)NUlCaONM 
> lUlNOONHNNlH 

1 eg CO »-* CJ <g eg «SJ 


OOOOOOOOOOO 


1.1 HI 111 HI 111 laj laj hi tu LAJ laJ 

M/1 N ffl -Zl ® N -r O N 

OJJHNS^OOfflN 


I N (M M Ul >0 


OOOOOOOOOOC 


O'OfslO N l/l a H cr S H 

*oe0fsirt)O'<t)(0ui<M<NjpA 


... in i.. i.i 11* i j J 111 l) i uj UJ UJ 

eomo'O'OOOOOOr-* 

NNNNNNNNNNN 


in in t* i m hi 111 1.1 LI/ UJ UJ UJ 
IflMOl/lOl/'Ort'Off'FO 
OOOfffffflflJf'JU'ifl 

(SJCSJtSJCxJCSJCSJfvJMESJCNJrj 


HO^Ol/lUJM-Jl/llfl 

O' DMMOfflUrtrtH 
OO’LTlO'tCO^sCOOO 
HOOHHOmJCsJCJCJ 

OOOOOOOOOOO 

OOOOOOOOOOO 


OOOOOOOOOO 
OOOOOOOOOO 
OOOOOOOOOO 
I/I i N 10 O' O 
OOOOOOOOOO^-* 

OOOOOOOOOOO 



CVJf»/KI'>FYTKlM 01 N/<VJCVFO 

OOOOOOOOOOO 

U1UJUJUJUJLUUJUJUJUJUJ 
O-NO'.OONNH^l/IO 
<rO-r^C3COOONON^ 
MMMlflff rvOM>o 
OOU>Nl>00'KHA-/>C0C 


III HI 111 111 III III III 111 1.1 111 111 

UlDCOCD-JiJ'OMl/lOi-* 

NOM'JfJMHIO^NM 

i/i'ifflfji/iNi/iio-j^ij 

^JU-iificOMOlMOtOCO 


eg i/) 
CO ■* 
to 

O' CO 




eg in 
M O 
>3- m 


LU L^J III 111 UJ III III III LI J 

O'MIOrtlONON® 
' 0 \NNU 10 NNH 
O M O H (O Mfllfl 
NiHlONNNO'OO 




eg O' 
<t in 


o < 

s 8 


) Nin (0 H N N (0 


OOOOOOO'COf'-N© 

OOOOOOO'O'ff'O- 

OOXDOOOO'O'O'O' 

ooooooo'iyo'fj' 

OOOOOOO'O'C'O' 
OOOOOOO'C'ff'O' 
S(0 0' 

OOOOOOOOOOO 

OOOOOOOOOOO 


o • 

x! 


s * 

UJ o 
> o 

CL O 

So 

o 

5" 

M If 

k in 

O u. 


o < 

38 


O' m st> m 
O CO CO N- 
N 1/1 M N 
m in vj- eg 


UJ UJ UJ UJ 
<0 O' CO CJ 

>o ^ O' r*. 

O' 'O O' m 
O N 

H H ^ 3 


m r» g> o 
eg CO ki O' 
co co ^ cO 

O O O CM 
H H N K1 


o o o 
O O o 
o o o 
o o o 
o o o 
o o o 

H N 

o o o o 
o o o o 



FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 3 OF 10) 































UJ UJ UJ W U u UJ 

a o a a o r- co 

to O <0 O <M <0 N- 

N H o hi M O 111 

a m oo a eg & r-» 


U 1 l /1 »-1 o 3 M Nl 
Kin f O J J N 

•J M 8) (0 f J W ifl 

M ^ ro hi S ^ N 


N O th tj U1 Li M 

MONO t) N M 

o o O ^ hi tr m 

QO lH £ lO iO O th 


O O O O CO ^ o 
o o o a o 9 a 
c o o a a a a 
o o o a a a a 
c o o a a a a 
coot? 3 a a 
^ ai o o^oc- 
o o o o o o o 

o o o o o o o 


I L I 11 I 111 III I 11 III 11 I III U m III 

OiOMO'i^HOO-NO 
HC'NlON'f OOtfH^ 
B 3 M>JNO'JO^rtOH 

®ff''OHff'NN( 0 C 0 WN 


UlUJUiUitUUUJUIUJIUU 
OfflrlMff N |/1 a N 

tfNin^ajNMC'\o 

K» K 1 *H aNtOfOWO-hlff 
NNHOO-JHO'JJWI^ 

rtrtHIflWN^N L3 M ^ 


y yj yj yj yj yj yj yj y j yj 

ItlNJONONMUIUlhl 
CS> 00 K 1 a M CO N O N K 1 
aoao<rcooo^<rKiaho 
oooMomitntflo^ 


