AD-A1S1 8*1
KRRSH 85 USER'S GUIDE - INPUT/OUTPUT FORHRT(U)
LOCKHEED-CALIFORNIR CO BURBRNK H fl GRHON ET RL. JUL 85
LR-28777 DOT/FAR/CT-85-18 DTFR83-82-C-88884
1/3
UNCLASSIFIED
F/G 1/3
NL
DOT/FAA/CT-85/10
Technical Center
Atlantic City Airport,
N.J. 08405
KRASH 85 User's Guide —
Input/Output Format
to
<
i
o
<
Max Gamon
Gil Wittlin
Bill LaBarge
Prepared by
Lockheed-California Company
Burbank, California
July 1985
Final Report
DT1C
This document is available to the U.S. public
through the National Technical Information
Service, Springfield, Virginia 22161.
Uj
lA_
U.S. Department of Transportation
Federal Aviation Administration
NOTICE
This document is disseminated under the sponsorship of
the Department of Transportation in the interest of
information exchange. The United States Government
assumes no liability for the contents or use thereof.
The United States Government does not endorse products
or manufacturers. Trade or manufacturer's names appear
herein solely because they are considered essential to
the object of this report.
Hi*port No
DOT/FAA/CT-85/10
! Itie and Subtitle
2 Government Accession No
Al&uU 201
3
5
Recipient's Catalog No
Report Date
RRASH85 USER’S GUIDE - INPUT/OUTPUT FORMAT
Jul y 1985 _
6. Performing Otganization Code
Authorls!
8. Performing Organization Report No
M. A. t.union, G. Witt 1 in, and W. L. LaBargo
Z< Performing Organization Name and Address
l.ockheed-California Company
LR 30777
10. Work Unit No.
11. Contract or Grant No
Burbank, CA. 91520
Sixinsonng Agency Name and Address
S. Department of Transportation
Federal Aviation Administration, Technical Center
Atlantic City Airport, NJ 08405 _
DTFA03-84-C-00004
13. Type of Report and Period Covered
FINAL
Jan. 1984 - Sept. 1984
14. Sponsoring Agency Code
S Supplementary Notes
i
4
Abstract
This document describes program KRASH as modified under Contract DTFA03-84-C-00004.
updated version is denoted KRASH85. This document is a User's Guide and defines
r-put and output formats appropriate for KRASH85.
natures that are incorporated into KRASH85 include:
An improved plastic hinge moment algorithm
Gear-oleo metering pin coding'
t
- I.ond-interaction curves
J
An expanded initial conditions subroutine (combined with NASTRAN)
* A comprehensive energy balance j
* Center of gravity (c.g.) displacement, velocity, acceleration and force time
histories .
* Revised vertical beam orientation coding^
* Provision to save data for post-processing i.e., acceleration, mass location
and forces
* Provisions Co input preprocessed data,
» A corrected uncoupled KR curve unloading/reloading algorithm
Provisions to define a tire spring (remains normal to the ground plane)
Provisions to number the masses to an arbitrary sequence
A:i option to compute section shear and moment distributions
Key Words (Suggested by Authorls))
mpuii'r program, KRASH, crash dynamics,
nonlinear analysis, hybrid approach,
aircraft, transport airplanes, general
rv Lit ion aircraft, rotary wing aircraft,
NASTRAN
Security Classif. (of this report)
NCIASSIFIED
18. Distribution Statement
This document is available to the U.S.
public through the National Technical
Information Services, Springfield,
Virginia 22161
20. Security Classif. (of this page)
UNCLASSIFIED
21. No. of Pages
223
22 Puce"
For sale by the National Technical Information Service, Springfield, Virginia 22161
FOREWORD
This report was prepared by the Lockheed-California Company under
Contract DTFA03-84-C-00004. The report contains a description of the effort pe
formed as part of Tasks II, III and IV and covers the period from January 1984
t’ September 1984. The work was administered under the direction of the
Federal Aviation Administration with L. Neri acting as Technical monitor.
The program leader was Gil Wittlin of the Lockheed-California Company.
M. A. Gamon and W. L. LaBarge of the Lockheed-California Company refined pro¬
gram KRASH. P. Rohrer of the Lockheed-California Company provided valuable
computer programming support. The Lockheed effort was performed in the Flutter
and Dynamics Department.
TECHNICAL SUMMARY
This document describes program KRASH as modified under Contract
DTFA03-84-C-00004. The updated version is denoted KRASH35. This document is
a User's Guide and defines the input and output formats appropriate for
KRASH85.
Features that are incorporated into KRASH85 include:
• An improved plastic hinge moment algorithm
• Gear-oleo metering pin coding
• Load-interaction curves
• An expanded initial conditions subroutine (combined with NASTRAN)
• A comprehensive energy balance
• Center of gravity (c.g.) displacement, velocity, acceleration
and force time histories
• Revised vertical beam orientation coding
• Provision to save data for post-processing i.e., acceleration,
mass location and forces
• Provisions to input preprocessed data
• A corrected uncoupled KR curve unloading/reloading algorithm
• Provisions to define a tire spring (remains normal to the ground plane)
• Provisions to number the masses in an arbitrary sequence
• An option to compute section shear and moment distributions
TABLE OF CONTENTS
Sec tion
Page
FOREWORD
i i i
SUMMARY
V
LIST OF FIGURES
ix
LIST OF TABLES
ix
1
INTRODUCTION
1-1
2
USER'S GUIDE
2-1
2.1
OVERALL KRASH85 ANALYSIS SYSTEM
2-1
2.2
KRASH85 INPUT
2-8
2.3
OUTPUT AND SAMPLE CASE
2-93
2.3.1
KRASHIC Output
2-93
2.3.1.1
Echo of Input Data
2-93
2.3.1. 2
Formatted Print-Out of Input Data
2-94
2.3.1.3
Miscellaneous Calculated Data
2-122
2.3.1.3.1
Model Parameters
2-123
2.3.1.3.2
Ream Loads and Deflections Corresponding
to Yielding
2-123
2.3.1.3.3
Overall Vehicle Forces/Accelerations at
Time Zero
2-123
2 . 3 . 1 . 3 . 4
Individual Mass Forces/Accelerations At
Time Zero
2-124
2.3.2
MSCTRAN Output
2-125
2.3.2.1
Executive Control Deck Echo
2-125
2. 3 . 2 . 2
Case Control Deck Echo
2-125
2.3.2.3
Input Bulk Data Deck Echo
2-125
2.3.2.4
Sorted Bulk Data Deck Echo
2-144
2 . 3 . 2 . 5
Displacement Vector
2-144
2.3.2.6
Load Vector
2-145
vii
LIST OF FIGURES
Overall KRASH85 Analysis System
Sample KRASH85 Job Submittal
KRASH85 Input Format
KRASH85 Coordinate Systems
Beam Element Coordi.ate System Orientations
Standard Nonlinear Beam Element Stiffness Reduction
Curves
Large Transport Airplane Model - Sample Case
Echo of the Input Data
Formatted Printout of Input Data
Miscellaneous Calculated Data
MSC/NASTRAN Executive and Case Control Decks
MSC/NASTRAN Input Bulk Data Deck Echo
MSC/NASTRAN Sorted Bulk Deck
MSC/NASTRAN Displacement Vector
MSC/NASTRAN Load Vector
MSC/NASTRAN Single-Point Constraint Forces
MSC/NASTRAN Bar Element Forces
Bar Element Force Sign Conventions, NASTRAN and KRASH
MSC/NASTRAN Element Strain Energies
MSC/NASTRAN Grid Point Force Balance
KRASH85 Output, Initial Mass/Node Point Deflections
KRASH85 Output, Additional Miscellaneous Calculated Data
KRASH85 Time History Output
KRASH85 Internal Beam Stress Data and Initial Mass
Acceleration Error Output
KRASH85 Summary Output Data
KRASH85 Sample Output Time History Plots
EXECUTIVE SUMMARY
£
u
c
/ Program KRASH, originally developed under Federal Aviation Administration sponsor¬
ship for predicting the response of general aviation airplanes to an impact
environment, has been enhanced to include features that would facilitate the
modeling of transport category airplanes. This document is the User's Gvide which
defines the input and output formats appropriate for this new version of,Program
KRASH known as KRASH 85. / '
' / / 1 V A 'T
<3 ' .-c \ - J /r ■■
/
Z'
/ -r
(
r
1 ' ■ ■ » ■ ' ■ y «'J-j « y . ■» « y .y - ■■ . » .’v-r."r;T ■ - y. ' \r. Tjy. lt. ■ - g - ; ~ • ?
SECTION 1
INTRODUCTION
Program KRASH, developed under a previous Federal Aviation Administration
(FAA) sponsored contract DOT-FA75-WA3707 has been in the public domain since
1979. In subsequent years changes to enhance its usage have occurred.
Recently, KRASH has been applied to modeling transport airplanes for impact
conditions. Many of the recent program changes that have occurred are designed
to facilitate modeling transport airplanes. The following modifications have
been incorporated into KRASH85 and used recently to model transport category
aircraft:
• Improved plastic hinge moment algorithm
• Gear oleo metering pin
• Load interaction curves
• Expanded Initial Condition Subroutine
• Arbitrary numbering of lumped mass points
Other modifications provide general enhancement capability and include:
• Comprehensive energy balance
• Computation of c.g. time histories
• Revised vertical beam orientation coding
• Post Processing of data, i.e., acceleration, mass location and forces
• Corrected uncoupled KR curve unloading/reloading algorithm
In addition, miscellaneous coding corrections have been made. The current
version is denoted KRASH85.
This document is the User's Guide and is limited to a description of the
input-output format for KRASH85.
1-1
-V-V-V-
»-■-
* * » ® v *■ m
SECTION 2
USER'S GUIDE
2.1 O VERALL KRASH85 ANALYSIS SYSTEM
The overall KRASH85 analysis system consists of two separate KRASH programs
called KRASHIC and KRASH85, plus a NASTRAN program denoted herein as MSCTRAN.
The NASTRAN program used in this system is MSC/NASTRAN Version 63 (Aug 1, 1983).
KRASHIC and MSCTRAN are used only if balanced initial conditions are required;
KRASH85 is the normal KRASH time-history program. If KRASHIC and MSCTRAN are
not used, then at time zero the beams in the analytical model will all have
zero internal deflections and loads. The model will be located just above the
ground and in the proper attitude, as specified in the input data. This initial
balance is acceptable for certain types of problems, primarily those in which
the aerodynamic loads on the vehicle are zero. For that situation, the lumped
masses in the model are all accelerating downward at lg (free-falling), and
the internal beam loads and deflections are actually zero.
If nonzero aerodynamic forces are present, then the initial beam loads
and deflections are not zero. Nevertheless, execution of KRASH85 by itself
will automatically set the beam loads and deflections at zero. If this is
done with nonzero aerodynamic forces, the system will be out of balance at
time zero. In this situation, the dynamic response will be the result of
two phenomena:
• Dynamic response to the ground impact
• Dynamic response to the initial imbalance
The latter response is not desired, and can obscure the desired response
or confuse the interpretation of the output data. The proper solution of this
problem requires that the analytical model be in equilibrium at time zero with
nonzero internal beam loads and compatible deflections.
2-1
This is essentially a straightforward static loads analysis problem.
NASTRAN is used to solve the statics problem, and KRASIIIC is used to read
KRASH85 input data and convert it into NASTRAN Executive Case Control and Bulk
Data Decks. Figure 2-1 shows a flow diagram for the overall KRASH85 analysis
system. The options available to the user include the following:
1. Run step 1 onlv (program KRASIIIC)
Iterate steps 1 and 2, N times (user-specified)
3. Iterate steps 1 and 2, N times, then run step 3 (KRASH85)
4. Run step 3 (KRASH85) only
The most general case is option 3. The iterations are required for the
i ol lowing, reasons. The static solution used in MSCTRAN is Rigid Format 24,
which is a small deflection linear static analysis. This method actually
assumes aero deflections for the purposes of calculating t ransl'o rma t ion
matrices for transforming beam loads from beam element axes to the global
axis system, which in this case are airplane axes. Therefore, if the deflec¬
tions from MSCTRAN are used to relocate the K.RASH85 mass points, the KRASH35
calculated beam loads will bo proper in beam axes, but when resolved to mass
axes will yield a system that is out of balance (since KRASH85 does not assume
the deflections are zero when calculating the transformation matrices)
The solution to this problem is to iterate steps 1 and 2, using the
calculated deflections :rom MSCTRAN to relocate the mass and node points in
KKASH at each step. Satisfactory convergence is achieved after about six
iterations, and additional accuracy can be achieved by using up to ten itera-
t ions. Beyond ten iterations, no further improvement in accuracy can he
achieved duo to the I imitations in the number of digits that are written to
tin' data sots that term the input and output of MSCIRAN.
file KRAS!I analysis system shown in figure 2-1 is implemented through
oh Centro I I .alienage (JCI.) . A job submittal using option 3 with six itera-
t ions causes a total et 1 1 sequential jobs to be executed (b KRASIIIC, 6 MSCTRA!
and 1 KRASH85). While tiiis may sound rather expensive, a typical case
USER SPECIFIES WHICH OF
FOLLOWING ANALYSIS STEPS TO
PERFORM, OPTIONS ARE:
• RUN STEP 1 ONLY
• ITERATE STEPS 1 & 2 ONLY
• ITERATE STEPS 1 & 2,
THEN RUN STEP 3
• RUN STEP 3 ONLY
RUNPROG KRASHIC STEP 1
• INPUT - XYZ.DATA (BASIC KRASH85 INPUT DATA SET,
SPECIFIED BY USER)
• OUTPUT - XYZ.NASBLK.DATA (NASTRAN EXECUTIVE, CASE CONTROL
AND BULK DATA DECK GENERATED
BY KRASHIC)
• UPDATE 1 - USER SPECIFIED CHANGES TO KRASHIC CODING
RUNPROG MSCTRAN
• INPUT - XYZ.NASBLK.DATA (NASTRAN EXECUTIVE, CASE
CONTROL AND BULK DATA DECKS, GENERATED IN
STEP 1 BY KRASHIC)
• OUTPUT - XYZ.NASOUT.OATA (DATA SET CONTAINING GRID POINT
DISPLACEMENTS AND ROTATIONS, GENERATED BY MSCTRAN)
RUNPROG KRASH85 STEP 3
• INPUT 1 - XYZ.DATA (SAME AS IN STEP 1)
2 - ACCEL INPUT DATA SET (OPTIONAL)
3 - EITHER XYZ.NASOUT.DATA FROM STEP 2
OR ABC.DATA IN USER'S FILE
OR NOTHING
• UPDATE 2 - USER SPECIFIED CHANGES TO KRASH84 CODING
FIGURE 2-1. OVERALL KRASH85 ANALYSIS SYSTEM
2-3
(21 mass/27 beam, L airplane model) requires only about seven seconds per
iteration on an IBM 370/3081, so that the iterated balanced loads can be
determined in less than one minute. The .ICL is set up so that data a-ts
NYZ . NASB1.K . DATA and XYZ. NASOUT. DATA are generated and named automatically, so
the process is essentially invisible to the user.
Step 3 (KRASH85) can be executed separately using option A. When this
is done, the user has a choice of what to do for initial conditions. lie can
specify any data set in his library, or use nothing at all. The latter
corresponds to the mode of execution for prior versions of KUASI1. Once an
initial condition data set (XYZ.NASOUT.DATA) has been generated, the user can
execute .step 3 only while specifying XYZ. NASOUT. DATA for initial conditions.
This will give a valid initial balance as long as modifications to the basic
data set (XYZ.DATA) are restricted to items that do not affect the initial
balance.
The static loads problem could have been solved entirely within prop,ram
KRASH, avoiding the complexity of achieving the system shown in figure 2-1
with ICL. However, the technique chosen has the advantage of automatically
generating a NASTRAN model from a given KRASH Model. Since XYZ.NASBLK.DATA,
is a complete NASTRAN input data set in the user's library, the user can
easily edit this data set to exercise other NASTRAN capabilities. Examples
of other NASTRAN features that could prove useful include eigenvalue
calculations and model plotting.
Figure 2-2 is a copy of the informaton displayed on a computer terminal
during an option 3 run submittal. The items enclosed in rectangular brackets
are the user responses. These are now discussed in detail. Some of the
comments are of necessity applicable only to the Lockheed IBM 370/3081
installation, but are included to give some perspective on an actual appli-
cation.
User Response Description
runprog krashi x(l) This is the initial command to invoke
the Krash analysis system in Fig¬
ure 2-1 .
ENTER TIME
10
ENTER LTNES
CED
WOULD YOU LIKE EXPRESS, STANDARD
OR DEFERRED(VERNIGHT) T"RNAROUND
FOR YOUR JOB? ENTER E, S UR D
0
Enter number
1 run KRASHIC only
2 iterate KRASHIC and MSCTRAN only
3 iterate KRASHIC and MSCTRAN, then run KRASH83
4 run KRASH85 only
ut data
of times to cycle through
KRASHIC and MSCNASTRAN
print execution results only for
the last iteration? (Y/N)
□
are you using B720.ICITER.NASOUT.DATA
with the input data for the 1st iteration? (Y/N)
0
KRASHIC ITERATION #1
If temporary source changes then enter name
of PAN updata data set.
If none hit enter.
Suppress compile listing ? (Y/N)
E
KRASHMSC ITERATION // 1
KRASHIC ITERATION # 2
KRASHMSC ITERATION # 2
FIGURE 2-2. SAMPLE KRASH85 JOB SUBMITTAL (SHEET 1 OF 2)
KRASHIC
KRASHMSC
KRASHIC
KRASHMSC
KRASHIC
KRASHMSC
KRASHLC
KRASHMSC
KRASHIC
KRASHMSC
KRASHIC
KRASHMSC
KRASHIC
KRASHMSC
KRASHIC
KRASHMSC
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
// 3
// 3
// 4
# 4
# 5
// 5
# 6
# 6
# 7
# 7
# 8
// 8
// 9
» 9
// 10
// 10
KRASH84
is this a checkpoint/restart run? (Y/N)
If temporary source changes then enter name of
update data set
If not then hit enter
k83.icrc.data I
HIT "RETURN" KEY IF NO DATA SET:
(A) enter name of 2nd input data set of MASS ACCELERATIONS
(b) enter name of output data set of MASS ACCELERATIONS
(c) enter name of MASS and/or NODE POINT DISPLACEMENTS
jU^Tj (GRAPHICS POST PROCESSOR DATA)
How many copies of the printed output do you want?
1
SUPPRESS COMPILE LISTING ? (Y/N)
y
JOB E434367L SUBMITTED BY USER E434367
READY
FIGURE 2-2. SAMPLE KRASH85 JOB SUBMITTAL (SHEET 2 OF 2)
2-6
User Response
10
50
d
3
B720.ICITER.DATA
10
y
n
kic .kvb.data
Description
Time limit for run = 10 minutes (actual
execution time was less than three
minutes)
Output print limited to 50000 lines
(actual output is 21000 lines, about
1.5 inches thick).
Overnight (deferred) turnaround
requested. (For runs less than 10
minutes, express turnaround is
allowed. Results available within one
to two hours).
Option 3 is chosen.
Basic KRASH85 input data set. This
corresponds to XYZ.DATA in figure 2-1.
Number of iterations of steps 1 and 2.
Printout of KRASHIC and MSCTRAN is
suppressed for the first nine itera¬
tions. Only the results for the last
iteration are printed. Considerable
output print will be generated if the
results for all iterations are printed,
(y = yes)
It is possible to start the first
iteration with an existing data set
of NASTRAN output deflections. For
example, five iterations could be run
at one time, and five more at a later
time. This option was not invoked for
this example, (n = no)
This is the name of a PANVALET update
data set which is used to revise the
source code for KRASHIC. If no revi¬
sions are specified, then hit carriage
return (CR).
A compiled listing of the subroutines
changed in the previous step can be
obtained. In the example, the listing
is suppressed, (y = yes)
The terminal displays KRASHMSC ITERA¬
TION it 1, etc., as the JCL for the
sequential runs is being generated.
The checkpoint/restart capability of
KRASH85 is not used for this run.
(n = no)
User Response
Descript ion
k8S.iere.data
This is the name of a PANVALET update
data set which is used to revise the
source code for KRASH85. if no revi¬
sions are specified, then hit carriage
return (CR).
In the exampLe shown, the CR was hit
for each of these, so no data sets
were specified. DSA, DSB, and DSC
are indicated here to illustrate
where these are specified in the
input. DSA, DSB, and DSC are des¬
cribed in the input format description.
One copy of the output pr : nt requested.
A compiled listing of the subroutines
of KRASH85 that are revised can be
obtained. In this example, the list¬
ing is suppressed, (v = yes)
The KRASI185 analysis system described herein is capable of achieving a
balanced set of initial conditions only for the situation where the airplane
starts completely off the ground. If any part of the airplane is initially
in contact with the ground (any external springs initially del looted), the
current code cannot balance the airplane.
.2 1 MV i
I he input data format is dc T'Ced in detail in this section and is
shown in table 2-1 and figure 2-3. Table 2-1 gives a quick overview of the
input data sequence, while figure 2-3 is a complete layout of the input data
tormat. The data discussed in this section correspond to XYZ.DATA in Sec¬
tion 2.1. I’nless otherwise specified, all quantities are input to inch,
pound, second, and radian units. Two formats are used for the majority of
the data; 7KI0.0 lor lixed-point and sc ientific-notation input, and 15 for
integers. As an exmaple of the former, the number 126.08 can be input in
t iie loll ow i ng wavs:
TABLE 2-1. KRASH INPUT FORMAT SEQUENCE
Card
Sequence
No.(s)
Required (R)
or
Optional (O)
Identifier is
Specified on
Card No.
General Description of Data
10-170
R
-
-
Title, case control, initial conditions
200
R
NM
40
Mass data
300
0
NNP
40
Node point data
400
0
NTAB
70
Acceleration transfer correspondence data
500
O
NMSAV
80
Mass acceleration save data
600
O
NNPSAV
80
Node point acceleration save data
700800
O
NSP
40
External spring data
900
R
NB
40
Internal beam data
1000
O
NMTL
40
Material data
1100
O
NPIN
40
Beam pinned-end and plastic hinge data
1200
O
NUB
40
Unsymmetrical beam data (axial only)
1290-1500
O
NOLED
40
Oleo type beam element data
1600
R
-
-
Internal beam damping ratio
1700
O
NO
40
Non-standard internal beam damping ratios
1800-1900
O
NLB
40
Nonlinear beam data (KR tables)
2000
O
MVP
40
Mass penetration volume definition
2100
O
NORI
40
Dynamic Response Index (DRI) definitions
E
O
NVCH
40
Volume change data
O
NVBM
50
Non-standard maximum positive beam deflections.
2400
O
NVBMN
50
Non-standard maximum negative beam deflections.
2500
O
NFBM
50
Non-standard maximum positive beam loads
2600
O
NFBMN
50
Non-standard maximum negative beam loads
2700
O
NSCV
60
Sign convention vectors for load-interaction curves
28003000
O
NUC
60
Load-interaction curve data
3100
O
NHI
50
Non-zero mass angular momenta, lift constant, or
inertia cross products
3200
O
NPH
50
Non-zero initial mass orientation Euler angles
3300
O
NAERO
50
Mass aerodynamic data
3400-3500
O
NACC
40
Mass acceleration or load input time-histories
3600
0
NKM
50
Direct input of beam stiffness matrices
3700-3800
0
NPLT
140
Position plot data
3900
0
NMEP
140
Mass point printer plot data
4000
0
NNEP
140
Node point printer plot data
4100
0
NBFP
140
Beam loads printer plot data
4200
0
NBDP
140
Beam deflection printer plot data
4300
0
NSTP
140
Beam stress ratio printer plot data
4400
0
NSEP
140
External spring load/deflection printer plot data
4500
0
NENP
140
Beam strain/damping energy printer plot data
4600
0
NDRP
140
DRI printer plot data
4700
R
-
-
End of data set card
FIGURE 2-3. KRASH85 INPUT FORMAT (SHEET
LOCKHEED-CALIFORNIA COMPANY ' |-
A DIVISION OF LOCKHEED CORPORATION I PAGE
L «
imam
l&siE]r:i
IKZ/ll
IPHn
iuaal
icaaui
uwu,
IM
I15JI
s^KVJwal
■ I
IMI
imi
ifcii
IdPkHI
ir-n
Heibnii
lie >«i
■3BCJF C
riropi^
I^TOEil griW
VIHL3HH
^Inia
■■his
|Mi» 111 ii l
■ikibb.i
IKEIM
piniiKjn
nnineiga
VIE3HPM
SriMnl
Imp—
■i IW KCT
fmmmmmErt]
isib&i
151
5«
m
H
■■1
m
■Ml
Bi
■n
BB
BBI
BB
^B
BB
■B
191
I^H
BB
BB
■
^b
^B
■1
bb
BI
■
■i
B
^B
■
■
bi
^B
■
BB
IB
■
IB
■
BB
■ |
BB
■
■1
B
BB
^B
^B
■
B
■
mm\
■
■Bi
■
9
IB
■
B*
n
BI
113
119
M
H
M
ez
fgp*i
n
■HI
PK1
■n
1*3
1-i
^B
Cl
bh
C!