HHrtOtOlfllOlflNMH 


©oocooaco^-o 
ooooooa a a a 
ooooooaaaa 
ooooooaaaa 
aoooooaa c a 
ooooooaaaa 

h im h^ a tfi -o -o o c 

coooooooooo 

ooooooooooo 


-h»rOM^i-«r^Ol' 
Iff'UlOSHJHf 
/oavrsawi^af 
1 N IO O ifl <M0 N t 


co ^ a -a Lfi r 
csj-^moaoor 

M M CO hi CO N CO t 


NNrlHH^SHi 


rtO-Ntfl^NinaN^H 

oi/iH^N^eouiuiK-o 

aNitOHSHOhicoMo 

tOWlONSMN-fl/ltOH 

CMNNHHI/|rtl/lK1Mlfl 




ooooooaeo^vo 

ooooooaaaa 

ooooooaaaa 

ooooooaaaa 

ooooooaaaa 

ooooooaaaa 

HNNItMfl-CONCOC' 

ooooooooooo 

ooooooooooo 



















TIME LIME tflJMBE R ( NO. 1 l (NO. 5 I RATIO 



o n ^ ifl a ^ ffl 
so-'N'jfyHiflco^ff 

J^N^J-hhNO-hiO 


r- -( -< O- O , 


OOOOOOOOOOO 


eo m m e- to k ^ m ^ o fj 

JjMJNJMtlflO- -O (O 
a- aojo^oui^tON 
NNr-MLfta-^OUINO 


K1 M W H N r 


l-Htf-C-Jlft fi M Kl O C~i ~f r-t 

o I/I h ^ n * (!) uun K •<) 

<T MfflHNHOMfflNM 
K'MONNMN^llllOH 


I 1(1 iH U 1 M W U 1 


ooooooo-eor-^so 
oooooocro a a 
ooooooo'o-a a 
ooooooo-cro-o- 
o o o o o o <r o- O' o- 
ooooooo-o o-o 

h f j 'I ^ in j c k o 9 - 
OOOOOOOOOOO 


OOOOOOOOOl 


b 


ao o 
» o 


8 - 


HJ o 

> o 
a o 


o < 

38 


JOOOOOOOOC 


X a: 

< 

r 


CO <o 
ni f< 
ts\ bf\ 


hiUJ JJUMuwujww 
o-mNNHiiiai^ff- 
o- o ^ r-' t o a)NN 
M 3 in<o>C'Jo-tO' 
*~<sOUlr^MOMN*-< 




lli Hi Hi Hi Hi Hi HJ UJ HI HJ Hj 
H >J N S ff cnf'f-'lOCO'H 

O'fi'OMNOMOWCOKI 


lAU 1 >*C‘J.©Kt>OCH<\ilflfH f-t H> 


UiHlUiHJUiUiUJUiUJHJHJ 
Ha fiifl^NiflO csj^-h 
oiflH^n^ioinmN^ 
0 'M« 0 «-*^WOM< 0 n^M 
MMONNM!M 3 U 1 (OH 


M M CM r 


i in h m m ^ i^ mo 


CJMCJCMHMfJKIO'CMO 


0000000-60^^ 
OOOOOOOO 0-0 
000000 0 0-00 
0000000-0-00 
00000000-00 
00000000-00 
— <-J O Hi .0 .0 f-» CO o 
OOOOOOOOOOO 


OOOOOOOOOOO 


’-1 (>2 


co a 

- O 


5. 


o <t 
< u 
o o 


OOOOOOOOOOO 


UiHJHiHiUJHIHlUiUJUiUi 
-o ^ O' O' O in H if) ^ (M Kl 
f^c^m-ouisj-f'-co^c-JCN. 
-tmoHNin^c-ff-MN 
mm^NNCMCOtOO-MO 


i n m m m vf 




’ H CJ J Ifl ^ O' c- I 

I O N. O -X) o I s * r 

’ CO CM (O H H CJ H I 

I M M J- CO M M MJ • 


inin^fMinMMMM-omH r-« ^ 


hi uj iii ui m iii iii iii in in iii 

-OCOOCO-ONOC-i-D-Om 

inc-tOHMff-^to^H .0 

O'MHinff'inO'CO-in -o 

HNflfl^COOOOHN 




•H O 
•H O 


, Kl O- O- H CM 


ooooooo-cor-M> 
0000000 - 0 - 0 - 0 - 
oooooo o-o-o-o- 
0000000-0-0-0- 
OOOOOOO-O-O'O- 
0000000-0-0-0- 
HCMNiom-fl- 6 N(Oo- 
OOOOOOOOOOO 


OOOOOOOOOOO 


wi. ,t, - . VW ... ~ 1~ » HHUA 




V *.* \« 1 


FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 5 OF 10) 























LOAD INTERACTION CURVE NO. 8 , BEAM NO. 
LOCATION: rz~- AoO.OOD , BL= 0.0 , HL = 




OOOOOOOOOOO 

UJlUUUiUJUJUJUJUiUlUi 

C 4) O 

NMNOVIN.MMl.fir -O 
o«* oHNHajHowfl' 
in >j 


OOOOOOOOOOO 
I I I I I I I I I I I 
UJLUUJLliUJUJUIUIUjLJJUJ 
O'OMXO'Nito^m^rg 
CJUlHrjLOUlMN^O' O' 
Off'ff'NWO^HNOOO 
Of'COCSjOMOOO'-OCNjO' 


JUJLJUJLUUJLUUJ 
■ ^ 

I O' K1 Ifl ^ O U1 

I U1 N J O N 
O(0N(0-0W(0 


OOOOOOC-CO^ O 

ooooooo o o O' 

OOOOOOO - O' O' O' 

ooooooo'o-c-a- 
ooooooo o- a o- 
oooo i o O' a o o 

w rj wT 1^ a ^ n o ^ 

~:ooc ooooooo 

OOOOOOOOOOO 




IUILUUJUJU1UIUJUJUJ 
IN^lfllflJNCOON 
INHMHONM0 1 O 


H H M N S (NJ OJ N H . 


ooooooctcon.^ 
□ 000000000 
OOOOOOOOO ' 
OOOOOOOOO C 
OOOOOOOOO O 
O O O O O O O' o o o 
H ^ to V* If) ^ .p N O C 

OOOOOOOOOOO 

OOOOOOOOOOO 


OOOOOOOO 

LULUUiOJUJUJUJUJ 
n hi >r h o n 
l^NNfUCO^JN 
IHHKINMKvON 
COff'JlflOJ'HN 

HHN^^^COS 


Lii in in Li I in |.i ill |n 

COO-nJMNvJO'H 

JJinNOHO-MN 

nnhj-j-h^h 


hi Hi lii in 111 III ui Ml 

Nieccj'Ti/tiO'i'M 

OrtOJHMHON 
M M i 4 ) O' O Q CO 


O O O O O O O' 

O O O O O O O' 

OOOOOOO' 
O O O C O O O' 
OOOOOOO' 
O O O O O O O' 

w m m ^ m i .o 

OOOOOOOO 

OOOOOOOO 


FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 6 OF 10) 





















OOOOOOOOOOO 


n? in CO Ifl Ifl O- a s rt f\l M 
SNiHONM? fOCNjr^ 




in in id (>i hi hi lli m m lu in 
O' ^ T'OONa)H01C'U\ 
N O C' i in K (\l J M -J o 
ooo-^or-co^o-ofo 
oooi^^o^a--«v>cr 


rtHff COHNNI 


lu uj uj i*j uj uj u ui u uj uj 

M ul l O h o ( j ifl O W i/l 

coe o a ui a « j «■ w .j 

0 Ol/l^fJOSiNMN 

WMiflinooooHoo 


INNNNNNMMM 


OOCOOO^CO^-C 

ooooouo-crao- 

OOCOOO^O'O-O' 
OOOOOOCO'C o' 

©oooootf'C^ a O' 

OOOOOOOO'C c 
M ^ O l/l 0 .O <0 C 
OOOOOOOOOOO 

OOOOOOOOOOO 


o 

z *■ o 

<r or 
lli O O uJ 

> O -J CO 

a. o Z 


OOOOOOOOOOO 
iii m ui m m ul u m m lu ui 
WHM/lNMUIOff ©si 
rt/)9-®l/|NNH .© O K> 
MH(\J(TN(0Ni-i®^K1 
aCNNitKltflflO-KlUl 


bJUJUJUJIiiUJUIUJIliUJUJ 
CO -o h n ^ c- o i/) o !?• 
O'MCOfl'HNII/lOl/'S'N 
(rN<rNK0'HO'C0U1O 

OOO!01t)HMON/)H 


l.l 111 111 III II ) HI Lll III 111 111 111 

Min^ OHONinoi/ii/i 
CO <r o (Mfl O'# i* 0- nw 
O ff-ifir-*(SiO'fvsorsJP\i(SJ 
MMiflinff'OOo^o-a 

NNWtftOHrlHrlCOO' 


iMMNHNNMfrtMM 


ooooooawr*.^ 

ooooooa'a-a'ir 

ooooooo-ao'o' 
OOOOOOO'O'O'C' 
ooooooa-a-a o- 
OOOOOOO'C'C-O' 

h n m <r i/i /> j> s. ffl a- 

OOOOOOOOOOO 

OOOOOOOOOOO 

































WHHHHHHHHHrlHHHO 
OOOOOOOOOOOOOOO 
I I I I I I I I I I t I I I 
ILIUILUUiUiUlUiUiiiiUiUiCUUJUJUJ 
vOO'ONCDO'NONNHOlOMO' 
Off'O'OO'SNOff'O'NOKIlflO' 