BA
BI
H
Ei
u
EJ
PH
BI
119
a
M
ii
EJ
■PM
BI
BI
ru
in
iK’JPXIfcrJI
IU
■i
Ul
19*
IM
BUS
—■■■—m>a
jlPHfc—
Bid
|WI
til
MCJR
Pi^Jri
nn»>iP]i
vn»^JK9l
nMiii
mnni
pnrai
PCtLlI
WMEII
muni
HfiRUI
■ Ml II
BfelMSiEI
B4»*4*1P?IBH
Sti \ c* m|
Pejmcjbibb
■«^9B
fi9
[ jh$:
bi—^rjgBga^^a Eia]
■hivafjrrnr^ln i^muh
|Z^S^I^R^I£y|iMlL9fc3l
KIPKII
ifikicii
Mil II II
Kn»n
iviiai.ii
FIGURE 2-3. KRASH85 INPUT FORMAT (SHEET 2 OF 7)
GENERAL' vRPOSE DATA SHEET lockheed-caufornia company 'j-
A DIVISION OF LOCKHEED CORPORATION I PAGE
o g o o
o <r o
A... S_ o
o _o
V-.-VV.-V'vW- •
FIGURE 2-3. KRASH85 INPUT FORMAT (SHEET 3 OF 7)
PREPARED BY f DATE j CHECKED BY I DATE I job NO GROUP
FIGURE 2-3. KRASH85 INPUT FORMAT (SHEET 4 OF 7)
PREPARED BY f DATE [ CHECKED BY I DATE
il K. O
o r- »
1LO 5
—rtirv
luanii
irwn*icjn
u.im
it'-ic’ii
nrw.ii
ihui
iai‘j
HEJHrl
IIUC1
IK»
IKM5M
IftHPCM
IMBcll
IMI
IF1I
IKilTI
l>il
IKII
. &,
i^huhes
■ K1K3B * s'.s
tt4Cn»BME3jl
ssssslas
sail
BSS 51
lE3|g |gi
'IE.? .
nitsifil
JpaiKinl
■ESimnal
■MjnPAnl
Il7
teiESKPgEl
IlKwZSI
IESI
iKrr^lHidi
KfiRI
ICWIIII
id
IfcJII
MTCll
iitaial
iinrj
lanSul
tllTK
wi!
yaaiczii
nrAHE^M!
peitoj!
PlUl
KiM
IVU1I
...
K*iac£i
maul
|F WI!II
r«
OIWP-I
iao>’
Kjjgg iani
■Hprara
gL2H
■I ■1(7' I
ivai
IL'll
■mn
»?*«H
lorslsi
i^i
iii;i
uni
1^1
IB 1
^■j
BB|
■HI
imaai
IHHI
■i
IMI
IHHI
Ian
hi
HI
jri
!■■!
\ma
'HI
aii
iaai
a
hi
Si
FJ
HI
It
HI
u
HI
I^HI
Ian
HI
H!
HI
HI
HI
I^BI
HI
1*
HI
n
SI
In
Ira
HI
IHHI
SI
rS
51
H
HI
M
HI
■a
HI
in
8
| H
IflK
■■1
mi
!■
n
■HI
Cl
^■j
ara
HI
In
HI
lin
■■a*
HI
tmm
^■1
■■1
■|
Mil
|l Zi
lia
wmi
k(
■1
law
MM
HI
!ni
l f Ak v
1^M\
i^HI
lei
m\
|^HI
HI
a—
—1
LOCKHEED* CALIFORNIA COME ANY «——
A DIVISION OF LOCKHEED CORPORATION I PACE
FIGURE 2-3. KRASH85 INPUT FORMAT
H ' V'J */*
r
Blank i •. > 1 u:;sns arc treated as zeros. When the F. format is used, the exponent
oust he ri,;ht justi; ieJ in tile field. With the 15 integer lormat, the number
r.;i i s t lie right just ified. The sequence numbers shown in columns 77 through 80
are onl\ tor re! ei'eiH'e purposes within this document. The actual data cards
can have anv numbering scheme, or no numbers at all, as lone as the cards are
in the proper order.
I lie tel low in,', coordinate systems (figure 2-4) are establ ished to lac i 1 i -
Lata the derivation of equations for the mathematical model. The input data
description specifies the appropriate coordinate systems to be used.
• (.round Coordinate System . - This is a right-handed coordinate system
fixed in the ground with the origin at point 0 in figure 2-4. The
x-axis is positive forward, the v-axis is positive to the right, and
the /-axis is positive downward. The xy-plane (z = 0) corresponds to
the ground surface. The ground coordinate system is considered an
inertial coordinate system for writing the dynamic equations of motion.
• Slope Coordinate System . - This is a right-handed coordinate system
fixed in the ground with the origin at point 0 as shown in figure 2-4.
The x-axis is positive forward up the slope, the y-axis is positive
to the right, and the z-axis is positive downward and perpendicular
to the slope. This coordinate system is the same as the ground coor¬
dinate system rotated through an angle 'beta', positive clockwise
about the ground y-axis. The xy-plane represents a plane inclined
at an angle 'beta' with respect to the horizontal ground plane.
'Beta' is a constant input angle that can range from zero to ninety
degrees.
• Airplane Coordinate System. - This is a left-handed coordinate system
fixed with relation to the airplane with the origin at point H in fig¬
ure ,'-i. The x-axis is positive aft, the y-axis is positive to the left
when looking forward, and the z-axis is positive upv T ard. The origin at
point H corresponds to zero fuselage station (FS = 0) , zero buttline
(BL = 0), and zero waterline (WL = 0) . This coordinate system is used
only to input the location coordinates of the mass points and massless
node points since the coordinates of the points are usually available
in terms of fuselage station, buttline, and waterline.
• Center-of-Gravitv Coordinate System . - This is a right-handed coordinate
system fixed with relation to the airplane with the origin at the ve-
hic'o c.g. , point 0. The x-axis is positive forward, the y-axis is positive
to the right when looking forward, and the z-axis is positive downward.
These axes are parallel to the airplane coordinate system axes.
2-17
• Mass Point Coordinate System . - Each mass point lias its own right-handed
coordinate system fixed with relation to the mass point. The initial
orientation of each of these coordinate systems is arbitrary and is
specified by means of three input Euler angles for each mass point
relating its initial orientation to the center-of-gravitv coordinate
system since the inertia data are generally available about these axes
and the three input Euler angles are zero. The mass point coordinate
system is the system used to write Euler's equations of motion for each
mass point.
• Beam Element Coordinate System . - This is a right-handed coordinate
system with the beam element x-axis along a straight line from the
mass point at end '1' to the mass point at end "j". As the mass
points move, the beam element coordinate system changes orientation
so that the x-axis is always pointing from the mass point at end 'I'
to the mass point at end '.I'. If the beam element connects massless
node points which are offset from the mass points, then the beam ele¬
ment x-axis always points from the massless node point rigidly
attached to the mass point at end * I.' to the massless node point
rigidly attached to the mass point at end 'J'.
The beam element y-axis and z-axis are mutually perpendicular. The
direction of each is arbitrary and is defined internally within the
program. The input data are prepared according to the beam element
coordinate systems shown in figure 2-5 (page 2-46).
The following is a detailed description of all the input data
requirements.
COORDINATE SYSTEM
FIGURE 2-4. KRASH85 COORDINATE SYSTEMS
KRASH* INPUT DATA
CARD 0010: TITLE CARD # 1
DESCRIPTION : Defines an alphanumeric label which will appear as the first line of heading on each page of
KRASH* printed output.
FORMAT AND EXAMPLE:
01 2345678
1234567890123456789012345678901234567890123456789012345678901234567890I234567890
TITLE 1
SUBSTRUCTURE SECTION IMPACT STUDY
0010
FIELD CONTENTS
Title 1 Alphanumeric Character String
REMARKS: (1) Required data card; however, it may be blank.
‘ ' (2) All text material on this card is reproduced at the top of every output page and on every
plot.
CARD 0020 . TITLE CARD /2
DESCRIPTION: Defines an alphanumeric label which will appear as the second line of heading on each page
_ ~~ of KRASH printed output.
FORMAT AND EXAMPLE:
0 1 2 3 4 5 6 7
1 --34 567890123456789012345678901234 5678901 234 5678901234567890123456789012
8
34567890
TITLE2
INITIAL CONDITIONS: 27.5 FPS VERTICAL IMPACT ON RIGID SURFACE
0020
FIELD CONTENTS
Title2 Alphanumeric Character String
REMARKS: (1) Required data card; however, it may be blank.
‘ (2) All text material on this card is reproduced at the top of every output page and on every
plot.
*KRASH refers to KRASH85 in all subsequent input data sheets
2-20
KRASH INPUT DATA
CARD 0030 : DUMMY CARD
DESCRIPTION: Defines a numeric heading which will appear on each page of the KRASH printout of the
— ~ input data deck echo.
FORMAT AND EXAMPLE :
01 2345678
12345678901234567890123456789012345678901234567890123456789012345678901234567890
DUMMY
123456789012345678901234567890123456789012345678901234567890123456789012 0030
FIELD CONTENTS
Dummy Numeric String
REMARKS: (1) Required data card; however, it may be blank.
" ' (2) Intent of this data card is to aid the user in verifying the field placement of the input
data.
2-21
KRASH INPUT DATA
CARD 0040 : KRASH MODEL SIZE PARAMETERS
DESCRIPTION Defines the sizes of the various input parameter data sets for the KRASH model.
FORMAT AND EXAMPLE:
01 2345678
I 234 5678901234 567890123456789012345678901234567890123456789012 3456789012 34 567890
FIELD
CONTENTS
NDRI
NOLLO
NACC
NVCI1
Number of Mass Points Per 0200-Series Cards (Maximum Allowed is 80)
Number of External Crushing Springs Per 0700/0800-Series Cards (Maximum Allowed is 40)
Number of Beam Elements Per 0900-Series Cards (Maximum Allowed is 150)
Number of Beam Element Nonlinear Degrees-of-Freedom Per 1800-Series Cards (Maximum
Allowed is 180)
Number of Massless Node Points Per 0300-Series Cards (Maximum Allowed is 50)
Number of Beam Elements Having at Least One Degree-of-Freedom Pinned Per 1 100-Series
Cards (Maximum Allowed is 150)
Number of Axially Unsymmetric Beam Elements Per 1200-Series Cards (Maximum Allowed
is 1 50)
Number of DRI Beam Elements Per 2100-Series Cards (Maximum Allowed is 150)
Number of Shock Strut Elements Per 1300 and 1400-Series Cards (Maximum Allowed is 20)
Number of Enforced Acceleration Time History Tables Per 3400/3500-Series Cards (Maximum
Allowed is 100 Input Tables. With a Total of 5000 Time Points)
Reference Mass Point For Volume Penetration Calculations Per 2000-Series Cards (Maximum
Allowed is I )
Number of Volumes For Occupiable Volume Change Calculations Per 2200-Series Cards
(Maximum Allowed is 5 )
Number of Non-Standard Beam Element Materials Per 1000-Series Cards (Maximum Allowed
IS 10)
Number ol Beam Elements With Non-Standard Damping Ratios Per I 700-Series Cards
(Maximum Allowed is 150)
Requited data card.
All entries are tight lustttied integers
'NM' and 'NB' must be nonzero
Blank entiles are lead as zero
See fable 2-1 lot a stnnmaiv ol model si/e parameters,
format tot this card is 1415
REMARKS
TABLE 2-2. PROGRAM SIZING CONSTANTS
CONSTANT
MAXIMUM VALUE
DESCRIPTION
NM
80
NUMBER OF MASSES
NSP
40
NUMBER OF EXTERNAL SPRINGS
NB
150
NUMBER OF INTERNAL BEAMS
NLB
180
NUMBER OF NONLINEAR BEAM-DIRECTION
COMBINATIONS (KR TABLES)
NHI
80
NUMBER OF MASSES HAVING NON ZERO Hev,.
Hey,. He z ,. I xyj . I yZj . I XZj . OR Fq 1
MVP
REFERENCE MASS NUMBER FOR VOLUME PENETRATION
CALCULATIONS
NVCH
5
NUMBER OF VOLUMES FOR OCCUPIABLE VOLUME
CHANGE CALCULATIONS
NDRI
150
NUMBER OF DR1 BEAM ELEMENTS
NMTL
10
NUMBER OF NON-STANDARD BEAM MATERIALS
NACC
100
NUMBER OF INPUT ACCELERATION TIME-HISTORY TABLES
(TOTAL NUMBER OF TIME POINTS = 5000)
NVBM
150
NUMBER OF INTERNAL BEAMS HAVING NON-STANDARD
MAXIMUM POSITIVE (NVBM) OR NEGATIVE (NVBMN)
N’VBMN
150
DEFLECTIONS FOR BEAM RUPTURE. STANDARD
VALUE = 100 (inches OF DEFLECTION AND radians OF
ROTATION)
NFBM
150
NUMBER OF INTERNAL BEAMS HAVING NON-STANDARD
MAXIMUM POSITIVE (NFBM) OR NEGATIVE (NFBMN)
M BMN
150
FORCES FOR BEAM RUPTURE. STANDARD VALUE = 1 E10
NPII
80
NUMBER OF MASSES HAVING NON-ZERO EULER
ANGLES 4>, "■ e f- V
M)
150
NUMBER OF INTERNAL BEAMS HAVING DAMPING RATIOS
DIFFERENT FROM THAT SPECIFIED ON CARD 1600
NKM
150
NUMBER OF INTERNAL BEAMS FOR WHICH THE FULL
6x6 STIFFNESS MATRIX IS DIRECTLY INPUT
NPIN
150
NUMBER OF INTERNAL BEAMS HAVING OTHER TH \\
FIXED-FIXED END CONDITIONS
NNP
50
NUMBER OF MASSLESS NODE POINTS
NUB
150
NUMBER OF UNSYMMETRICAL BEAMS
NOLI 0
20
NUMBER OF SHOCK STRUTS
KRASH INPUT DATA
CARD OOSO : KRASH MODEL SIZE PARAMETERS AND CALCULATION FLAGS
DESCRIPTION: Defines the sizes of the various input parameter data sets for the KRASH model and provides
for beam element stress and/or failure data calculations.
FORMAT .AND EXAMPLE:
FIELD CONTENTS
NVBM Number of Beam Elements Having Non-Standard Rupture Positive Deflections Per 2300-Series
Cards (Maximum Allowed is 150)
NFBM Number of Beam Elements Having Non-Standard Rupture Positive Forces Per 2500-Series Card
(Maximum Allowed is 150)
NVBMN Number of Beam Elements Having Non-Standard Rupture Negative Deflections Per 2400-Series
Card (Maximum Allowed is 1 50)
NFBMN Number of Beam Elements Having Non-Standard Rupture Negative Forces Per 2600-Series
Cards (Maximum Allowed is 150)
NKM Number of Beam Elements For Which 6x6 Stiffness Matrix is Directl) Input Per 3600 Series
Cards (Maximum Allowed is 150)
Mil Number of Mass Points Having Nonzero Aerodynamic Lift Constant. Angular Momenta, or Cross
Products of Inertia Per 3100-Series Card (Maximum Allowed is 80)
NPI1 Number of Mass Points Having Nonzero Euler Angles For Rotating the Mass Point or Body
Coordinate System Relative to The Ccnter-of-Gravity Coordinate System Per 3200-Series Cards
(Maximum Allowed is 80)
NTOL1 Percent Allowable Total Energy Growth Above 100 Percent (Default Value is One (1) Percent)
NTOL2 Percent Allowable Individual Negative Strain. Damping. Crushing and Friction Terms of Respec¬
tive Totals (Default V'alue is Ten (10) Percent)
NTOL3 Percent Allowable Individual Mass Energy Deviation Above Zero Percent (Default Value
Thirty (30) Percent
NSC Flag For Beam Element Stress Calculation: 0 = No 1 = Yes
NIC Flag For Preliminary Beam Element Failure Load and Deflection Calculations: 0 = No
1 = Yes
NAI KO Number of Masses Having Aerodynamic Data Input Per 3300-Series Card (Maximum
Allowed is 80)
NBOMB Any Nonzero Input Will Override all Energy Growth Error Checks. Run Will Execute
to Completion Regardless of Energy Calculations.
REMARKS (1) Required data card, however it may be blank.
(2) All entries are right justified mtegers.
(3) Blank entries arc read as zero.
(4) If any of the allowable errors in energy are exceeded, the analysis terminates automatically
at that time, and summary tables and printer plots are generated.
(5) Default values for NVBM and NVBMN are 100 inches or radians. Default values for NFBM
and NFBMN are 1E10, lbs or in-lbs.
( 0 ) See Table 2-1 for a summary of mode! size parameters.
(7) It is recommended that NIC = 1 be used each time if complete beam properties are input
(0600-series cards).
(8) Format for this card is 1415.
2-24
KRASH INPUT DATA
CARD 0060 : KRASH MODF.L SIZE AND PROGRAM CONTROL PARAMETERS
DESCRIPTION: Defines the si/.es of input parameter data sets for the KRASH model and controls the
output of graphics information and specifies the type of initial conditions to be used
FORMAT AND EXAMPLE:
01 2 3 45678
12345678901234567890123456789012345678901234S67890123456789012345678901234567890
NSCV
NLIC I
NWRGRA
NBAL
ICD
ICITF.R
1
16
0
5
1
1
0060
FIELD CONTENTS
NSCV
NLIC
NWRGRA
NBAL
ICD
ICITER
Number of User-Specified Sign Convention Vectors,Per 2700-Series Cards. To Be Used
in Conjunction With Load-Interaction Curve Data. (Maximum Allowed is 10) NSCV
May be Zero.
Number of Load-Interaction Curves Per 2800/3000-Series Cards (Maximum Allowed is 40)
Parameter Which Governs Whether Graphics Data For Postprocessing is Written to The
User’s Data File. NWRGRA = 0 Results in No Data Being Written to The User's File.
Any Nonzero Input Will Result in Mass and Node Point Displacement Time-History Data.
Plus Load-Interaction Time-History Data (if NLIC /= 0). being written to the user's data file, in data
set DSC. Defined in JCL.
If MSC/NASTRAN is To Be Used For a Static Solution. Then NBAL is The Mass Number
That is Constrained to Have Zero Deflections and Rotations.
Parameter Which Determines Whether an Additional Data Set of Mass and Node Point
Static Deflections is To Be Read Following the Basic Input Data Set. ICD = 0 Means
That The Additional Data Set is Not Read. Any Nonzero Input Causes The Program to
Read The Initial Deflection Data.
Parameter Which Determines Whether The Initial Mass and Node Point Deflection Data
(ICD £0) is Used To Modify The Input Airplane Coordinates For The Mass and Node
Points. ICITER = 0 Means The Initial Static Deflection Data is Not Used to Modify The
Mass Coordinates: i.c.. The Airplane is Left in Its Undeformed Position. Any Nonzero
Value of ICITF.R Results in The Input Mass Coordinates Being Modified to Reflect The
Initial Static Deflections, i.e.. The Airplane Assumes The Deformed Shape Corresponding
to The Initial Static Load Condition.
REMARKS:
(1) Required data card , however, it may be blank.
(2) All entries are right justified integers.
(3) See Section 3 1 for a discussion of the load-interaction curve data; Section 2.1 for
a discussion of initial conditions.
(4) Format for this card is 615.
2-25
KRASH INPUT DATA
CARD 0070: ACC LLP RATI ON TRANSFER CONTROL PARAMETERS
DESCRIPTION: Defines number of time-history tables of mass accelerations to be used.
FORMAT AND EXAMPLE:
01 2345678
I 23456 78901234S678901234567890123456789012345678901 2345678901 2345678901 234 567890
FIELD CONTENTS
(C’SIN > Not Used
(RNIN) Not Used
NTAB Number of Acceleration Time-History Tables to Be Used From Previous Run. Using Data
Set Identified as DSA in JCL. Maximum Allowed is 100.
REMARKS: (1) Required data card; however, it may be blank.
.. ^ 2 ) NTAB is input as a right justified integer.
(3) See Section 3.2 for a discussion of acceleration transfer procedures.
(4) Format for this card is(A6, 4X, A10, 5X, 15).
KRASH INPUT DATA
C ARD 0080: ACCELERATION TRANSFER CONTROL PARAMETLRS
DESCRIPTION Defines data for saving mass and mode point accelerations for later use as input data in
another run.
FORMAT AND EXAMPLE:
0 1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890
7 8
12345678901234567890
B23BS3
(RNOl'T)
NMSAV
NNPSAV
NDTSAV
NWRFLG
NDTGRA
6
3
10
1
20
0080
HELD CONTENTS
(CSOUT)
(RNOUT)
NMSAV
NNPSAV
NDTSAV
NWRFLG
NDTGRA
Not Used
Not Used
Number of Masses For Which Selected Acceleration Data Will he Saved in Data Set DSB
(Identified in JCL), as Specified on 500-Series Cards (Maximum allowed is SO) See Remark (5).
Number of Node Points For Which Selected Acceleration Data Will be Saved in Data Set DSB
(Identified in JCL). as Specified on 600-Series Cards (Maximum Allowed is 50) See Remark (5)
Multiple of Integration Time Interval DT at Which Acceleration Data Will be Saved. See
Remark (4)
Parameter Governing Whether Selected Acceleration Data Will be written to User's Data File
as Data Set DSB. Any Nonzero Value Will Cause The Data to be Written: NWRFLG = 0 Will
Cause The Data Not to be Written. Regardless of The Remaining Input Parameters on This
Card.
Multiple of Integration Time Interval DT at Which Mass and Node Point Displacement Data
Will be Written to User's Data File as Data Set DSC (Identified in JCL). This Data is Used
For Graphics Postprocessing. NWRGRA on Card 0600 Must be Nonzero For This Data to be
Written as DSC in User’s Data File. NDTGRA Also Defines The Time Interval For Saving
Load-Interaction Data. For The Load Interaction Data, if NWRGRA on Card 0060 is Zero.
The Print Output Will Still Contain Time-Histories of All Load Interaction Output Data. If
it is Desired to Save This Data in Data Set DSC For Postprocessing. Then NWRGRA Must be
Input Nonzero. See Remark (4).
REMARKS:
(1) Required data card; however, it may be blank.
(2) All entries are right justified integers.
(3) See Sections 3 • I and 3 2 for discussions of load-interaction curve data and
acceleration transfer control and graphics data.
(4) Both NDTSAV and NDTGRA must be chosen so that less than 100 time cuts are
saved for each response quantity. This is satisfied if
NDTSAV \ _. IAV
i L TMAX
' int ^ / 100 * DT
NDTGRA/ IUU
(5) The total number of response quantities saved (total number of nonzero MI T's and
NPFL's on 0500 and 0600 Series ( aids) must be less than 100.
(0) Format for this card is(A6, 4X. AI0, 51 10).
2-27
KRASH INPUT DATA
CARD 0090 : RESTART CONTROL PARAMETERS
DESCRIPTION : Defines the identifiers of a previously checkpointed KRASH case and the simulation time from
which the KRASH analysis will be restarted.
FORMAT AND EXAMPLE:
0
1
2
3
4
5
6
7
8
1234567890123456789012345678901234S6789012345678901234567890I2345678901234567890
CASEIN
>2
RUNIN
MSECIN
*
OLEO
1
40
_
0090
FIELD CONTENTS
CASEIN Alphanumeric Identifier of Checkpointed Case (Maximum of Eight Characters, Left Justified)
RUNIN Numeric Identifier of Checkpointed Case
MSECIN Restart Time - Milliseconds
REMARKS
(1) Required data card, however, it may be blank.
(2) All numeric entries are right justified integers.
(3) Previously checkpointed case must be resident on mag tape and be accessed via JCL.
(4) Restart time must be included in the KRASH analysis of the previously checkpointed case.
(5) Only nonblank when using restart capability to initiate from a preceding analysis that has
been saved.
(6) Format for tliis card is(A8. 2X. 6110).
2-28
KRASH INPUT DATA
CARD 0100: CHECKPOINT CONTROL PARAMETERS
DESCRIPTION : Defines indentifiers and simulation times for the current KRASH case to checkpoint the
analytical results for future restarts.
FORMAT AND EXAMPLE:
0 1 2 3 4 5 6 7
1 2 34 56 7890123456 7 89012345678901 234S678901234567 8901 234567 89012345678901 2
8
34567890
CASEOUT
►:<
RUNOUT
MSCOUT(l)
MSCOUT(2)
MSCOUT (5)
OLEO
□
2
40
80
100
120
150
□
0100
FIELD CONTENTS
CASEOUT Alphanumeric Identifier (Maximum of Eight Characters, Left Justified)
RUNOUT Numeric Identifier
MSCOUT1 Analysis Times at Which Results Will be Saved - Milliseconds
REMARKS:
(1) Required data card; however, it may be blank.
(2) All numeric entries are right justified integers.
(3) JCL must provide mag tape on which results will be saved.
(4) Only nonblank when data are to be saved. A maximum of five times can be saved per
analysis.
(5) Format for this card is(A8. 2X, 6110.0).
-29
KRASH INPUT DATA
CARD 0110: PARAMETERS FOR NUMERICAL INTEGRATION, PLOWING FORCE, ACCELERATION
FILTER, AND KRASH EXECUTION MODE
DESCRIPTION: Defines print control, numerical integration time step, analysis time, plowing force time,
acceleration filter cutoff frequency, and KRASH execution mode (airplane model and impact
condition symmetry).
FORMAT AND EXAMPLE:
1 0 1
2
3
4
5
6
7
8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
DP/DT
DT
TMAX
PLOWT
FCUT
RUNMOD
x
IK
100
0 00001
0 120
100.0
1.0
_
0110
FIELD CONTENTS
DP DT
DT
TMAX
PLOW!
FCL'T
RL'NMOI)
REMARKS
Multiple of Numerical Integration Time Interval at Which Output Will be Printed,
Right Justified Interger
Fixed Time Step For Numerical Integration - Seconds
Maximum Analysis Time - Seconds
Analysis Time at Which Plowing Forces Cease - Seconds
Cutoff Frequency of First-Order Filter Applied to Mass Point Translational Accelerations -
Hertz (E10.0 Format)
Flag to Control the Mode of Program Execution as Follows:
RUNMOD
INPUT
DATASET
DATA SET
ANALYZED
AIRPLANE
MODEL
IMPACT
CONDITIONS
0 .
Full Airplane
Full Airplane
Unsymmetrical
Unsymmetrical
1 .
Half Airplane
Half Airplane
Symmetrical
Symmetrical
-> *
Half Airplane
Full Airplane
Symmetrical
Unsymmetrical
*See remark (5 )
(1) Required data card.
(2) 'DP/DT', ‘DT\ 'TMAX'. and ‘RUNMOD’ are required inputs.
(3) Blank entries are read as zero.
(4) Entries requiring scientific notation (X.XEXX) should be right justified.
(5 ) For RUNMOD = 2. image mass number = 100 + mass number.
(b) Suitable values tor 'DT' range from 0.00001 to 0.001 seconds. A rule of thumb for selecting
a final integration value is the following:
DT S 0.01 Max. Computed Beam Frequency (Hz).
(7) Nonzero plowing forces act from time = 0 to time = ‘PLOWT . For time > PLOWT
the plowing forces are set to zero.
(8) Suitable values for ‘FCUT’ range fiom fifty to eighty-five percent of the actual test filter
cutoff frequency. Eighty-five percent is commonly used.
(O) Foimat toi tills card is ( I 10. 51:1 0.0).
KRASH INPUT DATA
CARD 0120 : VARIABLE INTEGRATION PARAMETERS
DESCRIPTION: Define parameters for numerical integration with variable time step.
FORMAT AND EXAMPLE:
o i :
1 2 345t»“'S < >01 2345678901
3 4 5 6 7 8
23456789012345678901234567890123456789012345678901234567890
IV A R
EL
EU
RATMIN
RATMAX
x
ft
1
0 01
0.10
0 6
2.0
_
0120
FIELD
IVAR
I L
IT
RATMIN
RATMAX
REMARKS
CONTENTS
Flag For Type of Numerical Integration With Variable Time Step as Follows (Right Justified
Integer):
IVAR
TYPE OF NUMERICAL INTEGRATION WITH VARIABLE TIME STEP
0
None
1
Tolerance Based on Six Linear and Angular Velocities of Each Mass Point
"1
Tolerance Based on Energy
Maximum Tolerance
Minimum Tolerance
Integration Time Step Factor if Tolerance > ‘EU'
Integration Time Step Factor if Tolerance < ‘EL’
(1) Required data card, but it should be blank as the variable integration algorithm is not
currently operational.
(2) Blank entries are read as zero.
(3) Format for this card is (l 10. 4E 10.0).
KRASH INPUT DATA
CARD 0130 : PRINT OUTPUT CONTROL
DESCRIPTION: Defines flags to control the printout of results, KRASH model size parameters, and allowable
errors in energy for terminating the analysis.
FORMAT AND EXAMPLE:
KRASH INPUT DATA
CARD 0140: PRINTER PLOT CONTROL PARAMETERS
DESCRIPTION: Defines the type and number of time history printer plots and defines the number of mass
„ point position (structure deformation) printer plots.
FORMAT AND EXAMPLE:
0 1 2 3 4 5 6 ' X
I 234 56"X9012 3456'K9()|234567X9012345678901234 567X90123456'890I 2 34 567X9012 34 567X90
NMF:P
NNF.P
NBFP
NBDP
NSTP
NSEP
NENP
ndrpI
NPLT
NPFCT
1
i-
21
0
3
0
0
0
2
1_
1
2
20
0140
FIELD CONTENTS
NMEP Number of Mass Points Having Time History Printer Plots Per 3900-Series Cards
NNEP Number of Massless Node Points Having Time History Printer Plots Per 4000-Series Cards
NBFP Number of Beam Elements Having Load Time History Printer Plots Per 4100-Series Cards
NBDP Number of Beam Elements Having Deflection Time History Printer Plots Per 4200-Series Cards
NSTP Number of Beam Elements Having Stress Time History Printer Plots Per 4300-Series Cards
NSEP Number of External Crushing Springs Having Time History Printer Plots Per 4400-Series Cards
NENP Number of Beam Elements Having Strain and/or Damping Energy Time History Printer Plots
Per 4500-Series Cards
NDRP Number of DRI Mass Points Having Time History Printer Plots Per 4600-Series Cards
NPLT Number of Mass Point Position (Structure Deformation) Printer Plots Per 3700/3800-Series Cards
NPFCT Print Time Factor For Which Mass Point Position (Structure Deformation) Plots Are Generated
REMARKS
(1) Required data card; however, it may be blank.
(2) All entries are right justified integers.
(3) Blank entries are read as zero.
(4) Blank or zero entries do not generate printer plots.
(5) Mass position plots occur at time = 0. and at intervals equal to NPFCT \ DP DT \ DT.
(6) Format for this card is 1015,
2-33
KRASH INPUT DATA
CARD 0150: INITIAL AIRPLANE UNEAR VELOCITIES
DESCRIPTION . Defines the initial airplane linear velocity components with respect to the ground coordinate
system.
FORMAT AND EXAMPLE:
0 1
2
3
4
5
6
7
8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
XGDOT
YGDOT
ZGDOT
x
x
ixr
*
0.0
0.0
360.0
_
0150
FIELD CONTENTS
XCDOT Initial Fore-and-Aft Velocity of Airplane, Positive Forward
YGDOT Initial Lateral Velocity of Airplane, Positive Right
ZGDOT Initial Vertical Velocity of Airplane, Positive Down
REMARKS: (1) Required data cards; however, it may be blank.
(2) Velocity units are inches per second.
(3) Blank entries are read as zero.
(4) Entries requiring scientific notation (X.XEXX) should be right justified.
(5) Format for this card is 3E 10.0.
2-34
KRASH INPUT DATA
CARD 0160: INITIAL AIRPLANE ANGULAR VELOCITIES
DESCRIPTION : Defines the initial airplane angular velocity components with respect to the ground coordinate
system.
FORMAT AND EXAMPLE:
0 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
FIELD CONTENTS
PPR Initial Airplane Roll Velocity, Positive Right Wing Down
QPR Initial Airplane Pitch Velocity, Positive Nose Up
RPR Initial Airplane Yaw Velocity, Positive Nose Right
REMARKS: (1) Required data card; however, it may be blank.
(2) Angular velocity units are radians per second.
(3) Blank entries are read as zero.
(4) Entries requiring scientific notation (X.XEXX) should be right justified.
(5) Format for this card is 3E10.0.
KRASH INPUT DATA
CARD 0170 MISCELLANEOUS AIRPLANE INITIAL CONDITIONS
DESCRIPTION Defines the initial airplane attitude Euler angles and the initial airplane linear position with
respeet to the ground coordinate system and defines the ground plane slope angle.
FORMAT AND EXAMPLE:
0 1
1234567890
2 3 4 5 6 7 8
1 2 3456789012345678901 2345678901234567890123456789012345678901234567890
PHIPR
THEPR
PSIPR
XGIN
ZGIN
RHO
8
0 0
0.001
0 0
0.0
0 0
45.0
1.1463F.-07
0170
FIELD CONTENTS
PH1PR Initial Airplane Roll Euler Angle, Positive Right Wind Down Radians
THEPR Initial Airplane Pitch Euler Angle, Positive Nose Up - Radians
PS1PR Initial Airplane Yaw Euler Angle. Positive Nose Right - Radians
XCiIN Eore-and-Aft Distance of Airplane Initial CG Position Relative to the Basic Position
Calculated in the Initial Condition Subroutine, Positive Aft - Inches
ZG1N Vertical Distance of Airplane Initial CG Position Relative to the Basic Position
Calculated in the Initial Condition Subroutine. Positive Up - Inches
BETA Ground Plane Slope Angle, Positive Up - Degrees
RHO Air Density Used for Calculating Aerodynamic Loads (NAERO £0). Pound-Sec'/ln 4
REM ARKS (1) Required data card; however, it may be blank.
(2) Blank entries are read as zero.
(31 Normally. ‘XGIN' and ‘ZGIN’ are input as zero and the KRASH initial
conditions subroutine positions the airplane relative to ground.
(4) If it is desired to have the airplane impact only on the slope and not on the
horizontal ground, a large value of ZGIN may be input (1000 inches). This
will move the airplane upward ZGIN above the horizontal ground, and
simultaneously move it forward so that it is almost contacting the slope.
The normal initial position for the airplane is wedged into the juncture of
the horizontal ground and the slope as explained in Volume 1, Section 1.3.1 :
(5) Values of ‘BETA - range from zero to ninety degrees (horizontal to vertical
impact surfaces).
(6) Entries requiring scientific notation (X.XEXX) should be right justified.
(7) If NSP = 0 (no external springs), ZGIN is the distance from the ground plane
to the airplane CG. positive up.
(8) Formats for this card is 7E10.0.
(CRASH INPUT DATA
CARDS 0200: MASS POINT DATA
DESCRIPTION: Defines the weight, location coordinates, and mass moments of inertia for each of the mass
points in the (CRASH model.
FORMAT AND EXAMPLE:
0 1 2 3 4 5 6 7
123456 78<)01234567 89012345678901 234567890123456789012345678901 2345678901 2
8
34567890
WGT
XDP
YDP
ZDP
XI
YI
ZI
ID
103.0
50 0
20.0
33.0
12.5
3.7
12.5
a
0200
FIELD CONTENTS
WGT
XDP
YDP
2DP
XI
Yl
21
ID
REMARKS:
Weight - Pounds
Fuselage Station Coordinate, Positive Aft - Inches
Buttline Coordinate, Positive Left - Inches
Waterline Coordinate, Positive Up — Inches
Roll Mass Moment of Inertia - Inch * Pound * Second**2
Pitch Mass Moment of Inertia - Inch * Pound *Second**2
Yaw Mass Moment of Inertia - Inch * Pound * Second**2
Mass Point Number
(1) ‘NM’ on card 0040 specifies the number of these cards for input.
(2) The order of these cards determines the mass point number.
(3) Blank entries are read as zero.
(4) The location coordinates are defined in a left-handed coordinate system.
(5) At least one of the three mass moments of inertia must be nonzero.
(6) Mass moment of inertia cross products may be defined on the 3100-series of cards.
(7) Entries requiring scientific notation (X.XEXX) should be right justified.
(8) Mass point number (ID) must be greater than zero or less than 100. Mass numbers
must be unique and can be input in any order. If ID for any mass point is left
blank, all mass points will automatically be numbered sequentially in the order
of input.
(9) For RUNMOD = 2, the Image mass point number will equal the mass point
number plus 100.
(10) Formats for this card is 7E10.0, 12.
2-37
KRASH INPUT DATA
CARDS 0300: MASSLESS NODE POINT DATA
DESCRIPTION: Defines for each of the massless node points in the KRASH model the location coordinates
- and the mass point number to which each is rigidly attached.
FORMAT AND EXAMPLE:
01 2345678
I 2 34 56 78901234 56789012 3456 78901 234 56789012345678901 234567890123456789012 34567890
MNP
INP
XNPDP
YNPDP
ZNPDP
><
x
s
1
12
wmm
mmn
_
0300
FIELD CONTENTS
MNP Massless Node Point Number (Right Justified Integer)
INP Mass Point Number (Right Justified Integer)
XNPDP Fuselage Station Coordinate, Positive Aft - Inches
'I'NPDP Buttline Coordinate, Positive Left - Inches
ZNPDP Waterline Coordinate,Positive Up - Inches
REMARKS:
(1) Optional data card(s).
(2) ‘NNP’ on card 0040 specifies the number of these cards for input.
(3) ‘MNP’ and ‘INP’ must be nonzero.
(4) Blank entries are read as zero.
(5) The massless node point number is determined by taking each mass point and numbering
the node points attached to it 1, 2. 3,... etc. There is no limit on the number of node
points that may be connected to a single mass point.
(6) The location coordinates are defined in a left-handed coordinate system.
(7) User should not place a node point on the center line for a RUNMOD = 2 condition.
Program will not generate a connection across this point. User can place node point
slightly off center, if necessary.
(8) Generally used to model regions wherein rigid connections exist (i.e.. seat. engine)
or where multiple behavior is being represented by different elements.
(9) Entries requiring scientific notation (X.XEXX) must be right justified.
(10) Format for this card is (215,3E10.0).
2-38
KRASH INPUT DATA
CARDS 0400 : ACCELERATION TRANSFER DATA
DESCRIPTION: Defines the correspondence between mass/node point numbers from a previous model for
——- which acceleration data was saved, and the current model which is to use the acceleration
data as input forcing functions.
FORMAT AND EXAMPLE:
0
1
2
3
4
5 6 7
8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
ISNEW
(MSNEW)
LSNEW
ISOLD
MSOLD
LSOLD
TSH
3
4
6
3
■D
.003
0400
FIELD CONTENTS
ISNEW Mass Number in Current (New) Model That Will be Driven by an Acceleration Table Saved
in Data Set DSA (defined in JCL)
(MSNEW) Not Used (Coding Does Not Allow Driving a Node Point With an Input Acceleration)
LSNEW Direction for Which Table Read From Data Set DSA Will Drive Mass ISNEW
LSNEW: 1 = XACCEL 4 = PDOT
2 = Y ACC EL 5 = QDOT
3 = ZACCEL 6 = RDOT
ISOLD Mass Number in Previous (OLD) Model. The Acceleration From Which Will be Used to Drive
Mass ISNEW in The Current Model
MSOLD Node Point Number in Previous (OLD) Model. Coding Allows Driving a Mass in The Current
Model With an Acceleration From a Node Point in The Previous Model
[.SOLD Direction of Acceleration Saved in Prior Model to be Used to Drive the Current Model. It is
Not Necessary for LSOLD = LSNEW: i.e.. an XACCEL From a Previous Model Can Drive a
ZACCEL in The Current Model
LSOLD: I = X \CCEL 4 = PDOT 7 = XACC FILTERED
2 = YACCEL 5 = QDOT 8 = YACC FILTERED
3 = ZACCEL 6 = RDOT 9 = ZACC FILTERED
TSI 1 Time Shift Applied to Data From Previous Model (Stored in DSA) Before Using in Current
Model. This Allows User to Zpply a “Downstream" Response From Previous Model as
Input to The Current Model. Which Starts at t = 0
'NEW' = 'OLD ’ TSH
REMARKS:
(1) Optional data card(s).
(2) NTAB on card 0070 specifies the number of these cards for input.
(3) Data set DSA. generated from a previous run. must be in the user's data file in order to
use the acceleration transfer data. The actual data set name for DSA is specified in the JCL.
(4) A different TSII can be specified for each table used.
(5) Filtered accelerations from a previous model can be used to drive the current model.
(LSOLD = 7.8 or 9).
(6) Format for this card is (615. IE 10.0).
KRASH INPUT DATA
CARDS 0500 : MASS ACCELERATION SAVE PARAMETERS
DESCRIPTION : Defines mass numbers and directions for saving acceleration time-history data.
FORMAT AND EXAMPLE:
0
1
2
3
4
5
6 7
8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
JBS
[ ISAV
Ml LI
Ml 1.2
MIL3
MFL4
MILS
MFL6 !
_ i
MFL7
MFL8
MFL9
15
_°
1
0
1
M
0
m
0
0500
HELD CONTENTS
ISAV Mass Number For Which Acceleration Data From Current Run Will be Stored in User's Data
File in Data Set DSB
MFL1 - Flags Defining For Which Directions (1-9) Acceleration Date is to be Saved in Data Set DSB.
MFL9 Input Either 1 or 0 for Each Item; 1 Denotes Save The Acceleration Time-History For The
Indicated Direction. Directions 1 -9 Correspond to The Description of LSOLD on Cards 0400.
REMARKS:
(1) Optional data card(s).
(2) NMSAV on Card 0080 specifies the number of these cards for input.
(3) Date set DSB is specified in the JCL.
(4) The acceleration data is saved at time intervals of NDTSAV, specified on Card 80.
(5) NWRFLG on Card 80 must be nonzero to write the acceleration data into date set DSB.
(6) Format for this card is (5X, 1015).
KRASII INPUT DATA
( ARDS OoOO NODI: POINT ACCF DERATION SAVL PARAMLT1 RS
DESCRIPTION : Defines node point numbers and directions tor saving acceleration lime-liistorv. data.
FORM AT AND EXAMPLE:
0
1
2
3
4
5
6
7
8
1 2345678901234 5678901234 5678901234S678901234S6789012345678901 2 34567 8901234S67890
NPt-Ll
NPI 1 4
NPFL7
NPIL8
NPI L9
□
■s
0
_
l 0
i
0
1
! ’1
0
■1
0
0600
III: LD CONTENTS
ISAY.
MNPSAV
NPIT.I
NIM T»
Mass and Node Point Number lor Which Acceleration Data From Current Run Will be
Stored in User's Data File in Data Set DSB
Flags Defining for Which Directions (1-9) Acceleration Date is to be Saved in Data Set DSB.
Input Either I or 0 for Each Item; 1 Denotes Save The Acceleration Time-History for The
Indicated Direction. Directions I -9 Correspond to The Description of I.SOLD on Cards 0400
RL MARKS:
(1) Optional data card(s).
(2) NNPSAV on Card 0080 specifies the number of these cards for input.
(3) Date set DSB is specified in the JCL.
(4) The acceleration data are saved at time intervals of NDTSAV. specified on Card 80.
(5) NWRFLG on Card 80 must be nonzero to write the acceleration data into date set DSB.
(b) Format for this card is I 115.
2-41
KRASH INPUT DATA
CARDS 0700: EXTERNAL CRUSHING SPRING PARAMETERS
DESCRIPTION: Defines the attach point. direction, length, ground coefficient of friction, bottoming
spring rate, plowing force, and ground flexibility for each of the external crushing springs
in the KRASH model.
FORMAT AND EXAMPLE:
0
1 2
1 2 3 4 5 6 7 8
345678901234567890123456789012345678901234567890123456789012345678901234567890
■
K
XLBAR
XMU
XKE
FPLOW
GFLEX
ITIRE
ss
►:<
L,
a
3
0.3
20000.0
0 0
0.0
■D
_
0700
FIELD CONTENTS
M Massless Node Point Number (Right Justified Integer)
I Mass Point Number (Right Justified Integer)
K Degree-of-Freedotn in Which External Crushing Spring Acts Where 1,2,3 Correspond to the
X. Y, Z Directions in the Mass Point Coordinate System (Right Justified Integer)
XLBAR Free Length of Spring Either Positive or Negative in the Mass Point Coordinate System Inches
XMU Impact Surface Coefficient of Friction. Values of Between 0.35 to 0.60 are Appropriate For
Structure to Ground Contact.
XKE Bottoming Spring Rate - Pounds Per Inch
FPLOW Plowing Force - Pounds
GFI.EX Impact Surface Flexibility - Inches Per Pound
ITIRF Defines spring that remains normal to contact surface
REMARKS:
(1) Optional data card(s).
( 2 ) 'NSP' on card 0040 specifies the number of these cards for input.
(3) Blank entries are read as zero.
(4) The free length of the external crushing spring is arbitrary;however, the value generally
represents the actual depth of the crushable structure.
(5) A value of zero for the impact surface flexibility (GFLEX) represents a rigid surface. A
flexibility value of 0.00036 in/lb is an approximate representation in KRASH for soil,
having a CBR-4 and moisture content ot4.30 percent.
(6) Entries requiring scientific notation (X.XEXX) must be right justified.
(7) If (TIRE = I external spring remains normal to contact surface. Use only for tire representation
in K = 3 direction. If Beta > 0 tire spring remains normal to sloped surface. Not coded to account
lor transition from flat to sloped surface.
(8) Format for this card is (12.13. 15. 5EI0.0, 15).
KRASH INPUT DATA
CARDS 0800: EX TERNAL CRUSHING SPRING LOAD-DEFLECTION AND DAMPING PARAMETERS
DESCRIPTION : Defines four deflection points, two load values and one damping value for each external crushing
spring in the KRASH model.
FORMAT AND EXAMPLE:
0 1
2
3
4
5
6
7
8
1 23456 7 8901234 567 8901 234567890I234S678901234567 890123456789012345678901234567890
SI
SA
SB
SF
FSPOI
FSPDF
CDAMP
0 1
1.0
3.5
5.0
10000.0
25000.0
.08
_
0800
FIELD CONTENTS
SI
SA
SB
SF
FSPOI
FSPOF
CD.AMP
Deflection Point at Which First Linear Region Ends and First Nonlinear Region Begins - Inches
Deflection Point at Which First Nonlinear Region Ends and Second Linear Region Begins —
Inches
Deflection Point at Which Second Linear Region Ends and Second Nonlinear Region Begins -
Inches
Deflection Point at Which Second Nonlinear Region Ends and Linear Bottoming Begins
Inches
Constant Load Between Deflection Points SI and SA - Pounds
Constant Load Between Deflection Points SB and SF - Pounds
Critical Damping Ratio. Acceptable Range is .02 to .10
REMARKS : (1) ‘NSP’ on card 0040specifies the number of these cards for input.
(2) These load-deflection cards must be ordered to correspond with the 0700-series cards of
externa] crushing spring data.
(3) The general shape of the load-deflection curve is as follows:
LOAD
POUNDS
BOTTOMING SPRING.
2-43
KRASH INPUT DATA
CARDS 0800: EXTERNAL CRUSHING SPRING LOAD-DEFLECTION AND DAMPING PARAMETERS
(Continued)
(4) External spring damping in program KRASH is compi ed as:
2 * CDAMP* /(FSPOI/SI) * WGT / 386.4
where WGT is the weight for mass i.
(5» Entries requiring scientific notation (X.XEXX) should be right justified.
((■>) Format for this card is 7E10.0.
KRASH INPUT DATA
C ARDS 0900: BEAM ELEMENT PROPERTIES
DESCRIPTION: Defines the end points and cross-sectional properties for each beam element in the
KRASH model.
FORMAT AND EXAMPLE
01 2345678
12345678901234567890123456789012345678901234567890123456789012345678901234567890
yi
D
D
E
AA
XJ
IYY
IZZ
XIQ
Z1
rn
Z2 MC
■
E
B
E
0.5
0.0
3.67
1.54
0.0
0.0
0 0 4 900
FIELD CONTENTS
M Massless Node Point Number At End “I” (Right Justified Integer)
I Mass Point Number At End “I” (Right Justified Integer)
N Massless Node Point Number at End “J" (Right Justified Integer)
J Mass Point Number At End “J" (Right Justified Integer)
AA Cross-Sectional Area - Inches**?.
XJ Torsional Stiffness Inertia - Inches**4
IYY Cross-Sectional Area Moment of Inertia About Beam Element Y-Axis For Bending In X-Z
Plane - Inches**4
IZZ Cross-Sectional Area Moment Of Inertia About Beam Element Z-Axis For Bending In
X-Y Plane - Inches**4
XIQ Cross-Sectional Shape Factor Relating Torsional Shear Stress To The Applied Moment -
1/Inches**3
Z1 Distance From The Neutral Axis To The Extreme Fibers In The Beam Element
Z-Direction - Inches
Z2 Distance From The Neutral Axis To The Extreme Fibers In The Beam Element
Y-Direction Inches
MC Material Code Number (Right Justified Integer)
REMARKS
(1) "NB" on card 0040 specifies the number of these cards for input.