OOOOOOOOOOOOOOO 



FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 9 OF 10) 












TIME HISTORIES OF VEHICLE CG MOTIONS 



FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 10 OF 10) 












t ~ .0616, NEWPIN = 1 signifies that the coding has changed from fixed at the 
j end to pinned at the j end (j = 2). This is the technique for forming a 
plastic hinge. At t = .0643, NLWPIN = 0 signit ies that unloading has occurred, 
sc that a fixed end condition is appropriate. Subsequent changes in NEW I’ IN 
define transition points on a hysteresis curve. NKUTiN = 0 always means a 
transition to fixed coding has taken place, due to unloading from a plastic 
hinge moment. NKKTIN = 1 always means that a transition to pinned coding, has 
taken place, due to exceeding the input plastic hinge moment. DIREC'IIOX = 5 
in figure .1-2 i refers to moments about the v beam axis (6 would be moment 
about the z beam axis). DIRECTION = -5 means that Lite sign of the plastic 
hinge moment at that time is negative. 

The energv summary showing the time variation of the different types of 
energy is presented. This summary facilitates visualizing the energy flow 
time variation; Lite one or two page summary is much easier to read than 
skimming through the basic time history print, which can run to hundreds of 
pages. Figure 2-25 shows an example of this output for the sample case. A 
quick glance at the "PERCENT TOTAL SYSTEM ENERGY" column tells the user how 
stable the solution is. The percent energy should stay within 99 - 101 per¬ 
cent , preferably within a +0.2 percent band. Any significant system insta¬ 
bilities will quickly manifest themselves in this output. 

The column entitled "PERCENT MAXIMUM ENERGY DEVIATION" shows the maximum 
deviation from 100 percent of the total energy for each mass individually, 
i.e., at each time the worst deviation of all the masses is shown. These 
numbers will always indicate a greater departure from 100 percent than the 
"PERCENT TOTAL SYSTEM ENERGY" column, wherein all the masses constituting the 
s'.-stem are included. The reason for this situation is that some of the masses 
have positive and some negative deviations from 100 percent, and when these 
are summed over the totaL system cancellations occur. Individual mass total 
energy deviations in the order of 10 percent may be tolerable, as long as the 
total system energy is acceptable. In the example shown in figure 2-25, the 
total system energy remains constant within .01 percent, while the maximum 
energy deviation is .02 percent at the conclusion of the analysis. The (+) 
in the heading for POTENTIAL ENERGY signifies that energy changes due to 





applied farce or a reeleration input time histories are included in the numbers 
sir vn ( ref or to Section 3 .3. '.2.')'). 

1 in:e iiistories ot interaction loads follow the energy summary. in tlie 
sample case, there are 15 of these time histories, requiring about 5‘j pages of 
output. For each load interaction curve number, the following information is 
presented versus time: 

• X load value, pounds or inch-pounds 

• V load value, pounds or inch-pounds 

• Critical load line number. Of a LI the straight line segments making 
up the load envelope, the one which is most critical relative to the 
current X,Y combined loads is indicated. In general, the critical 
Load line number will change with time as the X and Y loads change. 

• Maximum load ratio. This is the ratio by which the current Load 
vector length (pt. 0,0 to point X,Y) exceeds a Line along this vector 
but terminating at the intersection of the vector and the critical 
load line (input). A ratio greater than 1.0 signifies an excursion 
outside the load envelope defined in the input data. 

Each time history data block also includes the identification of the load 
interaction curve number, beam number and location (FS, BL and WL). Also, 
the directions of the X and Y loads are defined. In the sample case, the X 
load is always 3 (vertical shear, Fz) and the Y load is always 5 (bending 
moment about 7 axis). At the end of each time history data block, the 
maximum and minimum values of X load and Y load are shown, as well as the 
peak value of MAX.LOAD RATIO. 

After the individual load interaction time histories, a summary of the 
peak values of ihe maximum load ratio is shown for all the input curves. This 
is followed bv the overall maximum load ratio and the corresponding inter¬ 
action curve number. For example, in figure 2-25, the overall maximum load 
r. i! io is 1.1999, which occurs for interaction curve number 15. This output 
1 ives a very quick indication of the severity of the impact being analyzed, 
however, maximum load ratios greater than 1.0 do not necessarily imply that 
tii. corresponding structural section would have completely failed. Refer to 
Section 1.1 for a discussion of the theory and usage of the 1oad-interaction 
data. 