(2) Blank entries are read as zero.
(3) At least one beam element must be defined.
(4) The order of these data cards determines the beam element number.
(5) It “XJ" is input as zero, KRASH will automatically compute a value for “XJ" as
the sum of "IYY" and “IZZ".
(6) The beam element coordinate system depends on the geometric orientation as shown
in Figure 2-5.
(7) "XIQ". "Z1", and "Z2" are used only for stress calculations (See Section 1.3.17 in Volume I).
(8) The torsional stress parameter “XIQ" is equal to the shape factor “l/Q” used in Roark’s
formulas for stress and strain (Reference 4).
(9) KRASH has ten standard materials internally defined as shown in Table 2-2.
(10) Entries requiiing scientific notation (X.XEXX) should be right justified.
(11) Formal for this card is (2(12.13), 5E10.0, 2F5.0,12).
CENTER-OF-GRAVITY
COORDINATE SYSTEM
(TY?)
FORE-AND-AFT BEAM
ELEMEN"
VERTICAL BEAM ELEMENT
(use for beam inclined
at angle <30 degrees
from vertical)
3EAM ELEMENT INCLINED
IN X-2 PLANE
(use for beam inclined
at angle > 30 degrees
from vertical)
3EAM ELEMENT INCLINED
IN Y-Z PLANE
(use for beam inclined
at angle > 30 degrees
from vertical)
FIGURE 2-5. BEAM ELEMENT COORDINATE SYSTEM ORIENTATIONS
TABLE 2-3. STANDARD MATERIAL PROPERTIES
MATERIAL
MODULUS OF
ELASTICITY
(PSI)
MODULUS OF
RIGIDITY
(PSD
TENSILE
STRESS
(PSI)
COMPRESSIVE
STRESS
(PSD
SHEAR
STRESS
(PSI)
4130 STEEL
30.0E6
11.0E6
75000
75000
37500
6150H STEEL
30.0E6
11.0E6
205000
205000
80000
300-SERIES
STAINLESS
STEEL
28.0E6
12.5E6
70000
46000
36000
2024 T3
ALUMINUM
10.5E6
4.0E6
47000
39000
22000
6061-T3
ALUMINUM
10.0E6
3.8E6
35000
34000
17000
819S-T4 CAST
ALUMINUM
10.0E6
3.8E6
16000
16000
17000
LOW MODULUS
MATERIAL
1.0E6
0.4E6
16000
16000
17000
ZERO TORSION
MATERIAL
1.0E6
0.0
16000
16000
17000
DRI SPINE
(MAN)
1.0E6
0.4E6
16000
16000
17000
DRI SPINE
(DRI)
1.0E6
0.4E6
16000
16000
17000
KRASH INPUT DATA
CARDS 1000: NON-STANDARD MATERIAL PROPERTIES
DESCRIPTION : Defines non-standard material properties for beam elements in the KRASH model.
FORMAT AND EXAMPLE
0
1
1
3
4
5
6
7
8
123456'8901234567890123456789012345678901234567890123456789012345678901234567890
MC
S3
EE
GG
STENS
SCOMP
SHEAR
x
*
11
10.3E06
3.9E06
3S000.0
34000.0
17000.0
_
1000
FIELD
MC
EE
GG
STENS
SCUMP
SHEAR
CONTENTS
Materia] Code Number. MC = 11-20 (Right Justified Integer)
Modulus Of Elasticity - Pounds Per Inch**2
Modulus Of Rigidity - Pounds Per Inch**2
Tensile Yield Stress - Pounds Per Inch**2
Compressive Yield Stress - Pounds Per inch**2
Shear Stress - Pounds Per Inch**2
REMARKS
(1) Optional data card(s).
(2) ■‘NMTL" on card 0040 specifies the number of these cards for input.
(3) Blank entries are read as zero.
(4) The yield stress properties are required when stress calculations are desired.
(5) The standard materials available in KRASH are listed in Table 2-2.
(6) Entries requiring scientific notation (X.XEXX) should be right justified.
(7) Format for this card is (15. 5X, 5E10.0).
KRASH INPUT DATA
CARDS 1100 : BEAM ELEMENT PINNED END CONDITIONS
DESCRIPTION : Defines the end points and the degrees-of-freedom for the beam elements with pinned
“ ~ end conditions in the KRASH model.
FORMAT AND EXAMPLE:
01 2 3 4 5 6 7 s
12345678901234567X9012345678901234567X901234567X90123456789012345678901234567X90
83
■
IS
E
PY1
PZI
PYJ
PZJ
SF35
SF26
SF35J
SF26J
>:<
■
E
B
E
0
1
0
1.0
1.5
1.2
1.0
_
1100
FIELD CONTENTS
M Massless Node Point Number At End “1"
I Mass Point Number At End “I"
N Massless Node Point Number At End “J*”
J Mass Point Number At End “J'"
PY1 Pin Flag For Bending Moment About Beam Element Y-Axis At End “I”
PZI Pin Flag For Bending Moment About Beam Element Z-Axis At End “I”
PYJ Pin Flag For Bending Moment About Beam Element Y-Axis At End “J"
PZJ Pin Flag For Bending Moment About Beam Element Z-Axis At End "J"
SF35 Beam Shape Factor At End “1" About Beam Y-Axis
SF26 Beam Shape Factor At End “I", About Beam Z-Axis
SF35J Beam Shape Factor At End “J" About Beam Y-Axis
SF26J Beam Shape Factor At End ”J” About Beam Z-Axis
REMARKS
(1) Optional data card(s).
(2) “NPIN" on card 0040 specifies the number of these cards for input
(3) The pin flags are defined as follows:
0 = Fixed
1 = Pinned
(4) Blank entries are read as zero.
(5) All entries except SF26, SF35, SF26J and SF35J are right justified integers.
SF26. SF35, SF26J and SF35J are E10.0 format.
(6) The beam element Y- and Z-axis directions depend on the beam element geometric
orientation as shown in Figure 2-3.
(7) Bending moments about the beam element Y- and Z-axes correspond to bending moments
in the beam element X-Z and X-Y planes, respectively, as outlined in Table 2-3.
(8) All entries requiring scientific notation (X.XEXX) should be right justified.
(9) Format for this card is (2 (12,13), 415,4E 10.0).
(10) Beam shape factors SF26 and SF35, SF26J, and SF35J can be obtained from Table 2-4.
and Reference 14.
(11) SF26, and/or SF35 values are required for representation of plastic hinge at beam end I.
(12) SF26J and/or SF35J values are required for representation of plastic hinge at beam end J.
If a beam end is to be pinned then the desired PY, PZ, PYJ and PZJ flags are used
and the SF26, SF35, SF26J and SF35J values are input as zero. The program will
treat these beams as not providing for moments at the appropriate end and direction.
(b) to define a beam that can develop a plastic hinge at one or botli ends of the beam.
If a plastic hinge is represented the appropriate beam end direction (PY, PZ, PYJ, PZJ)
must be flagged and a corresponding (SF35, SF26, SF35J, SF26J) must have a value.
The program will treat such a beam as fixed until such time as the plastic moment is
formed. Thereafter the beam moment in the noted direction is maintained (no longer
changes). In order to use the plastic moment equations the user must have beam
section properties Z1 or Z2 (card 0900) defined since KRASH computes the plastic
moment as follows:
f = shape factor (SF35, SF26, SF35J, SI)26J)
<Ty = material yield stress (contained in the material
code table),lb/in2
I = area moment of inertia, either I or I , in 4
yy
y ma x = distance to neutral axis either Z1 or Z2 , in
The following table shows the relationship between directional moments and appropriate
input terms for program KRASH.
TABLE 2-4. RELATIONSHIP FOR DIRECTIONAL MOMENTS AND INPUT TERMS IN KRASH
APPROPRIATE INPUT REQUIRE MI NT
! OR(7
MOMENT
FORCE,
KRASH
AREA
MOMENT
or
DISTANCE EROM
N.A. TO ELEMENT
SHAPI
FACTOR
PIN CODING
ALONG
AXIS
ABOUT
AXIS
MOMENT
DESIGNATION
DIRECTION
NUMBERS
INERTIA
(CARD 0900)
FXTREML FIBER
(CARD 0900)
■
.....
END
1
V
i /• Me
3.5
IYY
Z1
SF35
SF35J
PY
PYJ
y
Z
1 . M*
2,6
—
1ZZ
Z2
SF26
_
SF26J
PZ
PZJ
TABLE 2-5. SHAPE FACTORS FOR PLASTIC HINGE BEAMS (Reference 14)
KRASH INPUT DATA
CARDS 1200: AXIALLY UNSYMETRIC BEAM ELEMENT PARAMETERS
DESCRIPTION Defines end points, type of load, and deadband for the beam elements with
~ unsymetrical axial properties in the KRASH model.
FORMAT AND EXAMPLE:
0 1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012
8
34567890
B
D
E
IJUB
DB
><
x
E
■
E
E
B
-1
1.5
u
1200
FIELD CONTENTS
M
I
N
J
IJUB
DB
REMARKS
Massless Node Point Number At End ‘'I” (Right Justified Integer)
Mass Point Number At End "I" (Right Justified Integer)
Massless Node Point Number At End “J” (Right Justified Integer)
Mass Point Number At End "J" (Right Justified Integer)
Flag For The Type Of Axial Loading In The Beam Elements
IJUB= +1. Tension Only
IJUB = -1. Compression Only
Deadband for axial loading, inches
(1) Optional data card(s).
(2) “NUB" on card 0040 specifies the number of these cards for input.
(3) Blank entries are i. ad as zero.
(4) The general form of the load-deflection curve for the axially unsymetric beam element
is as follows:
LOAD
POUNDS
/
/
V
DB
/
/
IJUB = -1, COMPRESSION •+-
DB
/
/
/
/
DEFLECTION - INCHES
-► IJUB = +1, TENSION
(5) This type of beam element may also incorporate nonlinear characteristics by specifying
the nonlinear properties per the 1800-series cards.
(6) The axial load-deflection curves that can be obtained using this capability are described
in Volume I,Section 1.3.5.3.5. (Reference 1)
(7) Format for this card is (2 (12,13), 15. 5X, E 10.0).
KRASH INPUT DATA
CARD 1290 : SHOCK STRUT DATA
DESCRIPTION: Friction coefficient and number of metering pin tables.
FORMAT EXAMPLE:
01 2 3 4 5 6 7 S
12345678901234567890123456789012345678901234567890123456789012345678901234567890
ALPHAP
NMPTAB
x
x
x
WMR
2
1
1290
FIELD CONTENTS
ALPHAP Constant For Use In Computing Shock Strut Friction Force
NMPTAB Number of Separate Metering Pin Tables Input on Cards 1490/1500.
REMARKS:
(1) Optional data card.
(2) Required only if NO LE0 1 0 (card 0040)
(3) Only 1 card regardless of NOLEO value
(4) Blank entry read as zero
(5) Range of ALPHAP is between .1 to 2.0. The smaller the alphap used the closer the
representation is to pure Coulomb friction. Generally a value of 1.0 is suitable.
(6) See Appendix A for the discussion on oleo friction forces for alphap selection.
(7) Format for this card is (E10.0,110).
KRASH INPUT DATA
CARDS 1300: SHOCK STRUT DATA
DESCRIPTION': Air curve parameters
FORMAT EXAMPLE
0
i
■>
3
4
5
6
7
■n
1 2
34567X90I234567890123456789012M56789012345678901234567890I2345678901234567*90
Q
■
D
8
EOLEO
FAO
FAA
EXPOLE
YMAX
x
9
■
n
■
■
10.27
116.
5.
1.0
9.32
□
1300
FIELD CONTENTS
M
I
N
J
EOLEO
FAO
FAA
EXPOLE
YMAX
Massless Node Point Number In End "I" (Right Justified Integer)
Mass Point Number At End “I” (Right Justified Integer)
Massless Node Point Number At End "J" (Right Justified Integer)
Mass Point Number At End "J” (Right Justified Integer)
Effective Total Strut Cylinder Length, in.
Fully Extended Gear Preload, lb.
Ambient Air Preload, lb.
Poly tropic Exponent.
Maximum Stroke, in.
REMARKS
(1) Optional data cards.
(2) "NOLEO" on card 0040 specifies the number of these cards for input.
(3) All entries requiring scientific notation (X.XEXX) should be right justified.
(4) EXPOLE ranges from 1 (isothermal) to 1.4 (adiabatic). Adiabatic condition will
usually prevail.
(5) See Appendix A for a description of the shock strut parameters and their usage.
(6) Format for this card is (2 (12,13), 5E10.0).
KRASH INPUT DATA
CARDS 1400: SHOCK STRUT DATA
DESCRIPTION Damping constants, linear springs at extended and compressed ends of strut travel and
coulomb friction.
FORMAT EXAMPLE:
01 2345678
12345678901234567890123456789012345678901234567890123456789012345678901234567890
D
■
B
■
BOLEO
BROLEO
XkEXT
XKCOMP
FCOUL
MPTAB
►:<
L
B
■
B
0.24
0.48
10000.
10000.
5.5
1
1400
FIELD CONTENTS
M
I
N
J
BOLEO
BROLEO
XKF.XT
XKCOMP
FCOUL
MPTAB
i
i
Massless Node Point Number At End “1” (Right Justified Integer)
Mass Point Number At End “I” (Right Justified Integer)
Massless Node Point Number At End “J" (Right Justified Integer)
Mass Point Number At End “J" (Right Justified Integer)
Strut Orifice Damping Ib-sec2/in2
Strut Rebound Valve Damping lb-sec^/in 1 2 3 4 5 * 7
Linear Spring At Extended End Of Strut Travel, lb/in.
Linear Spring At Compressed End Of Strut Travel, lb/in.
Coulomb Or Constant Friction Force, lbs.
Metering Pin Table Number. If a Metering Pin Is Not Used. Input Zero. MPTAB
Refers to Metering Pin Tables Input Sequentially On 1500-Series Cards.
REMARKS:
i
(1) Optional data cards.
(2) “NOLEO" on card 0040 specifies the number ;f these cards for input.
(3) All entries requiring scientific notation (X.XEXX) should be right justified.
(4) See Appendix A for a description of the shock strut parameters and their usage.
(5) If a metering pin table is used, BOLEO is ignored. If MPTAB is input as a negative
integer, the subsequent table on cards I 500 is interpreted as total gear load versus
stroke. This is used only for the inverse metering pin option, explained in
Appendix A.
(h) No. of cards = NPTSMP value (card 1290)
(7) Format for this card is (2 (12, 13), 5EI0.0,110).
KRASH INPUT DATA
CARD 1490 : MATURING PIN DATA
DESCRIPTION : Number of points in following metering pin table
FORMAT EXAMPLE:
FIELD CONTENTS
NPTSMP Number of Cards in The Following Table of YOLEO Versus BOLEO (Maximum Allowable
is 100 )
REMARKS : (1) Optional data card. Required only if MPTAB is nonzero on any of the 1400-Series cards.
(2) This card precedes each 1500-Series of metering pin table cards. For example, if there
were 3 metering pin tables (NMPTAB = 3 on card 1290), the proper sequence would be
1490 1 card
1500-XX NPTSMP, cards
1490 1 card
1500-XX NPTSMP 2 cards
1490 1 card
1500-XX NPTSMP 3 cards
(3) Format for this card is 110
KRASH INPUT DATA
CARDS 1500: METERING PIN DATA
DESCRIPTION : Table(s) of oleo piston compression versus damping constant.
FORMAT EXAMPLE
01 2345678
12345678901234567890123456789012345678901234567890123456789012345678901234567890
YOLEO
BOLEO
7.
1.76E02
1500
FIELD
YOLEO
BO LEO
REMARKS
input. If NMPTAB= 0 on card 1290, then none of these cards are used.
(2) Format for this card is 2E10.0.
(3) If MPTAB on card 1400 is input as a negative integer, then BOLEO on the corresponding
1500-Series cards is interpreted as total gear load. This is referred to as the inverse
metering pin option, which can be used to calculate BOLEO versus YOLEO if a known
for desired) load-deflection characteristic curve is input on this series of cards. This
option is explained in Appendix A.
CONTENTS
Oleo Piston Compression. Inches. Measured From Fully Extended Position
Oleo Hydraulic Damping Constant, Pount-Sec ^/in^, at The Piston Position Defined
by YOLEO
(1) Optional data card(s). NPTSMP on card 1490 defines the number of these cards to
KRASH INPUT DATA
CARD 1600 : BEAM ELEMENT DAMPING RATIO
DESCRIPTION : Defines an overall damping ratio for the beam elements in the KRASH model.
FORMAT AND FXAMPLE
0 1
1234567890
2
1234567890
3
1234567890
4 5 6 7 8
12345678901234567890123456789012345678901234567890
DAMPC
X
x
x
x
2X7
x
0.10
1600
FIELD CONTENTS
DAMPC Damping Ratio (Actual/Critical)
REMARKS
(1) Required data card; however, it may be blank.
(2) Blank entry is read as zero damping for all beams.
(3) DAMPC values in KRASH are between .1 and .5. The
sketch below shows the relationship between DAMPC values and
percent of critical damping.
(4) Format lor this card is hi0.0
o
O UJ
Z3 O
0C CC
h- UJ
CO Q_
KRASH INPUT DATA
CARDS 1700 : NON-STANDARD BEAM ELEMENT DAMPING RATIOS
DESCRIPTION Defines the end points and damping ratio for each beam element in the KRASH model
for which a non-standard damping ratio is required.
FORMAT AND EXAMPLE
KRASH INPUT DATA
CARDS 1800: NONLINEAR BEAM ELEMENT PARAMETERS
D ESCRIPTION : Defines the end points, degree-of-freedom. KR table type, and linear deflection points for
the nonlinear beam elements in the KRASH model.
FIELD CONTENTS
M
I
N
J
L
NP
LDP
LDP I
REMARKS
Massless Node Point Number At End “1” (Right Justified Integer)
Mass Point Number At End “I" (Right Justified Integer)
Massless Node Point Number At End “J" (Right Justified Integer)
Mass Point Number At End "J" (Right Justified Integer)
Nonlinear Degree-Of-Freedom Where L= 1. 2. 3. 4, 5, 6 Corresponds To The Beam Element
Coordinate System Directions X. Y, Z ,<p,9 . Respectively (Right Justified Integer)
Number Of Data Points Used In KR Table (Right Justified Integer)
Deflection At Which Nonlinear Behavior Begins - Inches
Deflection At Which Nonlinear Behavior Ends And Linear Restiffening Begins - Inches
except as noted in remark (8).
(1) Optional data card(s).
(2) “NLB" on card 0040 specifies the number of these cards for input.
(3) Blank entries are read as zero.
(4) The nonlinear degrees-of-freedom are specified in the beam element coordinate
systems shown in figure 2-3.
(5) For “NP" = 4-9 the corresponding standard KR tables are shown in figure 2.6. For
"NP” >9 the user will input a nonstandard KR table with “NP" data points.
(6) "LDPI " is used for the KR table "NP" = 9 and for "NP” = 4 (see remark 8).
(7) The theory on how the KR curves are used to calculate internal beam loads is
shown in Volume I. Section 1.3.5.3.4. (Reference I).
(8) Foi "NP" = 4 the LDP value represents the deflection value at which KR = I.
(LINEAR). LDPI icprescnts KR value (< I). 0 <_ deflection <_ LDP.
NP = 4 can he iiselul I'm modeling elements such as a seat cushion which is
soil miiialK and stiltens during compression. Do not use with LDPI > 1.0
(9) I'm mat tm i ho , ai d n ( 2 (12. 13 i 2L S . 2EI 0.0).
MAX LOAD
LDP IS THE DEFLECTION AT WHICH PEAK
LOAD OCCURS
h I KR = 0.0
NP = 5 THROUGH 9
NP = 5
V \
1 NP = 6
NP = 7
NP = 8
3LDP 4 LDP
DEFLECTION, INCHES OR RADIANS
DEFLECTION, INCHES OR RADIANS
FIGURE 2-6. STANDARD NONLINEAR BEAM ELEMENT STIFFNESS
REDUCTION CURVES
KRASH INPUT DATA
CARDS 1900: NON-STANDARD KR TABLE DATA POINTS
DESCRIPTION Defines non-standard KR tables for the nonlinear beam elements in the KRASH model
~~ which cannot be described with the standard KR tables.
FORMAT AND EXAMPLE:
- —— --- - --
0 1 2 3 4 5 6 7
I 2 34 56 7*901234 56~X90I 2345678901234 56 78901234 567X9012345678901234567890123456789
XKR
KR
x
:>c
x:
►:<
1.0
-1.0
□
1900
a v a
FIELD CONTENTS
XKR Deflection - Inches
KR Stiffness Reduction Factor at XKR
REMARKS
(1) Optional data cards.
(2) Fo: each use of "NP" > 9 on the 1 200-series cards. “NP" of these cards are
required input.
(3) Blank entries are read as zero.
(4) Within each set of "NP" data cards, deflections must be in ascending order.
(5) Each set of "NP" data cards must be ordered to correspond with the 1800 series
cards where "NP" > 9 js used.
(6) Format for this card is 2E10.0.
X ©
KRASH INPUT DATA
CARD 2000: CONTROL VOLUMt MASS PENETRATION PARAMETERS
DESCRIPTION : Defines a control volume around a selected mass point in the KRASH model which is
monitored for penetration by another mass point during the analysis.
FORMAT AND EXAMPLE
0 1
->
3
4
S
6
7
8
12345678901234567890123456789012345678901234S67890123456789012345678901234567890
XN
XP
YN
YP
ZN
ZP
x
0
10 0
10.0
3.0
4.0
10.5
1.9
□
2000
FIELD
CONTENTS
XN
Distance From Mass Point To
XP
Distance From Mass Point To
YN
Distance From Mass Point To
YP
Distance From Mass Point To
ZN
Distance From Mass Point To
ZP .
Distance From Mass Point To
REMARKS
(1) Optional data card.
(2) ‘MVP” on card 0040 specifies the mass point number for which this data card applies.
(3) Only one mass point may have a control volume.
(4) Blank entries are read as zero.
(5) All distances are positive and units are inches.
(6) For a RUNMOD = 2 the MVP mass should be selected from a mass point located on
the airplane centerline. This restriction doesn’t apply to RUNMOD = 0 or 1.
(7) Any of the model mass points may penetrate the designated control volume of the model.
(8) The mass penetration calculations are described in Volume I, Section 1.3.10.
(9) Format for this card is 6E 10.0.
2-63
KRASH INPUT DATA
CARD 2100 : DRI ELEMENT SPECIFICATION
DESCRIPTION: Defines the end mass points of the DRI beam elements in the KRASH model.
FORMAT AND EXAMPLE:
1 0
1
2
3
4
5
6
7
8
1 12345678901234567890123456789012345678901234567890123456789012345678901234567890
11
Jl
m
J2
13
J3
14
J4
15
J5
16
J6
17
J7
6
3
U
2100
FIELD CONTENTS
II Mass Point Number At End “I"
JI Mass Point Number At End “J”
REMARKS:
(1) Optional data card(s).
(2) "NDRI" on card 0040 specifies the number of these cards for input.
(3) All entries are right justified integers.
(4) Blank entries are read as zero.
(5) Up to seven DRI beam elements can be specified on each card. (Normally an analysis
requires from 1 to 4 DRI elements).
(6) DRI beam element section properties can be defined on the 0900-series cards or if a
MTL code of 10 is used the program will automatically compute the DRI properties.
(7) Beams that connect massless node points cannot be used as DRI elements, only
direct mass to mass connection is allowed.
(8) The usage of DRI elements is described in Volume I, Section 1.3.12.
(9) Format for this card is 1415.
i
i
2-64
KRASH INPUT DATA
CARD 2200 : OCCUPIABLE VOLUME CHANGE PARAMETERS
DESCRIPTION : Defines occupiable volumes in the KRASH model for volume change calculations by
specifying the eight corner mass points.
FORMAT AND EXAMPLE:
01 2345678
1234567890123456789012345678901234S678901234567890123456789012345678901234567890
11
12
13
74
15
16
17
18
><f
XT
B
3
■B
12
13
21
23
31
35
□
2200
FIELD CONTENTS
11 Mass Point Number At Forward End, Upper Left-Hand Comer
12 Mass Point Number At Forward End, Upper Right-Hand Corner
13 Mass Point Number At Aft End, Upper Left-Hand Comer
14 Mass Point Number At Aft End, Upper Right-Hand Comer
15 Mass Point Number At Forward End, Lower Left-Hand Comer
16 Mass Point Number At Forward End, Lower Right-Hand Corner
17 Mass Point Number At Aft End, Lower Left-Hand Comer
18 Mass Point Number At Aft End, Lower Right-Hand Corner
REMARKS
(1) Optional data card(s).
(2) “NVCH” on card 0004 specifies the number of these cards for input.
(3) All entries are right justified integers.
(4) Blank entries are not allowed.
(5) The volume change calculations are explained in Volume I, Section 1.3.11 (Figure 1-16).
(6) For a symmetrical full model (RUNMOD = 2 type) when only half the data is input the user
inputs mass point locations 1,3, 5, 7 (11.13,15.17). The opposite side mass point locations
2.4. 6, 8 (12,14.16,18) are input as zero (blank). KRASH automatically computes the oppo¬
site side masses. See Volume I. Figure 1-16 for mass point designations.
(7) Format for this card is 815.
KRASH INPUT DATA
CARDS 2300: NON STANDARD MAXIMUM BEAM ELEMENT POSITIVE DEFLECTIONS
FOR RUPTURE
DESCRIPTION Defines the end points and the maximum positive deflections and rotations for
rupture of beam elements in the KRASH model.
FORMAT AND EXAMPLE
01 2345678
12345678901234567890123456789012345678901234567890123456789012345678901234567890
VMAX1
VMAX2
VMAX3
VMAX4
10.0
15.2
100.0
100.0
FIELD
CONTENTS
M
Massless Node Point Number At End “1” (Right Justified Integer)
1
Mass Point Number At End “I” (Right Justified Integer)
N
Massless Node Point Number At End “J” (Right Justified Integer)
J
Mass Point Number At End “J” (Right Justified Integer)
VMAX1
Maximum Deflection In Beam Element X-Direction - Inches
VMAX2
Maximum Deflection In Beam Element Y-Direction - Inches
VM AX.'
Maximum Deflection In Beam Element Z-Direction - Inches
VMAX4
Maximum Rotation About Beam Element X-Axis - Radians
VMAX5
Maximum Rotation About Beam Element Y-Axis - Radians
VMAX6
Maximum Rotation About Beam Element Z-Axis - Radians
REMARKS
(1) Optional data card(s).
(2) "NVBM" on card 0050 specifies the number of these cards for input.
(3) The standard or default values for maximum deflections and rotations are
100 inches and 100 radians, respectively. The deflections and rotations
refer to relative motions of the j end of the beam minus the i end of
the beam.
•
(4) The beam clement coordinate systems are shown in Figure 2-5.
(5) All values are input as positive numbers.
(6) Format for this card is (2 (12,13), 6E10.0).
2-66
KRASH INPUT DATA
CARDS 2400:
- NON STANDARD MAXIMUM BEAM ELEMENT NEGATIVE DEFLECTIONS FOR RUPTURE
DESCRIPTION: Defines the end points and the maximum negative deflections and rotations for
' rupture of beam elements in the KRASH model.
FORMAT AND EXAMPLE:
0 1 2 3 4 5 6
1234567890123456789012345678901234567890123456789012345678901
VMAXN1 VMAXN2 VMAXN3 VMAXN4
1
15.2
100.
9
100.
7 8
2345678901234S67890
VMAXN6 _
100.0 2400
FIELD CONTENTS
M Massless Node Point Number At End “I” (Right Justified Integer)
I Mass Point Number At End “F (Right Justified Integer)
N Massless Node Point Number At End “J” (Right Justified Integer)
J Mass Point Number At End “J” (Right Justified Integer)
VMAXN1 Maximum Deflection In Beam Element X-Direction - Inches
VMAXN2 Maximum Deflection In Beam Element Y-Direction - Inches
VMAXN3 Maximum Deflection In Beam Element Z-Direction - Inches
VMAXN4 Maximum Rotation About Beam Element X-Axis - Radians
VMAXN5 Maximum Rotation About Beam Element Y-Axis - Radians
VMAXN6 Maximum Rotation About Beam Element Z-Axis - Radians
REMARKS : (1) Optional data card(s).
(2) “NVBMN" on card 0050 specifies the number of these cards for input.
(3) The standard or default values for maximum deflections and rotations are 100 inches
and 100 radians, respectively. The deflections and rotations refer to relative motions
of the j end of the beam minus the i end of the beam.
(4) The beam element coordinate systems are shown in Figure 2-5.
(5) All values are input as positive numbers.
(6) Format for this card is (2 (12.13), 6E10.0).
KRASH INPUT DATA
CARDS 2500: NONSTANDARD MAXIMUM BEAM ELEMENT POSITIVE LOADS FOR RUPTURE
DESCRIPTION: Defines the end points and the maximum forces and moments for rupture of beam
elements in the KRASH model.
FORMAT AND EXAMPLE:
0 1 2 3 4 5 6 7 8
I2345678901234567890123456789012345678901234567890123456789012345678901234567890
BUSH
FMAX1
FMAX2
FMAX3
FMAX4
FMAX5
FMAX6
IB
■BIB
10.0E10
1000.0
10.0E10
10.0E10
10.0E6
10.0E10
L
2500
FIELD
CONTENTS
M Massless Node Point Number at End “I” (Right Justified Integer)
1 Mass Point Number at End “1” (Right Justified Integer)
N Massless Node Point Number at End “J” (Right Justified Integer)
J Mass point Number at End “J” (Right Justified Integer)
FMAX 1 Maximum Axial Force in Beam Element X-Direction - Pounds
FMAX2 Maximum Shear Force in Beam Element Y-Direction - pounds
FMAX3 Maximum Shear Force in Beam Element Z-Direction - Pounds
FMAX4 Maximum Torque About Beam Element X-Axis - Inch * Pounds
FMAX5 Maximum Bending Moment About Beam Element Y-Axis - Inch * Pounds
FM A.X 6 Maximum Bending Moment About Beam Element Z-Axis - Inch * Pounds
Hi M \RKn j I) Optional data card(s).
(2) “NE'BM" on card 0050 specifies the number of these cards for input.
(3) The standard of default values for maximum rupture forces and moments are
I.EI0 pounds and inch-pounds, respectively.
i 1) Entries requiring scientific notation (X.XEXX) should be right justified.
(5) Blank entries are read as zero.
(61 The beam element coordinate systems are shown in Figure 2-5.
(7) All values are input as positive numbers.
(8) The input values are compared to the time-varying beam loads at the j end
of <*ie beam to determine if beam rupture occurs.
( n ) Format for this card is(2(12,13), 6E10.0).
KRASH INPUT DATA
CARDS 2600: NON-STANDARD MAXIMUM BEAM ELEMENT NEGATIVE LOADS FOR
- RUPTURE
DESCRIPTION': Defines the end points and the maximum forces and moments for rupture of beam elements in
the KRASH model.
FORMAT AND EXAMPLE:
0
1 2
i
34567890
2 3 4 5 6 7 8
1234567890123456789012345678901234567890123456789012345678901234567890
■
D
■
FMAXN1
FMAXN2
FMAXN3
FMAXN4
FMAXN5
FMAXN6
►:<
a
1
10.0 E1 0
1000.0
10.0E10
10.0E10
10.0E6
■mss
■
2600
FIELD CONTENTS
M
I
N
J
FMAXN1
FMAXN2
FMAXN3
FMAXN4
FMAXN5
FMAXN6
Massless Node Point Number at End T (Right Justified Integer)
Mass Point Number at End T (Right Justified Integer)
Massless Node Point Number at End ‘J’ (Right Justified Integer)
Mass Point Number at End ‘J’ (Right Justified Integer)
Maximum Axial Force In Beam Element X-Direction — Pounds
Maximum Shear Force In Beam Element Y-Direction - Pounds
Maximum Shear Force In Beam Element Z-Direction - Pounds
Maximum Torque About Beam Element X-Axis - Inch ♦ Pounds
Maximum Bending Moment About Beam Element Y-Axis - Inch * Pounds
Maximum Bending Moment About Beam Element Z-Axis - Inch * Pounds
REMARKS:
(1) Optional data card(s).
(2) ‘NFBMN’ on card 0050 specifies the number of these cards for input.
(3) The standard or default values for maximum rupture forces and moments are
1 .E10 pounds and inch-pounds, respectively.
(4) Entries requiring scientific notation (X.XEXX) should be right justified.
(5) Blank entries are read as zero.
(6) The beam element coordinate systems are shown in Figure 2-5.
(7) All values are input as positive numbers.
(8) The input values are compared to the time-varying beam loads at the j end
of the beam to determine if beam rupture occurs.
( 9 ) Format for this card is (2(12,13), 6E10.0).
2-63
KRASH INPUT DATA
CARDS 2700 : LOAD INTERACTION CURVE SIGN CONVENTION DATA
DESCRIPTION : Defines the sign conventions to be used for load-interaction data output.
EORMAT AND EXAMPLE:
1 0
2
3
4 5 6 7
8
123456789012345678901234S678901234S678901234567890123456789012345678901234567890
1SCV2
ISCV3
ISCV4
ISCVS
1SCV6
-2
5
6
■4
1
2700
HELD: CONTENTS
ISCVI- CALAC (Lockheed-California Consign convention load number to be used for the
ISCV6 corresponding user defined loads. The above example results in the following
correspondence between the user-defined loads and the CALAC sign convention
loads:
User Loads
1
2
3
4
5
6
are made up of
CALAC Loads
3
_2
5
6
_4
I
REMARKS: (I) Optional data card(s).
(2) NSCV on card 0060 defines the number of these cards for input.
(3) Any nonzero ISCN on the 2800-series cards requires a corresponding sign
convention definition card in the 2700 series.
(4) Section 3.1 describes the load-interaction data and the significance of the
user-defined sign conventions.
(5) The format for this card is 615
2-70
KRASH INPUT DATA
CARDS 2800 LOAD INTERACTION CURVE DATA
DESCRIPTION: Defines the beams to be analyzed for load-interaction curves, the two interacting load
directions, sign conventions to be applied, exact location along the beams and rupture
ratio.
FORMAT AND EXAMPLE:
0
1
2
>
3
4
5
(
» 7
8
1234567890123456789012345678901234567890I234567890123456789012345678901234567890
IJ
K
■9
NLIL
ISCN
NSMI
FSLIC
BLLIC
WLLIC
RUPRAT
7
3
5
3
1
10
1160.
1.4
2800
El ELD
1.1
k.L
NLIL
ISCN
NSMI
FSLIC,
BLLIC,
WLLIC
RUPRAT
REMARKS:
CONTENTS
Beam number, the internal loads from which are to be analyzed on load-interaction diagrams.
Load directions for the x and y axes of load-interaction curve. In the above example, 3.5
means use Fz and My, in the user-defined sign convention.
Number of sloping load-interaction lines, the data for which is defined on the 3000-series
cards. The maximum allowed per load-interaction diagram is 20, including those lines
generated as mirror images.
User-defined sign convention number to be applied to the beam internal loads before selecting
the K.L loads for this load interaction diagram. If ISCN = 0, then the CALAC internal load
sign convention, defined in Section 4.15 reference 1, is used.
Number of masses involved if shear and moment summation of a particular station is required.
Defines the location on the airplane for this load-interaction curve. Input only one of these
nonzero. For fore-aft beams, use FSLIC. For lateral beams use BLLIC. For vertical beams,
use WLLIC. The location input must be physically within the end points of beam IJ. In the
example shown, a load-interaction curve is defined for beam number 7, which is a fore-aft
beam, at FS 1160.
Beam IJ will rupture when the maximum load ratio for this interaction curve exceeds RUPRAT.
If the input data on cards 2900 and 3000 define a strength envelope which at any point would
cause complete failure of the structure represented by beam IJ, then RUPRAT = 1.0 would be
appropriate. A very large value (RUPRAT = 1000) will guarantee that beam rupture is not
triggered by the load-interaction curve calculations.
(1) Optional data card. NLIC on card 0060 defines the number of these cards to be input.
(2) For each load-interaction curve, cards 2800, 2900 and 3000 are input in sequence,
before the next 2800-3000 series. In other words, the 2800-3000 card sequence is
repeated NLIC times.
(3) Section 3.1 describes the load-interaction calculations and data.
(4) Format for this card is (615, 4E10.0).
2-71
KRASH INPUT DATA
CARDS 2000 : LOAD INTERACTION CURVE DATA
DESCRIPTION: Defines the maximum load levels along the positive and negative x and y load axes.
EORMAT AND EXAMPLE:
0 12 3
I 234 56789012345678901 23456789C
4
11 23456789C
pmyi in
1 f
11234567891
FMYI 1 Cl 1
) t
) 123456789C
PM YI 1C4 1
. 1
1123456789C
FMYf \CA 1
»
112
8
34567890
254000.
74.0E06
-254000.
-74.0E06
—
2900
HELD CONTENTS
Maximum load levels along the positive and negative x and y load axes. Sequenee is as follows:
1 = + x axis
2 = + y
3 = - x
4 = - y
These lines form a rectangular load-interaction strength envelope that looks like:
y
CNI
k
*
4
-H
3
? -
1 X
41
Optional data card. NLIC on card 0060 defines the number of these cards to be input.
For each load-interaction curve, cards 2800, 2900 and 3000 are input in sequence,
before the next 2800-3000 series. In other words, the 2800-3000 card sequence is
repeated NLIC times.
Section 3.1 describes the load-interaction calculations and data.
Format for this card is (3OX. 4E10.0).
A zero or blank input for any of these 4 values will invoke a default value of 1.E20
pounds or inch-pounds.
FMXLIC3 and FMXLIC4 are input as negative numbers.
REMARKS: (I)
(2)
(3)
(4)
(5)
( 6 )
EMXLICI
EM X LIC 2
EMXLIC3
EMXLIC4
2-72
KRASH INPUT DATA
CARDS 3000: LOAD INTERACTION CURVE DATA
DESCRIPTION: Defines the intercepts for sloping load interaction lines and mirror image fiags for generating
these lines in other load quadrants.
EORMAT AND EXAMPLE.
012 3 45678
I234S678901234S678901234S678901234S678901234567890123456789012345678901234567890
MXY1 MXY2
HELD
MXY I
MXY2
REMARKS:
I'LIC!
FL1C2
1500.
30.F06
CONTENTS
Mirror image fiags defining additional load-interaction lines that are generated internally in
KRASH. based on the line defined by FLIC1 and FL1C2. The following combinations are
possible:
MXY1
MXY2
RESULT
Total No. of L.I. Lines
0
0
No mirror images generated
1
0
1
Mirror about y axis only
2
1
0
Mirror about x axis only
2
1
1
Mirror about x and y axes
4
Intercept of sloping load-interaction line with x (FLIC 1) and y (FLIC2) axes. These two
numbers define a single load interaction line, while MXY1 and MXY2 can be used to generate
additional lines which are symmetrical about the x. y or both axes.
(1) Optional data. NLIC on Card 2800 defines the number of these cards to be input
(2) For ecah load-interaction curve, cards 2800. 2900 and 3000 are input in sequence,
before the next 2800-3000 series. In other words, the 2800-3000 card sequence is
repeated NLIC times.
(3) Section 3.1 describes the load-interaction calculations and data.
(4) Format for this card is (215. 2E10.0)..
(5) For each load-interaction curve, a maximum of 20 load-interaction lines are allowed.
The limit of 20 includes any lines generated by KRASH through nonzero inputs of
MXY I and MXY2.
(6) The example data will generate the following load-interaction strength envelope:
▲ y ~ 10 6 IN (LBS
_ ~ 30 | ~ 2 0 -
™X ~ to 3 IBS
^ 0N/@
Load-interaction line 1 is generated by the user-input FLIC] and FLIC2. Lines 2-4
are generated by KRASH because MXY1 = MXY2 = 1.
2-73
KRASH INPUT DATA
CARDS 3010: LOAD INTERACTION CURVE DATA
DESCRIPTION: Defines water line at forward and aft ends of segment for which shear and moment
loads are to be summed.
FORMAT AND EXAMPLE:
01 2345678
12345678901234567890123456789012345678901234567890123456789012345678901234567890
WLSMF
WLSMA
215.7
206.4
FIELD CONTENTS
WLSMF Water line at beam forward end.
WLSMA Water line at beam aft end.
REMARKS: (1) Optional data card. Use only if WSMI on card 2800 is > 0.
(2) Beam number (IJ) is defined.
(3) Format f or this card is (2E 10.0).
2-74
KRASH INPUT DATA
CARDS 3020: LOAD INTERACTION CURVE DATA
DESCRIPTION: Defines masses located at station for which shear and moment loads
are to be summed.
FORMAT AND EXAMPLE:
0 1 2 3 4 5 6 7
I 2345678901 2345678901 23456789012345678901234S678901 2345678901234567 890123456789
IJSMi
IJSM2
IJSM3
IJSM4
IJSM5
1JSM6
IJSM7
IJSM8
1JSM9
IJSM
10
33
41
49
57
65
84
104
105
118
1 19
IJSM
IJSM
IJSM
12
13
14
FIELD
IJSM1
thru
IJSMI4
REMARKS:
CONTENTS
Mass Point Number (Right Justified Integer)
(1) Optional data card. Use only if NSMI on card 2800 is > 0.
(2) Masses designed. IJSM1 thru IJSM14 must all be at same FS or BL station.
(3) 14 masses per card. Use NSMI/14 cards.
(4) Format for this card is (1415).
O 00
KRASH INPUT DATA
CARDS 3100. MISCELLANEOUS MASS POINT PARAMETERS
DESCRIPTION : Defines any nonzero aerodynamic lift forces, angular moments of rotating masses, and mass
cross products of inertia for mass points in the KRASH model.
FORMAT AND EXAMPLE:
0 I 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
B
LC
HEX
HEY
HEZ
XYI
YZI
XZI
If
H
100.0
0.0
0.0
1.3
-3.3
0.0
0
FIELD
I
LC
HEX
HEY
HEZ
XYI
YZI
XZI
NIISY
REMARKS:
CONTENTS
Mass Point Number (Right Justified Integer)
Lift Coefficient For Aerodynamic Force, Positive Up
Angular Momentum of Rotating Masses About Mass Point X-Axis — Inch * Pound * Second
Angular Momentum of Rotating Masses About Mass Point Y-Axis - Inch * Pound * Second
Angular Momentum of Rotating Masses About Mass Point Z-Axis - Inch * Pound * Second
Mass Cross Product of Inertia in Mass Point X-Y Plane - Inch * Pound * Second **2
Mass Cross Product of Inertia in Mass Poim Y-Z Plane - Inch * Pound * Second **2
Mass Cross Product of Inertia in Mass Point X-Y Plane - Inch * Pound * Second **2
Symmetry flag which defines the signs for HEX, HEY. HEZ for masses on the right side
of the airplane, generated by subroutine GENMOD, if RUNMOD on card 110 is 2.
(1) Optional data card(s).
(2) ‘NHE on card 0050 specifies the number of these cards for input.
(3) Blank entries are read as zero.
(4) The airplane weight is multiplied by the lift coefficient to generate an aerodynamic lift
force on the mass point. This lift acts upward in ground axes.
(5) Format for this card is(12. E8.0, 6EI0.0.12)
(6) NHSY = 0 corresponds to a symmetrical model (counter-rotating engines), so that
HEX-RIGHT = - HEX LEFT
HEY-RIGHT = + HEY LEFT
HEZ-RIGHT =- HEZ LEFT
NHSY = 1 corresponds to an anti-symmetrical model (engines rotate in same direction),
so that
HEX-RIGHT = + HEX LEFT
HEY-RIGHT = -HEY LEFT
IIEZ-RIGHT =+ HEZ LEFT
2-76
KRASH INPUT DATA
CARD 3200: MASS POINT EULER ANGLES
DESCRIPTION: Defines for any mass point in the KRASH model three Euler angles to arbitrarily rotate the
mass point or body coordinate system relative to the airplane coordinate system.
FORMAT AND EXAMPLE:
0 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
mm
^1
PHIDP
THEDP
IDP
x
B
3
0 157
0.0
0.0
3200
FIELD CONTENTS
I Mass Point Number (Right Justified Integer)
PHIDP Roll Euler Angle about Airplane X-Axis - Radians
THEDP Pitch Euler Angle about Airplane Y-Axis - Radians
PSIDP Yaw Euler Angle about Airplane Z-Axis- Radians
REMARKS
(1) Optional data card(s).
(2) “NPH” on card 0050 specifies the number of these cards for input.
(3) Euler angles are order-dependent rotations. The order is PSIDP, THEDP, PHIDP.
(4) Blank entries are read as zero.
(5) These angles relate the mass-fixed axes to the airplane axes. Normally these axes
coincide and therefore the angles are zero. If mass inertia were available in an
inclined axis system the user might want to utilize this option. Another reason
for inclining mass axes away from the airplane axes is to enable the user to orient
an external spring in a direction that doesn’t coincide with any of the airplane
axes (external springs must point along one of the mass fixed axes).
(6) Roll angle positive when mass axes are “right-wing-down” relative to eg axes.
Pitch angle positive when mass axes are “nose-up” relative to eg axes.
Yaw angle positive when mass axes are “nose-right” relative to eg axes.
(7) Format for this card (15, 5X, 3E10,0).
2-77
KRASH INPUT DATA
CARDS 3300: MASS POINT AERODYNAMIC COEFFICIENTS
DESCRIPTION: Defines for any mass point 6 aerodynamic load coefficients to be used to calculate
aerodynamic loads.
FORMAT AND EXAMPLE:
0
1 2 3
4
; 5
I 6 7
8
12345678901234567890I23456789012345678901234567890123456789012345678901234567890
I
85
CXAIR
CYAIR
CZAIR
CLAIR
CMAIR
CNAIR
13
-137.
0.
-1500.
3500.
5200.
3300
FIELD
CONTENTS
1
Mass point number
CXAIR
Aerodynamic drag coefficient, in"
CYAIR
Aerodynamic side force coefficient, in"
CZAIR
Aerodynamic lift coefficient, in"
CLAIR
Aerodynamic rolling moment coefficient, in'
CMAIR
Aerodynamic pitching moment coefficient, ii
CNAIR
Aerodynamic yawing moment coefficient, in
REMARKS.
(1) Optional data card(s).
(2) NAERO on card 0050 specifies the number of these cards for input.
(3) The input aerodynamic coefficients are defined as follows:
CXAIR
CYAIR
CZAIR
CLAIR
CMAIR
CNAIR
S * CX alpha
S * CY beta
S *CZ alpha
S * b * CL beta
S * c* CM alpha
S * b * CN beta
where
S
b
c
alpha
beta
CXalpha
CYbeta
CZalpha
= Reference area. in“
= Reference span, in
= Reference mean aerodynamic chord, in.
= Angle of attack, rad. Positive when mass is nose up relative to its velocity
vector.
= Sideslip angle, rad. Positive when mass is nose left relative to its velocity
vector.
= Slope of aerodynamic drag (positive forward (versus alpha. 1/rad
= Slope of aerodynamic side force (positive right) versus beta. 1/rad
= Slope of aerodynamic vertical force (positive down) versus alpha. 1/rad
2-78
KRASH INPUT DATA
REMARKS :
(Continued)
CLbeta = Slope of aerodynamic roll moment (positive right wing down) versus
beta, 1/rad
CMalpha = Slope of aerodynamic pitch moment (positive nose up) versus alpha. I /rad
CNbeta = Slope of aerodynamic yaw moment (positive nose right) versus beta, I/rad
(4) All data refer to the local mass defined by I, not to the entire airplane.
(5) Aerodynamic loads at zero ALPHA are not included in the calculations. If
necessary, these can be included as external forces/moments in the 3300 series
cards.
(6) Aerodynamic loads using these coefficients are not included in the balanced initial
conditions coding.
(7) The format for this card is (I5.5X.6E 10.0).
2-79
'
KRASH INPUT DATA
CARDS 3400: MASS POINT TIME HISTORY ACCELERATION PARAMETERS
DESCRIPTION : Defines the mass point number, degrce-of-freedom. and number of data points to specify
an acceleration or load time history for any mass point in the KRASH model.
FORMAT AND EXAMPLE:
01 2345678
12345678901 2345678901 2345678901 23456789012345678901 2345678901234 5678901234567890
I
m
NP
><
■><^
>><r
fit
3
m
m
■
3400
FIELD CONTENTS
I
L
NP
NCODE
Mass Point Number.
Degree-of-Freedom where L = 1,2, 3, 4, 5, 6 corresponds to X, Y, Z,0X,0Y,0Z in the
Mass Pom! Coordinate System
Number of Data Points in the Table that specifies the Acceleration or Load Time History
f lag defining whether the input table is of mass point acceleration or applied load.
REMARKS:
(11 Optional data card(s).
(2) "NA( C" on card 0040 specifies the number of these cards for input.
(3> All entries are right justified integers.
(4) Each use of this card requires that “NP” number of the 3500-series cards be used.
(5) The masses must he input in sequence starting with the lower numbered masses.
(Cl Formal for this card is 415.
(7) NCODE = 0 lor acceleration input table
NCODE = I tor force/moment input table
(8) It is permissible to input forces for some masses and accelerations for other masses.
If both types are input for the same mass, the accelerations will predominate.