2-199 













If the interaction curves are used to obtain an overall section shear and 
moment (summation of all loads acting at a particular station) then the afore¬ 
mentioned printed summary is applicable to the sum of the forces acting and 
not an individual beam. 

The final summary print output is a time history of the overall vehicle 
c.g. motions. The quantities included are 

• c.g. translational accelerations, g's 

• c.g. translational velocities, in/sec 

• c.g. translational displacements, in (= 0 at time = 0) 

• Net forces acting at the c.g., pounds 

All these data are calculated in the same manner as the c.g. translational velo¬ 
cities, described in Section 1.3.9 of Volume 1. Weighted averages of all the 
mass motions are used to arrive at a value for the entire system. The final 
results completely define the translational motions of an uncoupled 1-mass, 

3 degree-of-freedom system. Rotational loads and motions are not presented. 

These data have been used to determine vertical load-deflection character¬ 
istics for a large transport frame structure. Cross plots of DZI vs FZI from 
the KKASH analysis of a frame stri ■‘'"*'0 form a load-deflection curve that can 
he used to determine the external spring characteristics of a stick model of 
an entire airplane. 

2.3. 3.A Time History Plots 

I he final section of output data consists of time history plots of 
selected response quantities. Figure 2-26 illustrates typical output data, 
fhe sequential time history print of the three responses is shown on the left, 
while Lhe plots are generated using three separate printer symbols. The scale 
I actor for all three plots is shown in the upper right corner of the page. 

The plot summary is printed on a separate output page as are the various sets 


















* 


* 


♦ 


tT* t' . ■ V" I" e_- *- t- n 


* 



II 

z 

#» 


N 

u. 


OOOOOOOOOOO 

UiUUJUlUIUJUiUlUJUJUJ 

^rHO'in<SICSI<r<M fs J^<0 

HWO'O'^OlOlflNUIlO 

NHHHHfOWH'O^N 

OOOOOOOOOOO 

liiUJUiUJUIUIUIUlUIUIIil 

(DNvOMff'r^SUlHHj 

^inU)JflC0'J9'C0NtfMfl 


§ 
UI 
£0 


X * 


V 

Ui 


c/> 

£ 

M 


PJMHNlfl'OHSHvJM 
111 « 

OOOOOOOOOOO 

UJUJUJUlUiUJUJUiUJUiUJ 

cocgfou^sOco^co^O'!^- 

i-«©»-4r-«i/llA*-IO'3 , ©''0 


• OOOOOOOOOO 

. r-icsjrns*'in'X>r^oo'0 

• oooooooooo«-i 

• OOOOOOOOOOO 


2-201 




■tetehailNMl 





FIGURE 2-26. KRASH85 SAMPLE OUTPUT TIME HISTORY PLOTS 













SECTION 3 


ADDITIONAL KRASH85 DATA REQUIREMENTS 


This sections contains a description of those KRASH data requirements 
that are needed for KRASH85. These requirements are in addition to those 
items provided in Section 4 of reference 2. 

3.1 LOAD-INTERACT ION CURVES 

KRASH85 has provisions to include load interaction curve data for failure 
prediction. Figure 3-1 shows a typical set of interaction curves for fuselage 
bending and shear at a particular airplane fuselage station. Figure 3-2 
identifies the stringers at a representative frame location. The input 
requirements for load-interaction curves are as follows: 

• The user can specify interaction curves at a maximum of 40 locations, 
which can be anywhere. For each curve, either a Fuselage Station, 

Butt Line, or Water Line (only one) is input, as well as the corres¬ 
ponding beam number in a KRASH model. The location of the inter¬ 
action curve can be anywhere along a given beam; the user is not 
restricted to using the end points of the beam. For essentially 
fore-aft beams, only F.S. is input, while for lateral and vertical 
beams B.L. and W.L., respectively, are input to define the location 
of a load interaction curve. For each load interaction curve, the 
user inputs the following additional information: 

• The two load directions for the interaction curve. In figure 3-1, 
the abscissa represents vertical shear (direction 3) and the 
ordinate represents vertical bending moment (direction 5). Any 

2 of the 6 loads can be specified. 

• A user-specified load sign convention. 

• Horizontal and vertical load interaction lines (4 total). 






Vj tbs * 10 ' 

FIGURE 3-1. MAXIMUM ALLOWABLE MOMENT AND SHEAR 
ENVELOPE - NEGATIVE BENDING 



FIGURE 3-2. TYPICAL CROSS SECTION WITH STIFFENER 
LOCATIONS - REAR VIEW 













ami v 


• I'p to 20 straight, sloping load interaction lines. i he x 
axis intercepts are input for each line. 

• A quantity called RL'PRAT (rupture ratio), which is explained below. 