2-80
KRASH INPUT DATA
CARDS 3500: MASS POINT ACCELERATION OR LOAD TIME HISTORY DATA TABLE
DESCRIPTION: Defines a table of time and acceleration or load data points for each mass point specified
on the 3400-series cards.
FORMAT AND EX.AMPLE:
0 1 2 3 4 5 6 7 *
1234567X901234567X901214567X90123456789012345678901234567K90I2345678901234567890
T
ACCEL
x
Xf
x
^XT!
hxT
X
0.01
-0.6
3500
FUlD
CONTENTS
T
Time - Seconds
Accel
Acceleration G’s or Radians per Second **2
or Loads Pounds or Inch-Pounds
REMARKS:
(1) Optional data cards.
(2) For each of the “NACC” number of 3400-series cards, “NP” number of these cards
are required.
(3) Within each set ot data, the “NP” cards must be arranged in ascending order of time.
(4) Each set of data must be ordered to correspond with the 3400 series cards.
(5) Blank entries are read as zero.
(6) A maximum of 5000 acceleration times are allowed. For example, if accelerations
are applied to 50 masses, the time history of each location can not exceed a curve
consisting of 100 points.
(7) The values of acceleration or load are in mass axes, with translational accelerations
in g's and rotational accelerations in rad/sec^. Loads are in pounds or inch-pounds.
(See Equation 1-117 Volume I).
(8) Format for this card is 2E10.0.
2-81
KRASH INPUT DATA
CARDS 3600: DIRECT INPUT OF BEAM ELEMENT 6X6 STIFFNESS MATRIX
DESCRIPTION: Defines the end points and 6x6 stiffness matrix terms for any beam element in the
KRASH model.
FORMAT AND EXAMPLE:
0
i
2
3
4
5
6
7
8
i 2
34567890123456789012345678901234567890
1 23456789012 34567890I 234S6789012 34567890
iD
■
D
■
(mgii
x
x
x
►:<
■
B
■
B
_
2400
0 1
2
3
4
5
6
7
8
1234567890
1 234567890123456789012345678901234567890123456789012345678901 234567890
K 1 1
K 1 2
K 1 3
K 14
K 1 5
K16
x
>:<
3500.0
0.0
0.0
_
2401
0 1
3
4
5
6
7
8
1 234 56' X90I 2 34 56789012 345678901 2 34 567890
1234567890123456789012345678901234567890
K 2 1
K 2 2
K23
K24
K25
K26
'tmm
0 0
1.7E07
0 0
0.0
-2.2E05
2402
0 1
2
3
4
5
6
7
8
123456789012345678901234567890123456789012345678901234567890123456789012
34567890
K3I
K 3 2
K33
K34
K35
K36
x
X
0 0
0 0
1.7E07
0.0
0.3E05
_
2403
a l
1
3
4
5
6
7
8
i: u 5 ^-v>o
123456-840123456**901234567890
1234567890123456789012345678901
34567890
K4I
K42
K43
K44
K45
K46
X
0 0
1 1
0 0
15200 0
0.0
_
2404
0 1
2
3
4
5
6
7
8 1
12345678901234567890123456789012345678901234567890123456789012345678901234567890|
K 5 1
K52
K53
K54
K55
K56
x
§
0 0
0.3E06
3.5E09
_
2405
0 1
2
3
4
5
6
7
8
12345678901234567890123456789012345678901234567890123456789012345678901234567890|
K6I
K62
K63
K64
K65
K66
x
X
0.0
2.2E05
0.0
3.5E09
_
2406
KRASH INPUT DATA
CARDS 3600: DIRECT INPUT OF BEAM ELEMENT 6X6 STIFFNESS MATRIX (Continued)
FIELD CONTENTS
M Massless Node Point Number at end “I" (Right Justified Integer)
I Mass Point Number at end “I” (Right Justified Integer)
N Massless Node Point Number at end “J” (Right Justified Integer)
J Mass Point Number at end “J” (Right Justified Integer)
KIJ Stiffness Matrix Terms - Pounds per Inch or Inch * Pounds per Radian
REMARKS: (1) Optional data cards.
—— (2) “NKM” on card 0050 specifies the number of these card sets for input.
(3) Blank entries are read as zero.
(4) The beam element must be included on the 0900-series cards.
(5) The stiffness data on these cards will override any values calculated with the beam
element section properties on the 0900-series cards.
(6) The input 6x6 stiffness matrix corresponds to the lower right-hand quadrant of a
full 12x12 beam element stiffness matrix, shown as Equation (1-23) in Volume I.
(7) Entries requiring scientific notation (X.XEXX) should be right justified.
(8) Format for the beam identification card is 2(12,13).
(9) Format for the stiffness matrix data cards is 6E10.0.
2-83
KRASH INPUT DATA
CARDS 3700-3X00: MASS POINT POSITION (STRUCTURE DEFORMATION) PRINTER PLOT
PARAMETERS
DESCRIPTION Defines the planar view, scale factors, and mass point numbers for each mass point position
(structure deformation) printer plot.
FORMAT AND EXAMPLE :
01 2 3 45678
I 234 56 78^012 34 5 67 89012 34 56 78901234 567 8901 2345678901 2345678901 234 5678901 234567890
01 2345678
12345678901234567890123456789012345678901234567890123456789012345678901234567890
M2
M3
M4
2
5
6
M 6
M 7
M 8
M9
11
13
14
21
Mil
1 Ml 2 I
M 1 3
M14
27
FIELD
NTPL
NMPTS
ISC ALE
CONTENTS
Flag to select Planar View where NTPL = 1.2. 3 corresponds to top. side, and frontal
views, respectively (Right Justified Integer)
Number of Mass Points (Right Justified Integer - Maximum allowed is 50)
Flag to Select Scaling Option as follows (Right Justified Integer):
[SCALE
0
XSCAL1
Y SCALE
Ml
REMARKS:
_ TYPE OF SCALING _
Automatic scaling w'here horizontal and vertical plot axes scales are selected
independently based on the corresponding largest mass point displacement
components.
Automatic scaling where horizontal and vertical plot axes scales are set
equal based on largest mass point displacement component.
User defined scaling
Horizontal Scale Factor required if "ISC ALE" = 3
Vertical Scale Factor required if "ISC ALE" = 3
Mass Point Number (Right Justified Integer)
(1) Optional data cards.
(2) “NPLT" on card 0140 specifies the number of these card sets for input.
(3) “NTPL“NMPTS,” and “MI" must be nonzero.
(4) Blank entries are read as zero.
(5) Scale factor units are inches of mass point displacement per inch of paper.
(6) Entries requiring scientific notation (X.XEXX) should be right justified.
(7) Recommend ISCALE = 3 if user plans to compare or overlay plots at different time
periods.
(8) Format for card 3700 type is (315.5X.2EI 0.0).
(9) Formal for card 3800 type is 1415.
2-84
KRASH INPUT DATA
CARDS 3900: MASS POINT PRINTER PLOT PARAMETERS
DESCRIPTION: Defines the mass point number and flags to specify which mass point output quantity time
histories will be printer plotted.
FORMAT AND EXAMPLE:
0
1 2345
1
67890
1 234 5
7^ 4 5 6 7 8
67890123456789012345678901234567890123456789012345678901234567890
l
MP1
MP2
MP3
MP4
MP5
MP6
MP7
MP8
MP9
ft
3
m
1
m
1
0
0
1
0
■1
3900
FIELD CONTENTS
I Mass Point Number
MP1 Flag for Linear Displacements (X. Y, Z.- Inches') in the Ground Coordinate System
MP2 Flag for Euler Angles (PHI. THETA, PSI ■ Radians) in the Airplane Coordinate System
MP3 Flag for Linear Velocities (X. Y, Z - Inches per Second)in the Ground Coordinate System
MP4 Flag for Linear Velocities (U. V. W - Inches per Second) in the Mass Point or Body
Coordinate System
MP5 Flag for Angular Velocities (P. Q, R - Radians per Second) in the Mass Point or Body
Coordinate System
MPt> Flag for Unfiltered Linear Accelerations (X. Y, Z • G's) in the Mass Point or Body
Coordinate System
MP~ Flag for Filtered Linear Accelerations (X, Y. Z - G’s) in the Mass Point or Body Coordinate
System
MP8 Flag for Angular Accelerations (P. Q. R • Radians per Second**2) in the Mass Point or Body
Coordinate System
MP9 Flag for Impulse (X, Y. Z in G-sec., P. Q, R in (RAD Per Sec) in Mass Point or Body
Coordinate Axes for Filtered Data
REMARKS:
(1) Optional data card(s).
(2) “NMEP" on card 0140 specifies the number of these cards for input.
(3) All entries are right justified integers.
(4) “1” must be nonzero.
(5) Blank entries are read as zero.
(6) Flags for printer plot time histories are defined as follows:
0 = No
1 = Yes
Format for this card is 1015,
( 7 )
KRASH INPUT DATA
CARDS 4000: MASSLESS NODE POINT PRINTER PLOT PARAMETERS
DESCRIPTION: Defines the massless node point number, mass point number, and flags to specify which
massless node point output quantity time histories will be printer plotted.
FORMAT AND EXAMPLE:
0
1 234 5
1
67890
1 2345
2 3 4 S 6 7 8
67890123456789012345678901234567890123456789012345678901234567890
M
I
NPl
NP2
NP3
NP4
NP5
NP6
x
'X"
I
7
m
1
0
1
0
0
4000
FIELD CONTENTS
M Massless Node Point Number
I Mass Point Number
NPl Flag for Linear Displacements (X, Y, Z - Inches) in the Ground Coordinate System
NP2 Flag for Linear Velocities (X, Y, Z - Inches per Second) in the Ground Coordinate System
NP3 Flag for Linear Velocities (U, V, W - Inches per Second) in the Mass Point or Body
Coordinate System
NP4 Flag for Unfiltered Linear Accelerations (X, Y, Z - G’s) in the Mass Point or Body
Coordinate System
NP5 Flag for Filtered Linear Accelerations (X, Y, Z - G’s) in the Mass Point or Body Coordinate
System
NP6 Flag for Impulse (X, Y, Z in G-sec. P, Q, R in RAD/Sec) in Mass Point or Body Coordinate
System
REMARKS:
(1) Optional data card(s).
(2) “NNEP” on card 0140 specifies the number of these cards for input.
(3) All entries are right justified integers.
(4) “M" and “1” must be nonzero.
(5) Blank entries are read as zero.
(6) Flags for printer plot time histories are defined as follows:
0 = No
1 = Yes
(7) Format for this card is815.
2-86
KRASH INPUT DATA
CARDS 4100: BEAM ELEMENT LOADS PRINTER PLOT PARAMETERS
DESCRIPTION: Defines the beam element number and flags to specify which beam element internal load
' time histories will be printer plotted.
FORMAT AND EXAMPLE:
FIELD CONTENTS
IJ Beam Element Number
BFP1 Flag for Axial and Shear Forces (FX, FY, FZ - Pounds)
BFP2 Flag for Torque and Bending Moments at End “1” (MX, MY. MZ - Inch * Pounds)
BFP3 Flag for Torque and Bending Moments at End “J” (MX, MY, MZ - Inch * Pounds)
BFP4 Flag for choosing between beam axis loads or loads in mass axes.
REMARKS:
(1) Optional data card(s).
(2) “NBFP” on card 0140 specifies the number of these cards for input.
(3) All entries are right justified integers.
(4) “[J'’must be nonzero.
(5) Blank entries are read as zero.
(6) Flags for printer plot time histories are defined as follows:
0= No
1 = Yes
(7) If BFP4 = 0, then all load data are in the beam element coordinate system shown in
Figure 2-5.
If BFP4 = 1. then all load data are in the mass point coordinate system at mass i or
j. as appropriate.
(8) If BFP4 = 1, then BFP1 through BFP3 control plotting of the following:
BFPI: FX,FY,FZ at mass I. in mass point coordinate system
BFP2: FX,FY,FZ at mass J. in mass point coordinate system
BFP3: MYI and MYJ. moments about y axis i.t each mass point
coordinate system.
(9) Format for this card is 515.
2-87
KRASH INPUT DATA
( ARDS 4:u0 BI AM ELEMENT DEFLECTION-ROTATION PRINTER PLOT PARAMETERS
DESCRIPTION Defines the beam element number and flags to specify which beam element deflection and
" rotation time histories will be printer plotted.
FORMAT AND EXAMPLE
01 2 3 45678
1 234>67890 I 234567840 I 234567890 I 23456789012345678901 2345678901 2345678901234567890
IJ
BDP1
BDP2
3
0
0
FIELD CONTENTS
[J Beam Element Number
BDP1 Flag for Deflection Differences of End “J” and End “1” (X, Y, Z - Inches)
BDP2 Flag for Rotation Differences of End “J” and End “1" (Phi, Theta, Psi - Radians)
BDP3 Flag for Rotation Sums of End “J” and End (Phi, Theta. Psi - Radians)
REMARKS (1) Optional data card(s).
(2) “NBDP" on card 0140 specifies the number of these cards for input.
(3) All entries are right justified integers.
(4) “1J" must be nonzero.
(5l Blank entries are read as zero.
(61 Flags for printer plot time histories are defined as follows:
0= No
1 = Yes
(7) All deflection-rotation data is output in the beam element coordinate systems shown
in Figure 2-3.
(8) Formal lor this card is 415.
KRASH INPUT DATA
CARDS 4300 BEAM ELEMENT STRESS RATIO PRINTER PLOT PARAMETERS
DESCRIPTION: Defines the beam element number and flags to specify which beam element stress ratio time
histories will be printer plotted.
FORMAT AND EXAMPLE:
0 1 2 3 4 5 6 7 8
I 23456"S90l 2345678901 2345678901 2345678901 2345678901 2345678901 2345678901 234567890
IJ
STP 1
STP2
STP3
STP4
STP5
XT
X'
"XT
>:<
7
0
1
1
0
m
4300
FIELD CONTENTS
1J
STP1
stp:
STP3
STP4
STP5
Beam Element
Flag for Stress
Flag for Stress
Flag for Stress
Flag for Stress
Flag for Stress
Number
Ratio for Top and Bottom Fibers Using Maximum Shear Stress Theory
Ratio of Left and Right Fibers Using Maximum Shear Stress Theory
Ratio of Top and Bottom Fibers using Constant Energy of Distortion Theory
Ratio of Left and Right Fibers Using Constant Energy of Distortion Theory
Ratio of Tension-Only. Compression-Only, and Axial Buckling Loads
REMARKS
(1) Optional data card(s).
(2) “NSTP" on card 0140 specifies the number of these cards for input.
(3) All entries are right justified integers.
(4) "IJ" must be nonzero.
(5) Blank entries are read as zero.
(6) Flags for printer plot time histories are defined as follows:
0 = No
1 = Yes
(7) Stress parameters must be provided for the beam elements on the 0900-series cards.
(8) "NSC" on card 0050 must he flagged “yes.”
(9) Format for this card is 615.
2-89
KRASH INPUT DATA
CARDS 4400: EXTERNAL CRUSHING SPRING LOAD-DEFLECTION PRINTER PLOT
- PARAMETERS
DESCRIPTION: Defines the end point and flags to specify which external crushing spring load and deflection
time histories will be printer plotted.
FORMAT AND EXAMPLE:
0 1 2 3 4 5 6 7 X
I;3456'890 I234567890123456789012345678901234567890123456789012345678901234567890
I
M
SEP1
SEP2
X’
x
mam
3
1
m
■3
4400
HELD CONTENTS
I Mass Point Number
M Massless Node Point Number
SI PI Flag for Axial Deflection (Inches)
SI P2 Flag for Axial Loads (Pounds)
REMARKS
(1) Optional data card(s).
(2) “NSEP" on card 0140 specifies the number of these cards for input.
(3) All entries are right justified integers.
(4) “I” must be nonzero.
( 5) Blank entries are read as zero.
(6) Flags for printer plot time histories are defined as follows:
0 = No
! = Yes
(7) All externa] crushing springs attached to the same mass point/massless node point will
be printer plotted if that end point is specified.
(8) Format for this card is 415.
2-90
KRASH INPUT DATA
CARDS 4500 BEAM ELEMENT STRAIN AND DAMPING ENERGY PRINTER PLOT
- PARAMETERS
DESCRIPTION: Defines the beam element number and Hags to specify which beam internal element strain and
damping energy time history will be printer plotted
FORMAT AND EXAMPLE:
0 12 3
1 2345678901 2 34 567X901 234 567X90
4 5 6 7 b
12345678901234567890123456789012345678901234567890
U
ENGI
ENG 2
&
XT
X
x
6
2
1
1
r
4500
FIELD CONTENTS
IJ Beam Element Number
ENG 1 Flag for Strain Energy (in.-lb.)
ENG2 Flag for Damping Energy (in.-lb.)
REMARKS:
(1) Optional data cards.
(2) “NF.NP" on card 0140 specifies the number of these cards for input.
(3) All entries must be right justified.
(4) “IJ’' must be nonzero.
(5 ) Blank entries are read as zero.
(t>) Flags for printer plot time histories are defined as follows:
0 = No
1 = Yes
(7) Format for this card is 315.
2-91
KRASH INPUT DATA
CARDS 4b00: DYNAMIC RESPONSE INDEX (DRI) PRINTER PLOT PARAMETERS
DESCRIPTION: Defines the mass point number of a DRI beam element for dynamic response index (DRI)
time history printer plots.
FORMAT AND EXAMPLE:
0
i
2
3
4
5
6
7
8
I2345678901234567890123456789012345678901234567890123456789012345678901234567890
J
si
(B£5|
:xc
x
a
ms
□
4600
FIELD CONTENTS
J Mass Point Number
REMARKS
(1) Optional data card(s).
(2) “NDRP" on card 0140 specifies the number of these cards for input.
(3) All entries are right justified integers.
(4) “J" must be nonzero.
(5) Blank entries are read as zero.
(6) Flags for printer plot time histories are defined as follows:
0 = No
1 = Yes
(7) The mass point number must be end “J" of a DRI beam element.
(8) Format for this card is 15.
CARD 4700: END OF DATA
DESCRIPTION : Defines tire final card of the input data.
FORMAT AND EXAMPLE
01 2345678
12345678901234567890123456789012345678901234567890123456789012345678901234567890
END
END
4700
FIELD CONTENTS
End The Mnemonic “End" (Left Justified)
REMARKS : (1) Required data card.
2-92
2.3 OUTPUT AND SAMPLE CASE
As explained in Section 2.1, the most general, case of a KRASH85 analysis
involves the use of three separate programs: KRASHIC, MSCTRAN, and KRASH85.
Table 2-6 shows a summary of the output from each program. A sample case
which models one-half of a transport airplane with 21 masses and 28 internal
beams will be used to illustrate the output for each program. This model is
illustrated in figure 2-7. This is a test case with special elements for
checkout purposes; it does not represent a realistic airplane m odel.
TABLE 2-6. SUMMARY OF KRASH85 OUTPUT
KRASHIC
KRASH85
• Echo of input data (2 times)
• Echo of input data (2 times)
• Formatted printout of input data
• Formatted printout of input data
• Miscellaneous calculated data
• Miscellaneous calculated data
• Time histories of model responses
MSCTRAN
• Mass data
• Internal beam data
• Executive control deck echo
• External spring data
• Case control deck echo
• Energy data
• Input bulk data deck echo
• Summaries at end of run
• Sorted bulk data deck echo
t External spring loading/unloading
• Displacement vector
• Summary of plastic hinge formations
• Load vector
• Summary of internal beam yielding and rupture
• Forces of single-point constraint
• Summary of energy distribution
• Forces in bar elements
• Interaction load time-histories
• Element strain energies
• Vehicle c.g. motion time-histories
■ Grid point force balance
$ Time history plots of selected response quantities
2.5.1 KRASHIC Output
2. 3.1.1 Echo of Input Data
This is a direct listing of the input data cards for the case being
analyzed. Figure 2-8 illustrates this print for the sample case. Each
page ot tin- list ins; is preceded hv a heading which identities the column
numher. The sequence numhers are in columns 77 - 80. The first card, with
a 1 in column 10, is generated hv the Job Control Language (.ICI.) , and is not
part oi the data set (I.T . SAMPLE. DATA in this case) in the user's library.
Ibis lirst card tells the program whether or not to read an additional data
set oi slat ic tie) lections. A value of 1 means read t lie add i t iona 1 data set,
0 means don't read it. The ICI. is set up to supply a zero for this card for
the i irst iteration, when no static del lection information is available, and
a 1 lor all subsequent iterations, when the data are available, as generated
hv NASTRAN. the listing in figure 2-8 is from the last iteration, and there-
I ore the first card has a 1 in column 10. To reiterate, this card is atuoma-
ticallv generated by the .ICI.; the user does not supply this card.
Cards It) through 1480 are supplied by the user and represent the basic.
KRAS 1185 data set described in Section 2.2. This is the data set referred to
as XY.DAi'A in Section 2.1. Note how the dummy title cards serve to segment
tin 1 date and facilitate reviewing and editing the data set.
Following card 1480 is a set of cards numbered 1 through 7b. This is
the .static deflection data set referred to as XYZ. NASOUT. DATA in Section 2.1.
I he i irst six cards of this data set are title cards, the remaining cards are
the three delleet ions and three rotations of eaeii grid point in the NASTRAN
model used to solve the stat ic loads problem. Cards 1 through 7b are till gen¬
erated automat ieally; the user does not have to develop this data set. The
...it a set will reside in the user's library under the name XYZ .NASOl'T. DATA.
ihe eemplete echo shown in figure 2-8 is provided twice. One eepv can
:>«• used to mark up tor torming a new data set, while the other eopv remains
as a clean record oi the input for the current ease.
—
rma11 ed Print-
■Out ol
i Input
Data
ills S.
cc l i on oi t he
pr i n L
out put
organizes a 11
t ho
input data
into logiea
and
prints out t lu
■ data
w i t h se
1 t'-exp 1 ana lory
hit
>nt i t ieat ion
headings.
.hi.- output is illustrated in figure 2-9 tor the sample ease. the data are
or.-, in i ;:ed into tin* ! ol lowing major groups:
Case title cards
Program size data
Acceleration data transfer control parameters
Program data management control data (restart option)
Program control data
Vehicle initial conditions
Initial mass/node point deflections (read from XYZ.NASOUT.DATA)
Generalized surface data
Corresponding mass and beam numbering (RUNMOD = 2 only)
Mass data
Node point data (optional)
External spring data (optional)
Material properties
Internal beam data
Unsymmetrical beam data (optional)
Plastic hinge and end-fixity data (optional)
01eo strut beam data (optional)
Nonlinear beam data (optional)
Volume penetration data (optional)
DRF elements (optional)
Volume change data (optional)
Nonstandard maximum deflections (optional)
Nonstandard maximum forces (optional)
Load interaction curve sign conventions and curve data (optional)
Nonzero angular momenta, cross-products of inertia, lift constants
(optiona1)
2-95
L.'-.
■ - ** ■
FIGURE 2-7. LARGE TRANSPORT AIRPLANE MODEL - SAMPLE CASE
ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT
1
2
3
4 5 6
7
8
' CARD
NO.
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*
1
2
1
LT.SAMPLE.DATA
00000010
3
21 MASS/28
BEAM TEST
CASE ONLY-
-NOT VALID AIRPLANE MODEL
00000020
4
12345678901234567890123456789012345678901234567890123456789012345678901200000030
*
5
NM MSP
NB NLB
NNP NPIN
NUB NDRINOLEO NACC MVP NVCH NMTL
ND
00000040
6
21 19
28 1
12 10
4 1 2 19 0 0 0
0
00000050
7
NVBM NFBMNVBMNNFBMN
NKM NHI
NPH TOL1 TOL2 TOL3 NSC NICNAERONBOMB
00000060
8
0 2
0 2
0 2
2 1000 1000 1000 110
1
00000070
9
NSCV NLICNHRGR NBAL
ICDICITR
00000080
",
10
1 15
0 5
1 1
00000090
11
GRAPHICS
00000100
12
00000110
13
200
00000120
l
14
ONE RESTART
' AND ONE SAVE CARD FOLLOWS
00000130
15
00000140
16
00000150
17
IPRINT
DELTAT
TMAX
PLOWT FCUT RUNMOD
00000160
?
18
200
.000050
0.1
0.000 50. 1.