Tiu 1 program is coded so that for the sloping interaction lines, data arc- 
input for any one quadrant (:< and y axis intercepts). In addition, "mirror 
flags" are input to tell the program whether or not to generate mirror image 
lines about the x and/or y axes. For example, in figure 3-2 the data arc- 
input for line 1 (x and y intercepts), and both the x and v axis mirror 
t lags are input as 1. The program then automatica11v generates lines 2, 1, 

and 4. If only a mirror about the y axis had been specified, then the 
program would generate only line 2. 

At each location the program calculates the following: 

• The internal beam loads, in KRASH sign convention, at the load 
interaction point. 

• These loads are transformed to correspond to the standard 
structural load sign convention employed by the I.ockheed-CaLifornia 
Company (Calac), shown in figure 3-4. 

• The Calac:-convent ion loads are then transformed to a user- 
specified sign convention. One of ten such sign conventions may 
be selected by the user. If no convention is specified, the 
loads are left in the Calac sign convention. 

• The two interaction loads are selected from the 6 loads calculated. 

• A load ratio for each load interaction line. A ratio greater than 
one indicates that a load interaction curve has been exceeded, 
signifying that at least one element has failed in some manner. 

KRASH is coded to allow complete rupture of a beam element if an 
input maximum load ratio (RVVRAT) is exceeded. 

1. A left handed coordinate svstem is used; moments employ left 
hand rule. 

2. Internal loads and moments are positive if the loads or moments 
applied by the part with the greater algebraic coordinate are 
positive in accordance with body axes conventions shown as x, y, 
















Loads shown are those applied to the cutplane by the parts with the 
greater algebraic coordinate (station). 

At the conclusion of the computer run the following is printed: 

• Time histories of the following quantities for each load interaction 
curve. 

• X Load (fuselage vertical shear in figure 3-1). 

• V Load (fuselage vertical bending in figure 3-1). 

• Maximum load ratio at each time. 

• Input load interaction line number corresponding to the maximum 
load ratio at that time. 

• A summary which shows the peak maximum load ratio for each inter¬ 
action curve and the overall maximum load ratio. 

The user has the option of saving the load-interaction curve time history 
data in an output file, which can be used for subsequent post-processing. 

These data can be plotted to show the time-varying path of the calculated x-v 
loads, superimposed on the load-interaction curve (as illustrated by the 
dashed lines in figure 3-1). 

While the load interaction data output provides a great deal of useful 
information not previously available, considerable caution must be exercised 
hv the user in its interpretation. A maximum load ratio greater than one 
does not, by itself, indicate complete failure of the corresponding fuselage 
section. The output data have been used in conjunction with the actual 
manufacturer-furnished interaction diagrams to assess the extent of damage at 
each location. For example, suppose that the computed combined .loads were as 
shown by points A or B in figure 3-1. For point A stringers S27 through S30 
could fail. For point B several additional stringer elements could fail 
(S-9 through S-15 and S-21 through S-30). Usually the input data to KRASH 
is the minimum necessary to define the inner boundary in figure 3-1. The 
current KRASH85 coding does not define which stringers fail; it only defines 
the critical load line at each time out. 


3-5 







j.2 A KM 1 IK ARY MASS Nl'MBKR INi. 

I'ro^ram KKASH has been modified to accept user supplied mass point 
i d> lit i ! i eat ion numbers. 1 he modi i'ii.aL ion can be thought of concept ua I I v as 
a tias.s point number pre-processor and a mass point number post-processor, 
ihe pre-processor converts external mass point numbers to internal mass 
point numbers. The external mass point numbers are supplied bv the user as 
«. cl o' » lie input while the internal mass point numbers are defined bv tile 
program. ] he internal mass numbers are consistent with the numberin'; svsleni 
previous!' used in earlier versions of program KKASH. After conversion pro- 
r iri KKAS11H3 is executed usiin; the internal mass point numbers. After oxecu- 
1 ion is completed the post-processor converts the internal mass point numbers 
to external mass point rumbers for output. In the modification, two new 
.aibrout i lies (I NPT and INPTPL) wore added. In these subroutines, two arrays 
iMASS and I MASS) are defined which cross reference the external mass noint 
numbers to internal mass point numbers and vice versa. 

The external mass point identification numbers are input in column 71 
and 72 c ■' Card 200 (MASS POINT DATA). The identification numbers can not be 
less than zero or greater than 99. Lf they are, program execution will be 
halted. lf any of the numbers are left blank or set equal to zero, the pro¬ 
claim will automatically assign sequential identification numbers to all mass 
points in the order of input. This option accommodates previously developed 
i up'il data set s . 

..is h t he Ri:NM0l)=2 option is used, the program automatically assigns an 
■ 1 1 mal mass point identification number to the image mass point generated 

cider this option. The identification number assigned is 100 greater than the 
ideiit i : icat ion number ot the mass point used in defining the image mass point, 
ir example, it the input mass point identification number is 96 then the image 
mass point ideiit i f icat ion number will he 196. 