00000170
19
BLANK CARD
FOLLOWS
00000180
*
20
00000190
T
21
NSF NTF
NOE NSPD
NED NS
NRP NIMP NBC : PRINT DATA
00000200
/
22
1 1
1 1
1 0
10 1
00000210
r
23
NMEP NNEP
NBFP NBDP
NSTP NSEP
NENP NDRP NPLTNPFCT : PLOT DATA
00000220
'
24
0 0
6 0
0 0
0 0 0 0
00000230
3
25
INITIAL CONDITION DATA : 3 CARDS
00000240
'
26
3140.00
000.00
3 00.00
0000025D
27
000.00
0.1
000.00
00000260
,
28
000.00
.01745
000.00
000.00 000.00 0.001.1463E-07
00000270
*
29
MASS DATA :
NM CARDS
00000280
30
1585.0
199.0
0.0
220.0.11514E+05.4 E+05.15
E*05
100000290
31
9064.5
300.0
0.0
218.7.89080E+05.3 E+06.99
E+05
200000300
32
15318.1
460.0
0.0
208.7.16278E+06.96935E+05.10309E+06
300000310
:
33
13096.0
620.0
0.0
206.0.19627E+06.66715E+05.79389E+05
400000320
34
21752.6
820,0
0.0
200 . 2.49106E+06.12567E+06 . 14651E+06
500000330
35
7901.5
960.0
0.0
212.4.81383E +05.12 E+06.2
E+06
600000340
36
9190.7
1040.0
0.0
207.9.87536E+05.14 E+06.2
E+06
700000350
37
9938.4
1200.0
0.0
225.1.88098E *05.18 E+06.3
E+06
800000360
38
5702.0
1359.9
0.0
260.0.96249E +05.41788E *05.26039E +05
900000370
39
6175.2
1570.0
0.0
302.3.21530E+06.10798E +06.15863E +06 1 000000380
40
9670.6
801.3
118.3
188.3.15213E *05.13858E *06.36
E+06 1100000390
41
10065.6
852.3
271.8
203.1.19510E+05.12263E+06.3
E+06 1200000400
42
£286.5
943.5
430.7
219.9.72715E+04.5Z619E+05.11
E+06 1300000410
43
3759.0
1045.8
583.5
243.5.44083E+04.25823E+05.60
E+05 1400000420
44
1542.3
1112.6
740.6
255.1.16708E+04.90137E+04 . 18
E+05
1500000430
45
5400 . 0
719.0
321.6
165.8 3651.56 25746. 29374.6
1600000440
46
5151.0
902.8
551.6
188.1 3712. 24588.2 28178.
1700000450
47
1922.0
887.0
131.6
90.7 371. 1600. 2000.
1800000460
48
238.0
279.0
0.0
85.0 24. 300. 500.
1900000470
49
1000.
300.0
0.0
238.7 1000. 1000. 1000.
2000000480
50
1000.
300.0
0.0
238.7 1000. 1000. 1000.
2100000490
FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 1 OF 9)
ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT
1
2
3
4
5
6
7 8
CARD NO.
12345678901234567890123456789012345678901234567890123456789012345678901234567890
51
NODE POINT DATA : NNP CARDS
00000500
52
1
5
775.1
48.0
181.0
00000510
53
1
11
773.9
118.3
186.3
00000520
54
2
11
887.0
131.6
179.7
00000530
55
3
11
887.0
131.6
179.7
00000540
56
1
12
811.8
321.6
199.6
00000550
57
1
14
994.5
551.6
220.5
00000560
58
1
15
1148.0
740.6
261.3
00000570
59
2
15
1112.6
740.6
255.1
00000580
60
1
16
735.7
321.6
199.6
00000590
61
2
16
719.0
321.6
165.8
00000600
62
1
17
918.4
551.6
220.5
00000610
63
1
2
279.0
0.0
147.5
00000620
64
EXTERNAL SPRING DATA : 2
X NSP CARDS
00000630
65
1
3
70.
0.35
175000.
00000640
66
2
3
82.7
0.35
300000.0
00000650
67
3
3
72.7
0.35
100000.0
00000660
68
4
3
70.0
0.35
300000.0
00000670
69
5
3
64.2
0.35
300000.0
00000680
70
6
3
76.4
0.35
300000.0
00000690
71
7
3
69.9
0.35
100000.0
00000700
72
8
3
69.1
0.35
100000.0
00000710
73
9
3
64.0
0.35
300000.0
00000720
74
10
3
82.0
0.35
300000.0
00000730
75
11
3
28.
0.35
100000.
00000740
76
12
3
14.
0.35
100000.
00000750
77
13
3
11.
0.35
100000.
00000760
78
14
3
7.
0.35
100000.
00000770
79
15
3
3.
0.35
100000.
00000780
80
16
3
29.8
0.35
272000.
00000790
81
17
3
28.
0.35
272000.
00000800
82
18
3
19.65
0.30
100000.
00000810
63
19
3
16.45
0.30
100000.
00000820
84
1.3
1.5
1.6
10. 70000.
7000.
0 .
00000830
85
1.3
1.5
1.6
10. 140000.
14000.
0.00
00000840
86
1.0
6.0
10.
21. 115000.
90000.
0.00
00000850
87
1.0
1.1
2.0
3.
0 340000.
200000.
0.00
00000860
88
1.0
1.1
2.0
3.
0 340000.
200000.
0.00
00000870
89
1.0
1.1
2.0
3.
0 340000.
200000.
0.00
00000880
90
1 .
6.
10.
21
60000.
48000.
0.00
00000890
91
1 .
6.
10.
21. 68000.
48000.
0.00
00000900
92
1 .
1.1
2.0
3.
300000.
30000.
0.00
00000910
93
1 .
1.1
2.0
3.
300000.
30000.
0.00
00000920
94
1 .
1.5
2.
7.
330000.
330000.
00000930
95
1 .
1.5
2.
7.
330000.
330000.
0.00
00000940
96
1 .
1.5
2.
7.
330000.
330000.
00000950
97
1 .
1.5
2 .
7.
330000.
330000.
00000960
98
1 .
1.5
2 .
7.
330000.
330000.
0.00
00000970
99
1 .
8.
9.
16. 10000.
30000.
00000980
100
1 .
8.
9.
16. 10000.
30000.
00000990
101
2.
2.001 8.05
8.
051 62200.
294700.
.02
00001000
FIGURE 2-
8. ECHO
OF THE INPUT DATA
(SHEET 2
OF 9)
t
ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT
12345678
CARD NO. 12345678901234567890123456789012345678901234567890123456789012345678901234567890
102
2
2
.001 5.75 5
.751
16150.
51500.
.02
00001010
103
INTERNAL
BEAM DATA : N8 CARDS
00001020
104
1
2
32.00 0.00
6.20E+04
3.70E+04
0.00
96.0
96.0
500001030
105
2
3
36.00 0.00
7.70E+04
4.30E+04
0.00
99.0
99.0
500001040
106
3
4
36.00 0.00
8.60E+04
4.30E+04
0.00
56.0
56.0
500001050
107
4
5
59.00 0.00
13.60E+04
4.65E+04
0.00
56.0
56.0
500001060
108
5
6
59.00 0.00
11.60E+04
4.65E+04
0.00
66.0
66.0
500001070
109
6
7
57.00 0.00
13.60E+04
5.70E+04
0.00
88.0
88.0
500001080
110
7
8
48.00 0.00
11.40E+04
6.20E+04
0.00
91.0
91.0
500001090
111
8
9
37.00 0.00
5.60E+04
3.35E+04
0.00
51.0
51.0
5000011C0
112
9
10
25.00 0.00
9.00E+04
9.50E+03
0.00
50.0
50.0
500001110
113
5
1
11
54.00 4.800E+04
1.59E + 04
1.14E+05
0.00
1.0
1.0
500001120
114
1
11
12
63.20 2.600E+04
1.14E+04
1.02E+05
0.00
1.0
1.0
500001130
115
12
13
56.3 1.000E+04
4.70E+03
5.80E+04
0.00
1.0
1.0
500001140
116
13
14
40.7 4.800E+03
2.00E+03
2.10E + 04
0.00
1.0
1.0
500001150
117
14
1
15
20. 2.700E+03
1.20E+03
8.00E+03
0.00
1.0
1.0
500001160
118
1
12
1
16
8.0 2.208E+02
7.32E+02
1.00E+02
0.00
1.0
1.0
400001170
119
1
14
1
17
8.0 2.208E+02
7.32E+02
1.00E+02
0.00
1.0
1.0
400001180
120
2
11
18
0.01 150.0
239.E +00
239.E+00
0.00
1.0
1.0
100001190
121
3
11
18
0.01 150.0
239.£+00
239.E+00
0.00
1.0
1.0
100001200
122
1
2
19
0.01 5.
32.5E+00
32.5E+00
0.00
1.0
1.0
100001210
123
6
12
40.7 4.800E+03
2.00E+03
2.10E+04
0.00
1.0
1.0
500001220
124
9
14
40.7 4.800E+03
2.00E+03
2.10E+04
0.00
1.0
1.0
500001230
125
12
0
40.7 4.800E+03
2.00E+03
2.10E+04
0.00
1.0
1.0
500001240
126
2
20
10. 1.0
1.0
1.0
0.00
1.0
1.0
900001250
127
2
21
10. 1.0
1.0
1.0
0.00
1.0
1.01000001260
128
15
16
20.
0.00
1.0
1.0
500001270
129
2
15
2
16
20.
0.00
1.0
1.0
500001280
130
15
0
20. 2.700E+03
1.20E+03
8.00E+03
0.00
1.0
1.0
500001290
131
2
15
0
20. 2.700E+03
1.20E+03
8.00E+03
0.00
1.0
1.0
500001300
132
BEAM END FIXITY CARDS: NPIN CARDS
00001310
133
1
2
0 0 11
0 .
0 .
0.0088
1.15
00001320
134
2
3
0 0 11
0 .
0 .
1.25
1.25
00001330
135
3
4
0 0 11
0.
0 .
1.1
1.1
00001340
136
4
5
0 0 11
0 .
0.
1.15
1.15
00001350
137
5
6
0 0 11
0 .
0 .
1.25
1.25
00001360
138
6
7
0 0 11
0 .
0 .
1.25
1.25
00001370
139
7
8
0 0 11
0 .
0 .
1.15
1.15
00001380
140
8
9
0 0 11
0 .
0 .
1.0
1.0
00001390
141
6
12
0 0 11
0 .
0 .
0 .
0 .
00001400
142
9
14
0 10 1
0 .
0 .
0 .
0 .
00001410
143
UNSYM
BEAM
DATA: NUB CARDS
00001420
144
15
16
1 .08
00001430
145
2
15
2
16
-1 .08
00001440
146
15
0
1 .3
00001450
147
2
15
0
-1 .3
00001460
148
OLEO BEAM CARDS:
00001470
149
1 .
1
00001480
ISO
2
11
18
20.982 10855.
739.
1.4
20.
00001490
151
1
2
19
16.965 3420.
289.
1.4
16.
00001500
152
2
11
18
4.0 0.
. 1E06
. 1E06
5000.
1
00001510
FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 3 OF 9)
ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT
12545678
CARD NO.
12345678901234567890123456789012345678901234567890123456789012345678901234567890
153
1 2 19
3.4
0. 50.E03
50.E03
500.
00001520
154
45
00001530
155
-0.2
352.7
00001540
156
-0.0964
352.7
00001550
157
-0.0376
10.24
00001560
158
0.124
23.62
00001570
159
0.341
22.21
00001580
160
0.607
17.90
00001590
161
0.953
8.24
00001600
162
1.46
3.38
00001610
163
2.17
2.13
00001620
164
3.07
1.25
00001630
165
4.13
1.56
00001640
166
5.21
1.79
00001650
167
6.20
2.46
00001660
168
7.05
3.58
00001670
169
7.72
6.26
00001680
170
8.20
13.47
00001690
171
8.53
31.50
00001700
172
8.74
62.40
00001710
173
8.91
64.06
00001720
174
9.12
34.22
00001730
i7r
9.41
16.03
00001740
176
9.83
8.42
00001750
177
10.39
5.24
00001760
178
11.08
3.68
00001770
179
11.87
2.93
00001780
180
12.71
2.77
00001790
181
13.54
3.38
00001800
182
14.27
4.93
00001810
183
14.83
9.33
00001820
184
15.21
25.53
00001830
185
15.40
153.79
00001840
186
15.4518
1000.
00001850
187
15.4539
1000.
00001860
188
15.4581
1000.
00001870
189
15.494
403.85
00001880
190
15.61
67.70
00001890
191
15.84
22.15
00001900
192
16.18
9.93
00001910
193
16.65
5.31
00001920
194
17.21
3.02
00001930
195
17.82
2.07
00001940
196
18.39
0.92
00001950
197
18.82
0 .
00001960
198
18.97
10.
00001970
199
22 .
10.
00001980
200
DAMPC CARD
00001990
201
.05
00002000
202
NONLINEAR BEAM OATA:
NLB + CARDS
00002010
203
3 11 18
1 7
2.0
00002020
FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 4 OF 9)
ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT
12545678
CARD NO. 123456 78 90123456 7890123>+5o 7890123456 7890123456 7890123456789012345678901234567890
204
DRI
CARD:
00002030
205
2
21
00002040
206
POS
•FORCE CUTOFF:NFBM CARDS
00002050
207
2
11
18 428000
1
,.E10
1.0E10
1.E10 1.E10
1.E10
00002060
208
1
2
19 130000
1
..E10
78000
1.E10 1.E10
1.E10
00002070
209
NEG
.FORCE CUTOFF:NFBMN CARDS
00002080
210
2
11
18 428000
1
. E10
1.0E10
1.E10 1.E10
1.E10
00002090
211
1
2
19 130000
1
. E10
78000
1.E10 1.E10
1.E10
00002100
212
LOAD INTERACTION SIGN CONVENTIONS!NSCV CARDS):
00002110
213
1
2-3 4
5
6
00002120
214
LOAD INTERACTION DATA!NLIC+ CARDS):
00002130
215
1
3 5 1
0
300.
1000.
00002140
216
166000.
20.8E+06 -166000.
-20.8E+06
00002150
217
1
1 199000.
45.6
E+06
00002160
218
2
3 5 1
0
300.
1000.
00002170
219
166000.
20.8E+06 -166000.
-20.8E+06
00002180
220
1
1 199000.
45.6
E+06
00002190
221
2
3 5 2
0
400.
1000.
00002200
222
210000.
23.8E+06 -210000.
-23.8E+06
00002210
223
1
1 185000.
60.8
E+06
00002220
224
1
1 674300.
25.4
E+06
00002230
225
3
3 5 2
0
480.
1000.
00002240
226
00002250
227
1
1 195000.
L30.3
E+06
00002260
228
1
1 545300.
28.9
E+06
00002270
229
3
3 5 2
0
540.
1000.
00002280
230
00002290
231
I
1 199000. 137.3
E+06
00002300
232
1
11365380.
35.3
E+06
00002310
233
3
3 5 2
0
620.
1000.
00002320
234
274000.
45.0E+06 -274000.
-45.0E+06
00002330
235
1
1 286000.
L85.6
E+06
00002340
236
1
1 384400.
79.7
E+06
00002350
237
4
3 5 2
0
620.
1000.
00002360
238
274000.
45.0E+06 -274000.
-45.0E+06
00002370
239
1
1 286000.
185.6
E+06
00002380
240
1
1 384400.
79.7
E+06
00002390
241
5
3 5 2
1
960.
1000.
00002400
242
288000.
-288000.
00002410
243
1
0-5.2317E06
71.5E+06
00002420
244
1
1 474500.
152.8E+06
00002430
245
6
3 5 2
1
960.
1000.
00002440
246
288000.
-288000.
00002450
247
1
0-5.2317E06
71.5E+06
00002460
248
1
1 474500.
152.8E+06
00002470
249
6
3 5 2
1
1000.
1000.
00002480
250
254000.
74.0E+06 -254000.
-74.0E+06
00002490
251
1
1 301000.
228.7E+06
00002500
252
1
11.3581E 06
84.2E+06
00002510
253
7
3 5 3
1
1080.
1000.
00002520
254
00002530
FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 5 OF 9)
2-101
ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT
1
2 3 4
5
6 7
8
CARD NO.
12545678901254567890125456789012545678901254567890125456789012545678901254567890
255
0
1 210000.
-555.88E06
00002540
256
1
1 527700.
107.75E06
00002550
257
1
1 1.5758E06 64.0 E06
00002560
258
7
5 5
3 1 1160.
1000.
00002570
259
00002580
260
0
1 259000.
-265.64E06
00002590
261
1
1 572214.
83.5E 06
00002600
262
1
1 804840.
49.9E 06
00002610
265
8
5 5
3 1 1240.
1000.
00002620
264
35.0
E
06
-35.0E06
00002630
265
0
1 198000.
-217.32E06
00002640
266
1
1 409460.
50.5E 06
00002650
267
1
1 965217.
37.OE 06
00002660
268
8
5 5
2 1 1320.
1000.
00002670
269
27.2
E
06
-27.2E06
00002680
270
0
1 148000.
-91.818E06
00002690
271
1
1 662500.
31.8E 06
00002700
272
9
5 5
3 1 1400.
1000.
00002710
275
00002720
274
0
1 125500.
-S4.998E06
00002730
275
1
1 550720.
24.2E 06
00002740
276
1
1 914520.
18.9E 06
00002750
277
NONZERO
ANGULAR MOMENTA (NHI CARDS):
00002760
278
16
.1 E06
00002770
279
17
.1 E06
00002780
280
NONZERO
MASS ORIENTATION ANGLES (NPH CARDS):
00002790
281
16
-.0872665 .0549066 .05236
00002800
282
17
-.0872665 .0349066 .05236
00002810
285
FORCE TIME HISTORY
OATA: NACC + CARDS
00002820
284
3 2
1
00002850
285
2
3 2
1
00002840
286
5
3 2
1
00002850
287
4
3 2
1
00002860
288
5
3 2
1
00002870
289
6
3 2
1
00002880
290
7
3 2
1
00002890
291
8
3 2
1
00002900
292
9
3 2
1
00002910
295
10
5 2
1
00002920
294
11
3 2
1
00002950
295
12
3 2
1
00002940
296
15
3 2
1
00002950
297
14
3 2
1
00002960
298
15
3 2
1
00002970
299
16
3 2
1
00002980
500
17
3 2
1
00002990
501
18
3 2
1
00003000
502
19
3 2
1
00003010
505
0 .
-95
00005020
504
1 .
-95.
00003030
505
0 .
-624
.5
00003040
FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 6 OF 9)
2-102
ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT
12345678
CARD NO. 12345678901234567890123456789012345678901234567890123456789012345678901234567890
306
1 .
-624.5
00003050
307
0 .
-1861.
00003060
308
1 .
-1861.
00003070
309
0 .
-4715.
00003080
310
1 .
-4715.
00003090
311
0 .
-7901.
00003100
312
1 .
-7901.
00003110
313
0 .
-1991.
00003120
314
1 .
-1991.
00003130
315
0 .
-2316.
00003140
316
1 .
-2316.
00003150
317
0 .
-785.4
00003160
318
1 .
-785.4
00003170
319
0 .
-450.
00003180
320
1 .
-450.0
00003190
321
0 .
17445.6
00003200
322
1 .
17445.6
00003210
323
0 .
-15419.2
00003220
324
1 .
-15419.2
00003230
325
0 .
-28188.2
00003240
326
1 .
-28188.2
00003250
327
0 .
-21394.1
00003260
328
1 .
-21394.1
00003270
329
0 .
-17818.8
00003280
330
1 .
-17818.8
00003290
331
0 .
-6240.9
00003300
332
1 .
-6240.9
00003310
333
0 .
-270.8
00003320
334
1 .
-270.8
00003330
335
0 .
-258.3
00003340
336
1 .
-258.3
00003350
337
0 .
0 .
00003360
338
1 .
0 .
00003370
339
0 .
0 .
00003380
390
1 .
0 .
00003390
341
BEAM LOAD
i PLOT PARAMETERS:
NBFP CARDS
00003400
342
3
111
0
00003410
343
7
111
1
00003420
344
11
111
0
00003430
345
11
111
1
00003440
346
12
111
1
00003450
347
14
111
0
00003460
348
END
00003470
349
$TITLE
=LT.SAMPLE.DATA
1
350
$SUBTITLE
=21 MASS/28
BEAM TEST CASE ONLY-NOT VALID AIRPLANE
MODEL 2
351
SLABEl
=INITIAL CONDITION
STATIC SOLUTION
3
352
$DISPLACEMENTS
4
353
SREAL OUTPUT
5
354
$SUBCASE
ID =
1
6
355
100 G
-3.089143E-02 0.0
-9.927106E-01 7
356
-CONT-
0.0
-2.240265E-03
0.0 8
FIGURE 2-8. ECHO OF THE INPUT DATA (SHEET 7 OF 9)
2-103
ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT
1
2 3
4 5
6 7
8
CARD NO.
12345678901234567890123456789012345678901234567890123456789012345678901234567890
357
200
G
-2.848941E-02
0.0
-7.668377E-01
9
358
-CONT-
0.0
-2.228401E-03
0.0
10
359
201
G
1.302763E-01
0.0
-8.132805E-01
11
360
-CONT-
0.0
-2.228401E-03
0.0
12
361
300
G
-7.956207E-03
0.0
-4.223564E-01
13
362
-CONT-
0.0
-2.016658E-03
0.0
14
363
400
G
-3.881566E-03
0.0
-1.467094E-01
15
364
-CONT-
0.0
-1.310210E-03
0.0
16
365
500
G
0.0
0.0
0.0
17
366
-CONT-
0.0
0.0
0.0
18
367
501
G
0.0
0.0
0.0
19
368
-CONT-
0.0
0.0
0.0
20
369
600
G
3.900044E-04
0.0
-1.395651E-01
21
370
-CONT-
0.0
1.905726E-03
0.0
22
371
700
G
-1.741045E-02
0.0
-3.224223E-01
23
372
-CONT-
0.0
2.646158E-03
0.0
24
373
800
G
1.960037E-02
0.0
-8.574680E-01
25
374
-CONT-
0.0
3.925510E-03
0.0
26
375
900
G
1.623369E-01
0.0
-1.646019E+00
27
376
-CONT-
0.0
5.791210E-03
0.0
28
377
1000
G
4.121330E-01
0.0
-2.947555E+00
29
378
-CONT-
0.0
6.380443E-03
0.0
30
379
1100
G
-2.376708E-02
-6.204829E-02
4.549811E-01
31
380
-CONT-
-6.692741E-03
-2.201437E-03
-5.605556E-04
32
381
1101
G
-1.923054E-02
-6.048076E-02
3.946611E-01
33
382
-CONT-
-6.692741E-03
-2.201437E-03
-5.605556E-04
34
383
1102
G
-1.296112E-02
-1.657883E-01
7.333756E-01
35
384
-CONT-
-6.692741E-03
-2.201437E-03
-5.605556E-04
36
385
1103
G
-1.296112E-02
-1.657883E-01
7.333756E-01
37
386
-CONT-
-6.692741E-03
-2.201437E-03
-5.605556E *04
38
387
1199
G
-9.159952E-02
0.0
5.671605E-01
39
388
-CONT-
0.;!
-6.671570E-03
0.0
40
389
1200
G
-2. lo-iiOSE-Ol
4.138300E-02
2.341778E+00
41
390
-CONT-
-1.306025E-02
-6.671570E-03
-9.325834E-04
42
391
1201
G
-2.439489E-01
3.842940E-02
2.721848E+00
43
392
-CONT-
-1.306025E-02
-6.671570E-03
-9.325834E-04
44
393
1300
G
-6.008096E-01
3.054580E-01
6.170235E+00
45
394
-CONT-
-2.241265E-02
-1.032134E-02
-1.681539E-03
46
395
1400
G
-1.368592E+00
6.399863E-01
1.084585E*01
47
396
-CONT-
-2.562700E-02
-7.394243E-03
-5.296096E-03
48
397
1401
G
-1.022668E+00
2.900483E-01
9.660551E +00
49
398
-CONT-
-2.562700E-02
-7.394243E-03
-5.296096E-03
50
399
1498
G
-6.724822E-01
0.0
8.267696E+00
51
400
-CONT-
0.0
-9.067804E-03
0.0
52
401
1499
G
-6.724822E-01
0.0
8.267696E+00
53
402
-CONT-
0.0
-9.067804E-03
0.0
54
403
1500
G
-2.495207E+00
4.342729E-01
1.459589E+01
55
404
-CONT-
-1.709940E-02
-9.067804E-03
-4.925180E-03
56
405
1501
G
-2.554651E+00
3.717276E-01
1.491743E+01
57
406
-CONT-
-1.709940E-02
-9.067804E-03
-4.925180E-03
58
407
1502
G
-2.495207E+00
4.342729E-01
1.459589E+01
59
FIGURE
2-8.
ECHO OF THE INPUT DATA (SHEET
8 OF 9)
2-104
ECHO OF THE INPUT DATA IN CARD IMAGE FORMAT
1
2 3
4 5
6 7
8
CARO NO.