SECTION 4 


COMMON BLOCK REGIONS 


KRASH85 is designed such that data storage and transfer is accomplished 
using the many common block regions defined within the program. A cross 
reference of the common block names and using subroutines is given in 
Table 4-1. Included in the cross reference summary are size requirements 
defined by the FORTRAN H/EXTENDED (OPT = 3) compiler. 











SUBROUTINE 

























TABLE 4-1. KRASH85 SUBROUT INK/COMMON REGION REFERENCE (CONTINUED) 


« « • 


« » » * * * 


• » »»•••»»»» 


* # # * * * 


«■ » * » * * 


* * • • 





* * * * 


• a » c*oa«a<rtactl»:tt* 
i m • m cn *r qd o a as tv 

» h i #niL (s c u cn 

« tO I H < 

I • 


cD^ccc^c»^u»oea«t>^o^ccccco«s^ 
o « 9 as o u r- •£ O' o ♦ n AU.rt«iBnir^u 
u m c u a. r* o* ♦ ® » - ^ «r c> r- ^ ec u. 

^ ^ r** ^ O* (N 


Z Z I u b. u U & a h X «) HZ*W«*M*CN® 

OO I J J ft *t < U ft. H «0 *“» ^ U] HHUHMfltHfltHK H 10 

* n |Jb.Kh:UikkUCiDZSItth)<iJ H II k hi ft OC 10 h ft s O O O ^ « W □ ^ h 

* 19 • <QQ*<UUQ H HHQft l Ha2DUUUUQQillil , JKl»iHH00000001ilttiJ 

oh) i ttoozzzzzzzzzaa^o:HH<<<<<«4tkxaaaabaa.JhiL 

U QC f HHHHHMHMHMHHHMHMkJJIIIXIZXIIZZZZZZZZOOQ, 


















































KRASliS') SI 1 BUOUT INE/COMMON KEG TON REFERENCE (CONTI.NT ED) 




























REFERENCES 


1. Gamon, M. A., "KRASH User's Manual; Theory Volume I," FAA-RD-77-189I, 
Lockheed-California Company, Sept. 1979 

2. Gamon, M. A., Wittlin, G., "KRASH User's Manual, Input-Output, Techniques 
and Applications,” Lockheed-California Company, FAA-RD-77-189II (Revised), 
Sept. 1979 






APPENDIX A 


SHOCK STRUT ELEMENT DESCRIPTION 


A.J GENERAL 

The use of a shock strut element in KRASH is available for, but not 
limited to, lending gear oleo struts. The following discussion will be 
oriented to landing gear oleo strut usage. The axial strut motion is 
assumed to be uncoupled from the transverse displacements. Axial forces are 
produced by an air spring force, F^., a hydraulic damping force, F C) ^, a 
friction force, Fp^, and forces produced by elastic stops which limit the 
travel of the piston within the cylinder at full extension and full 
compression. Each of these forces is discussed separately. 

A.2 AIR SPRING FORCE 

The expression for the air spring force is 



where 


effective total strut cylinder length (Figure A-l) 
strut air preload at y. = 0 

F a> = cylinder load due to ambient air 
A A 

ii| = polytropic exponent 


E. = 


'•A,. 


A-l 







[CLEARANCE 

STROKE 



















= shock strut closure displacement, varying with time F^ 
is given by 



(A.2) 


where p u . is the absolute air pressure in the upper chamber of the shock 

strut at full extension (y. = 0) and d . is the effective pneumatic diameter 

1 oi 

as shown in Figure A.l. 

If 1 ’a s . is *-h e strut bottoming load at y^ = si, the value of Ep can be 
obtained from equation (A.l) as 


E. 

l 



(A.3) 


where is the stroke. For high velocity impact conditions, a polytropic 
exponent of 1,4, representing adiabatic conditions, is appropriate. 


In the 
EGLEO, FAO, 


program the values of E T , F A , F A , 

1 °i A i 

FAA, YMAX and EXPOLE, respectively. 


and n^ are input as 


A. 3 


HYDRAULIC DAMPING 

The hydraulic dampinc force F is given by 

O; 


F 

o . 

l 



(A. 4) 


shock strut closure velocity, varying with time 


where 











is a damping constant which is a 


' v, I is tlie absolute value of v. and 
function of the strut orifice characteristics and of the characteristics 
15,. of a strut rebound valve. C is defined as 

1 i / i 


C 

z 


B. if v. 0 

l l - 


C 


z . 

i 


B -t- B if v. " 0 
i r. - i 

i 


(A. 3) 


K is tie fined bv 
i 


B. 

l 



2B (A C,) 2 


(A. 6) 


where 


A f 


C , = 


J d 

i / 8 


V 


2 2 

77 /4 (d,. - d ) net orifice area 

f. p. 

l l 

orifice discharge coefficient (typical value = 0.85) 

2 

1b— sec 

oil density (typical value = 0.992 E-4-——) 


= 74 


(v) 


. 4 
in 


= effective hydraulic area 


d.-., d n . and d u . are the orifice, metering pin and effective hvd rau.lie. diam- 
1 l f J l n l 

cters, respective (see Figure A.l). 

B. and B r . are input into the program as BOI.EO and BROLEO. A metering 
pin can he modeled hv inputting a table of BOI.EO versus Y0LE0. Y0I.E0 is the 
oloo compression, v, measured from the fully extended position. 

Another feature of KRASH is the ability to solve for the metering pin 
shape that yields a desired oleo load-deflection characteristic curve. If 
this option is employed, the metering pin input table (P0LE0 versus YOLEO) is 










interpretted as a table of total axial oleo load (!'| in equation A.LO) versus 
oleo compression. This option is termed the inverse metering pin option, and 
is employed by specifying a negative number for MPTAB on card 1400. The 
inverse metering pin coding is useful for two situations. 

• handing gear drop data are available, but the basic gear data (meter¬ 
ing pin shape) is not. KRASH can be used to calculate the variation 
of BOLEO versus Y0LE0 that will duplicate the observed test data, 
which is used as input data with the inverse metering pin coding. 

Once the BOLEO vs Y0LE0 data is calculated and output bv KRASH, it 
can be used as input data for subsequent runs to analyze different 
conditions involving that gear. 

• Metering pin design studies can be conducted using KRASH with the 
inverse metering pin option. In this situation, a metering pin 
characteristic can be determined that will yield a specified 
ideal oleo load-deflection curve. 

When the inverse metering pin option is employed, the KRASH output data 
includes a table of Y0LE0 vs. BOLEO for each oleo specified. The data point 
spacing for the table is determined by the output point times specified by 
DP/DT on card 110. The data will be output in uniform time steps, which 
means that the YOLEO increments will not be uniform. 

A.4 FRICTION FORCE 

Coulomb friction is modeled, so that the magnitude of the friction 
force is independent of velocity, while the direction of the force is opposite 
to the direction of the strut velocity. 

The friction forces, Fp^, are given by 

F r = C f(y.) (A.7) 

F. l i 

l 

where f(v;) is a function whose sign is always equal to that of and whose 
magnitude is 1. 

Strictly speaking, f(y^) should be equal to 1.0 for all positive values 
• • 
of y. and equal to -1.0 for all negative values of y^. However, since the 


A-5 








friction force is a passive force and is only present as a reaction to an 
applied force, the friction force will be able to attain its lull value on 1v 
if the applied force is greater than C-. If this situation is not the case, 
stops will occur in the motion. A rigorous treatment of this problem would 
introduce unwarranted complications into the program. A very good approximate 
solution which avoids the difficulty can be obtained by letting the friction 
force varv sufficiently slowly from to { at small values of v j, so Licit 
at each step in the integration process equilibrium of the forces is obtained 
without introducing large discontinuities. The following form is therefor*.' 
assumed for f ( v .) : 

f(V.) = tanh (v./a ) (A.8) 

- 1 • 1 o 

This function is plotted in Figure A-2 for various values of , The 

value, of a should be small enough to simulate the friction force with 
o 

sufficient accuracy, but not so small as to introduce discontinuities. The 
minimum value will depend on the integration interval. Generally a value of 
. = 1 is found to be suitable. The expression for the friction force 

t 1 

becomes 

F_ = C. tanh (v./ci ) (A.9) 

r . l • l o 

l 

The values of nt and Ch are input as ALPHAP and FCOUL in the program. 

A.5 ELASTIC STOPS 

Two elastic stops of stiffness K F and K,. are present which limit the 

^ i e l 

travel of the piston at full extension and full compression, respectively. 

1 he forces generated by these stops are, therefore, equal to Kp Yj when 
v. 0 and K,. (v. - S.) when y. • S.. 

l 1 i ' i t l t 











FIGURE A-2. FRICTION FORCE COEFFICIENT AS FUNCTION OF STRUT CLOSURE VELOC 





















Collecting all the above terms the total axial force F. can be 


written as 


F = F + F + F + F + F 
i A. o. F. EXT. COMP. 

ill i 1 


(A.10) 


The terms K r , K , and S. are input into the program as XKEXT, XKCOMP, and 
i i 1 

VM\X, respectively. 




U.S. GOVERNMENT PRINTING OFFICE: I 9 8 5-505 08 0/2 0 1 3 5 









END 


FILMED 


1-86 


DTIC