12345678901234567890123456789012345678901234567890123456789012345678901234567890
408
-CONT-
-1.709940E-02
-9.067804E-03
-4.925180E-03
60
409
1600
G
7.919735E-02
-2.893812E-01
1.937819E+00
61
410
-CONT-
-1.295901E-02
-9.379078E-03
-1.573280E-03
62
411
1601
G
-2.385548E-01
1.247810E-01
2.086104E+00
63
412
-CONT-
-1.295901E-02
-9.379078E-03
-1.573280E-03
64
413
1602
G
7.919735E-02
-2.893812E-01
1.937819E+00
65
414
-CONT-
-1.295901E-02
-9.379078E-03
-1.573280E-03
66
415
1700
G
-6.952552E-01
-3.464461E-02
8.834676E+00
67
416
-CONT-
-2.537085E-02
-9.936552E-03
-5.952675E-03
68
417
1701
G
-1.0141526+00
6.997874E-01
8.967885E+00
69
418
-CONT-
-2.537085E-02
-9.936552E-03
-5.952675E-03
70
419
1800
G
1.832870E-01
-7.628592E-01
6.225001E-01
71
420
-CONT-
-6.689243E-03
-2.204068E-03
-5.605288E-04
72
421
1900
G
2.696309E-01
0.0
-8.798568E-01
73
422
-CONT-
0.0
-2.223161E-03
0.0
74
423
2000
G
-9.809875E-02
0.0
-8.621072E-01
75
424
-CONT-
0.0
-4.137885E-03
0.0
76
425
2100
G
-7.305723E-02
0.0
-7.669372E-01
77
426
-CONT-
0.0
-2.228401E-03
0.0
78
FIGURE
ho
1
00
ECHO OF THE INPUT DATA (SHEET
9 OF 9)
2-105
FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 1 OF 16)
VEHICLE INITIAL CONDITIONS
u4 U
SK-
22; 52
— < <
<n -
o - M
Q K l/l
O a
►-* M O -
■ 10 ♦
M U1 O
O *H -I
a a
o o
o o
o m
o o-
o o
-j *h a
Ui o
> Ouj
O H H
H < >
>- z
< O U.
^ O
t3 !
: «* i/>
U MJ <
u u a
MOO
MOO
i
O O O O O O O
aooooooo
sB-fO'^ooin®
iTIMMO'COCOf'CO
IflffllOOHNON
mm-toi/iMCMin
ONCOO'NNlAO
lOoO'^M'O^o'ino'^oooo
ooooooooooi/tfr-MWtfMiflinooo
— I/I
a -o
< cm
X o
♦- o
a o o
H to O
O W -H
«y -e n
eo •*> o
i
l CM
o o a o
M5 00 O O
N Ul H H
NHlflN
1/1 sO l/l M
CM -I -t C3 O CM O'
NOMOff'^O'N
a a
k» c-»
O’ m
>3- O’
a o
o O’
fM M
I H M V
> M c
i so o r
a o
M O’
O’ O
CM CO
a a
eo <m
rM Lf|
O 1/1
O' sO
M
M O'
O O <
a a e
>0 />
o <H
o m
O CM
CM CM
CO O
CO o
I s - <0
M CM
ICMMl/l'CCM^OMKO'O'O'CMCMOCM
ooaaoogo
HUIUIOOHUIM
OCM-OGOOCOO
SOCM^O'O'OCM
CMsOMCMO'l/lN-O'
O'OO'OOO'MCO
lOOOOOOOOOM>MCMl/ir^fMl/l»0OOO
)OOOOOOOOM>«H<MCMMr-ICMM)OO0
1 O O <
I
i o a o
i t* o o
I S -Cfr
< M U> O
■«MN
J M3 CM M3
' M> CM O
OOOOOOOOOOOO
MMOO'inMeomiflO'O'o
mN(0HI/|HMfl(0#HN
ONOOIflCONNlflinWO
mooM>r^<7'MOOO'r^o
C'CMNO-OOO’t^COinMKV
IMCJlfl-CC'lflMHOtfC'CO
o o
M CO
a M3
O Ifl
i/i to
CM O'
cm rs.
a o
CM CM
r- s.
O M
<H O'
CM M>
M3 so
o o o o o o
M <0 -O (U H K1
H Ul Ifl O ui O
NO N s CO m N
M) M M HOfI
O’ M M CM M) O'
• O' M K1 C*. M3 O
O O
O' O’
co o
m -<
O' M3
in co
O’ o
co
r-» n.
m m>
O' O'
OMr>.r*.cMO'M^<M^*<o
O'K^HOHtflC0HN3N>eHHH(0'0(0«0N
oooooooooo
I I
ooaoaaoo
O'OOMO'CMrMCM
<MOCO'OCMi-«nOO'
coMineo^eoom
OOOO'CMMOCO
OMI/10'00'M>CM
>OOOOOOOOOCM*HOMMCOO’MDOO©
O D O Q o o
SO M Kl O M M>
k © co O’ co
©CO © O' O’ CM
©NNNON
o m i/i O’ o r*
IOC49)
) O'
o a
O' o
CM f-t
f* ©
CM fs.
O’ O’
M CM
a a
CM O’
*H fs.
© ©
OCHHK1NK14HN4
00000000004tflfl44NMNOOO
CM CM M K1
O © O O
I O O O
I H N 4
’ O’ o o>
a o a a
o in c- o-
O’ o K1 -o
o o © m
O >—< O M
O O 'C CM
a ©
© ©
M O
o o
M -0
© O'
a a
cm r*»
O' o
in cm
© m
>0 O'
OtOO'(OOff'SC'4HI*lHOIOJ
© o
© CM
m in
CM l/|
O' CM
-« m
o- o
o o
© o
Cm ©
© cn
CM M3
N> O
© M>
I
9 °
m tn
Cm CM
©
o m
o o
© Kl
Z
M
o
o a
O’ CM
m <-«
Ki no
cm o
1 O CM
© © o o © a a c
ci O' o h n to in c
HI04IAO4XU
H444NI0N'
■& o cm O’ m m o s
O' M CM l/l O' (0 H i
cm o o m o m o c
IHHHCJHCMtMNSH
I N MO O
|HHH4NCM4HNN4HN^\
IHHCJW1HHHNHNH
Hl/lHHrtlM3l/ll/144N
2-107
“AV’rfA'V A*.
FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 2 OF 16)
FREE FRICTION 801 TONING PLOWING GROUND
.PRING LENG1H COEf FICIENT SPRING FORCE FLEXIBILITY
.OOOOOOOOOOOOOOOOOOO
0000000000000000000
00000000000000000000
OOOOOOOOOOOOOOOOOOO
loaoooooooaooooaooo
1000000000000000000
>000000000000000000
>000000000000000000
>oooooooooooooo<\»moo
oooooooooooooor^i^oo
>000000000000000000
.• I I I I I f I
looaooooooooooooooo
OOOOOOOOOOOOOOOOOOO
>0 OOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOO
•OOOOOOOOOOOOOOOOOO
MfW)iru>uuoiAioxMfli/iiouun^u>oo
iMfFIWNUOMWKlWRlKlMWMMMrOM
ooooooooooooooooao
OOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOO
oocooooooooooooomw
^r-OEJxJO ^HOOOOOOOCOO'^.J
MOOOOOOOOOOOOOOOOOOO
HHoIMHHHHHH
a. k\ o
M ^ fsj
«tOOOOOOOOOOOOOOOOOLn®
O.
UOOOOOOQOOOOOOOOOOMN
a 00
• o o
y- 00
M OO
O' 00
UOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOCSJN
loooooaoooaooooooooo
•OOOOOOOOOOOOOOOOOOO
• OOOOOOOOOOOOOOOOOOO
lOOOOOOOOOOOOOOOOOf^O
.ooooooooooooooooo^m
lO-JOOOOtOfflOQKlMiflN'rtOOff'H
>-<OOOOOOOOOOOOOOOOOOQ
— OOOOOOOOOOOOOOOOOOO
MOOOOOOOOOOOOOOOOOOO
0000000000000000000 m
aoo»flooooooooooooooMM
WO^H^tf^oBOOKlMIOMrtOON.O
>0000000000000000
>0000000000000000
>0000000000000000
>oooooooooooooomm
>oooooooooooooomm
<oaoMMOoooooo-<>vCor'»
jroN>N>Nfg>0K>i^rs!r^r^rv l 4'-«c0tn
rOOODOOOOOOOOOOOOOOO
MOOOOOOOOOOOOOOOOOOO
MOOOOOOOOOOOOOOOOOOO
-OOOOOOOOOOOOOOOOOOO
toooooooooooooooooomifl
</)«OsDOOoooooooooooooorv.
MHHNNNHHNNNNNNNff'ff'OW
MOOOOOOOOOOOOOOOOOOO
MOOOOOOOOOOOOOOOOOOO
MOOOOOOOOOOOOOOOOOOO
— OOOOOOOOOOOOOOOOOMM
<0000000000000000000
vmiiflOHHHooHHiflinifliflifloooo
OOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOO
^OOOOOOOOOOOOOOOOOOO
MOOOOOOOOOOOOOOOOOOO
MOOOOOOOOOOOOOOOOOOO
— OOOOOOOOOOOOOOOOOOO
MOOOOOOOOOOOOOOOOOOO
COfOKlOOOOoOOOOOOOOOOOO
MOOOOOOOOOOOOOOOOOOO
000000
000000
in o o o o o
r- o >0 <m r*. r*.
000000
000000
000000
N O K> H
000000
O O O O O o
000000
N O s ^ M H
O O o o o o
000000
000000
o o m o o o
H H N o « (O
000000
000000
000000
O O O 10 O o
O O <0 o o o
109
FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 4 OF 16)
>:firooooo©oooooooooO'HM*-*ooo«H.-,oooo
o o o o
o o o o
o o o o
I Q O O o C
> o o o o <
> O o o O (
» o o o o <
] O Q O O t
\ fO o O rH ,
IOhhh,
) ® vO a (
O O a o
o o o o
0 0 0 3
O 0 x> o
OOOOOOOOOOOoOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOaOOOOoOQOOOOQOOaOOOOOO
CSJOOOOOOOOOOOOOOOOOOOOOOOOOOOO
NOOOOOOOOOOOOOOOOOOOOOOOOOOOO
sOO“ ^-C^CO'HfHOOOOOOOOOOOOOOOOOOOO
o o o o
o o o o
o o a o
NO *0 -O -O
oooooaoooaaoQoooaaooooaoaoao
■-HOOOOOOOOOOOOOOOOOOOOOOOOOOOO
NOOOOOOOOOOOOOOOOOOOOOOOOOOOO
> OC'sO> 0 -I 5 CO^-t'HOOOOOOOOOOOOOOOOOOOO
aooooooooaaoooaaooooaooo n a
xooominooooooooococooooooooo O o
~>OO 0 -t\)MhT^>ini^OOOOOOOOOOOOOOO o o
a'NN«>Oa'N<Mrffl^OfflSNN®lflO«»®OOOONN
O o O
o o o
O 0 3
o o o
0 0 3 0
000000000000000000000000 o o
NOOOOOOOOOOOOOOOOOOOOOOOO oo
NoooininootfiotfCMoooooO'O'tfloooao oo
MI»»K\f<>-0«0^'CJ^tnrHOoO>-'OOOMMCJ«»H>-«000000
tOJNMNNNHHOO(0(0
oaoooaaaaoaoaoaooaaaoooo o o
>000000000000000000000000 oo
>-ooo^)^>Ovrooo^oooMcgo'0'inooooo oo
HMNJMHMH-OOUlHSONWrflMWNOOOOOOONN
^Nfl3HHHHI/l(7'Hrf^NHNNNN»ONNNHHOOHH
CD o o O Q
O o O O o
o o o o
o o o o
o o o o
D O O O
C Q o O
O C O 3
o o o o
ooaaoaoaaoarooooaaaoaooooooo
OOOOOOOOOOOoOOOOOOOOOO-Oa-OOOO
<0000000000 rsjt^f'-OOOOOOr>-f>»f^*AOOOOO
C\j .0 J5C <T- r^tor^irj Tf^-DOOOOOOOOOOOKIOOOO
IH^^^NHNNNN
Zooooooooo^ooo*HpH^«ooooooooofv»oo
ITOOOOOOOOOO>- 1 OOO>-t*HCMP 0 ^HOOOOOOf'JOM
Z T-C ^OO
cd h m ifl lti ifl
FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 5 OF 16)
tooqooooo
-C*HO 4 N < \t CM O'
H ixi a o-kioco^^joo
a H H N M I
I N N a O O
iflh.rs,r-.r-».rvr^*.
oooooooo
“JOOQQOOQQ
lf)0'K^C'J^O'»“tCNiNA
MBOhNCOJ^'J
ta-^ffN^NOffloo
dH^iflas^inMoo
HOOOOOOOOOO
aoooooooooo
HOOOOOOOOOO
0.0000000000
->00000000
NHCJhHNCOHQOO
I i-* r* O O
X o O
< o o
zoo
> 0-0
_) o o
O o o
a o o
x •* vr
a o c
§ o <
o o <
ggi
-><rooooooo
Jioinoifluufluio
MONHHNNHOOO
HOHHHHHHHOO
< o o
•a o o
U. O' (T'
K1 <0
fc g I
Ul o (
X o c
X o c
<SJOOOOOOOOOO
OOOOOOOOOOO
O O o
< -D O
U. ® f J
o <r
aoooooooooo
aoooooooooo
^ ^ ^ ^
*■>
►JOOOOOOOOO-*
HOOOOOOOOOO
20000000000
roooooooooo
*1 T*t\-0*+<D9'*4-9
f ^ i N E «
-- s
o O o
iu a n
_j a (J
0 0-0
zoo
r nh
-> © *■
H H N
T N
oooaoaooaoaooooaaoaoaaaoo
ooooooooooooooooooooooooo
:ooooooooooooooooooooooooo
jrs.N->J-csjrHOOOOOOOOOOf^OO-OCvJMOOOO
NNN'ONO'JOMifl^O'>0(0'OJlfl^ONON^(OM
K» K»
< N N H C
-» <0 a
H H
M ^ CSJ
O O O O O O (
>oaoooooaoaoaooaoooooooooo
^ooooooooooooooooooooooooo
JOOOOOOOOOOOOOOOOOOOOOOOOO
)ooooooooooooooooooooooo*or^
OENNJOlfl^HOHNNOSNl/lS9'Hif®OHrt
y lo rv r-» <
(0 O (0 ^ 9 ^ '
2-111
FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 6 OF 16)
FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 7 OF 16)
f
FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 8 OF 16)
I
c
ooooooooooooooo
ooooooooooooooo
ooooooooooooooo
ooooooooooooooo
ooooooooooooooo
ooooooooooooooo
ooooooooooooooo
ooooooooooooooo
ooooooooooooooo
ooooooooooooooo
ooooooooooooooo
ooooooooooooooo
ooooooooooooooo
ooooooooooooooo
ooooooooooooooo
ooooooooooooooo
OOOOJNN^I^Offl'OJNO
OOOOOOOM^»
O CD
SE
-i z
a. m
UJ X
u <
a <
<
O X
o-cOooo-oo
Ooaoooooaoaoooaaooooaooooaooooooooeiooo
oooooooooooooooooooooooooooooooooooooo
OOOOOOOOOOOOOOOO^OK^^KlOOOrOO'^^^OOO^O-OsOsOO
^^^J^OO^CO'fCOtOlO'Jtf'JOS'OOOff'O'ff-NWNNNlflMML'lM/UAUlN
tfH/llfllfllflUUnLflOU1OOOlflinL/)f0«MWWC0ffl«0NM/l^MKWUfllflfl)^C0O©ff'
tM r
I <M <SJ CM r
i
IrtfrtMWHSHHHS
OQOOOOaOOaOOOOOOOOOOOOQOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOvJ’OOO'T'J’-^'OOOOOO
oooooooooMOooM^KiOK^oooMM^omoooioinuiO'S-ooo.t
<T'C'C'C'CT'O'O''crLn- 1 fifi!-OLnvj'‘3'NjLfiu"iu*iuiu^uiLOLfia''£><J s ^<7'--0'O>O'-o-y>O'^'0N^
W </)
U. M
o <
Ug
o
H
W
u
33
CO
<
H
<
Q
H
o
04
z
Ctg
o
H
n
o
H
OS
0-i
Q
u
H
H
<
O
INNMMP<1^lfl«^NNC01DO'
X >
< ♦
z
a o
o z
a>
I
CM
3
o
2-114
84400 05 7.4/00D 07
i
iNrfl^in-cN»0'OHt>jK>^insOK<o^OHNM^ifl>oK(0(ro
OQaQOaOQQOQOQQQQQQQOOaaOQQQQOOOOQaQDQOOQQOQaOQOaejQOOOQOQQQO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOlflOCOlfllrtlAOOO-^OO^OOOOOOCOOOfsIOOOOOO
o -oo-o r>-^oooocoo<otO<oocoocococo^or^f^r^ooocpf^oco^f^t^ooo'OOOvOoooooofOooK\oooooo
NlOMniniflNNNlflNUlMMWlflNIflWNNfflNCOeOONNNtflNOXINSNOOOWUlff'Unfllfll/IO'O'O'NlflONinininOOO
4 S H H HKNNNHNHHHNHNiH
I I II I I II II II II II II I I II I
LniAin>fiinuuA4vo>Am^ 1 omuimuij)<A^uMniAiAiMniAiniAiAiniAuwiu > iifliAiAifliA
OOOOQQOOQaQQQQOQOOOQQOOQOQQQOQQQOOQQOQOQQQQoaOOOQQOOOQQOClOO
OOOOOOOOOf^OI^OOOr^0f s 'OOOOr-4OOOr-<r-4>-(OO<0OOOOC0<0C0O^<^O^r^^^vJ-srO>«rJO^>^^)fMfMfJ
vJO>JOOO^^>tHlflr*lfllOlflrtUlHU\iniflOlOOOO(0(DOONMOSNNMMMOM«ONNWCOCOOO>tNO^tf^NNN
COCOfflfflCOtOtOfflONNNNf'^Nf'N^^f'OWOOOMKlMiHNlflHPjrJNl/UfllflMNOMSKNOOOff'O'OirOOO'O'O'J
FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 10 OF 16)
00000 20 Z.720Q0 07 1.00000 20 -2.7200D 07 1.48000 05 -9.18180 07
OOOQOOQQQOOQOQa
OCOOOOCOOOCOOOOOOO
o^ooocrooo'oooaoo
COOTCOCOCOCTtMO' ? N N N O' O' O'
KlO'lflKlKlUlN'-'UlfgNNHHH
OQOOQOQOQCaaCiDQO
OOOOOOMNONNMWfJN
UlOlflUUfllflNlfllflNNNlfllfllfl
■D -H O' O' <7-
ooaooooa
•OHI'JOtONOO
Ln<Ol/>r^rH^)l^rg
ONftO'NMHO
a. oooooooooo'oro'ofsie-^o'^ooo
M oooooooQoouifrHifltfiflifltnooo
a o a o oacjaaooQoooQc
r* O >0 »■«
N >f ^ N f^<-»U>{V't'TU1^fJ00O'lfl<
oeo-oo
•J n«^ o^<\jo-cOo^wO-^eajc
NNOWOO''00'SMN^O^O'JWf
Q _ H r* rH
x o a
u/ o o a
I O O o
O O M
O O If)
O O X
• • CL M
o o
o
INK\U1^N^HNO'NN(
OOOO-lOOO
^ MNOO B'O'.f
r^otsjr^o-pj^csj
N'OHMC'HnJO
OOO-OOflJ-JO
ooooooooooso^fMLfir^vj-fg^ooo
OOOOOOOOoO'0-«<M<M*Hf'.s0'0OOO
INMtflfl'OMO^OHNW^Ifl'ONOOO'O*
FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 11 OF 16)
j i iii 111 iii 111 hi m 111 hi in uj m hi in t|i n,i ui Lii hi In hi in m lii in m in ui in in m in HI in m
<OO^>f'6^Hr(OOff'9'r(r<UlWOO'I«J^ytHHKlM«)e0'J'tQOt0«
lfllllNN(OONNO'ff‘9 , ff > WNlCO«'fllfl f 'MAlfllOOHHNNNNNMfl(flOOOO
0'0'<e<0HH^<fNNHMNNNN^<fHHHHNNNMHH-0<0NNNNOOOO
MOOOOOOOOOOOOOOOOOOCaoOOOOOOOOOOOOOOOOOO
0-HO-HO^O^OrHOr-*Or-<0-HOrHC5^0r-(Oi-<0»HO>HO-HO^HO<HO*-«0^
a HHHHHHHHH*>(NNNNNNWNNNMMKIIflWMIflMM
O CO
_ X so
»K N •
X h- *»
FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 12 OF 16)
508J8D 06 0.0 0.0 0.0 -2.175910 08
O O (NJ O M o O O CM O CM O
O O Ifl O M O O O r-i o 90 O
OOOOOO 0 0 0^-0
a
0^000
0-00000 P4QOOOO
► 'T O 70 <
<h (0
*-« O © © O O 0-00000
<M© 0000 «H<-» 00©0
FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 13 OF 16)
241080 07 0.0 0.0 0.0 1.775150 09
r
tv.
O'
r.
O'
©
r-
M>
|M
©
©
x>
o
rl
o
¥-i
o
o
o
o
o
o
©
o
o
o
Q
o
o
o
a
a
Q
O'
tr
©
-o
©
©
r*
r-C
CM
CA
►A
fA
©
<M
O'
a
<r
o
o
o
©
c
o
o
o
o
©
o
o
o
o
o
<M
o
vO
o
o
o
©
O ©
o
© o «o
o
o
o
o
o
©
o
o
o
©
O’
o
o
o
CM
o
o
> o
1
o
o
o
©
o
<M
o
o
o
CM
o
H
1
o
Q
o
^4
o
©
o
o
o
O *H
o
O O r-»
o
1-t
1
o
o
o
©
o
H
o
©
o
©
o
©
1
o
o
o
©
o
©
1
K
O'
O'
•o
o
©
o
©
©
o
o
o
o
o
o
o
o
o
©
©
o
o
©
o
o
a
a
a
a
a
o
r.
©
o
o
©
O'
©
o
c\l
CM
•o
o
O'
to
*A
Q
CM
©
CM
©
M>
o
©
o
♦A
o
s0
H
> o
to
o
tr
o
o
o
CM
o
o
a
o
©
o
o
o
o
o
•o-
a
© ©
© o
o
© © ©
©
o
o
©
©
o
o
o
o
o
o
o
o
CM
o
o
o
1 o
©
o
O
o
o
o
N
o
CM
o
o
o
© o
*
©
o
o
K1
o
* o
O Q
CM
O CM o
o
o
N.
o o
o
o
o
r*
o
o
o
o
o
©
o
©
o
o
o
©
r*
r.
r*.
r.
r.
o
o
o
o
o
o
a
o
o
a
o
o
9
©
O'
<o
o
O'
©
o
H
■£>
M>
1 o
o
o
o
o
o
o
o
rv
o
o
o
o
o
o
o
o
o
o
o
©
Q O
o © o
o-o©
o
o
o
o
o
©
o
o
o
o ©
o
o
• o
o
I’M
o
o
o
o
Q
(A
o
o
o
o
o
CM
o
o
o
o
o
O'
o
o
o © © © o ©
o
o
O
•-«
o
©
o
o
©
H
o a
o
o
o
o
o
o
o
r-
r»
o
©
o
©
©
M>
©
M>
o
o
o
o
o
o
o
o
o
o
o
o
o
s
a
©
g
8
a
a
a
a
CM
s
g
g
0
O’
a
o
r.
CM
©
©
<-c
©
©
r*
©
fA
K
-o
•H
1 o
H
o
<0
o
o
o
>0
©
CM
o
o
o
o
o
©
o
o O rs
o
o
o
o q -> o a o
o o o
o
©
o
o © O'
o
o
CM
o
o
o
• o
o
o
o
o
o
CM
o
<M
o
o
o
O'
o ©
o
O © ©
o
►A
o
o ©
CM O <M O
©
O CM
o
CM O
o o
CM
o
r- o
o
o
•H
o © ©
o
o
~o
o
to
o
M>
o
s
•c
o
s
©
o
tv,
©
3
r.
o
$
©
o
s
©
©
©
o
©
o
©
o
o
©
a
0
a
9
a
o
a
o
©
CM
O'
CM
©
©
IA
©
cm
—1
l/l
r-
r.
O'
r-»
O'
©
fM
©
« D
O'
©
r-*
i ©
o
o
o
H
o
©
o
o
o
o
o
rt
o
o
o
o
o
tr
o
o
o
'O
o *
o
0 O ©
o
©
O
o
o
©
o ©
o
o o
©
©
fM
o
o
o
o
CM
■ .0
o
o
o
O
o
CM
o
©
o
CM
1
o
H
o
o
o
o
©
o
o
o
►A
O
o
O © M
o
CM
o
©
o
©
1
©
CM
o
o
o
r-4
1
o
*H
o
o
o ©
1
o
H
«o
•o
©
♦A
©
o
o
o
o
o
o
©
o
o
o
«-t
rM
r~l
o
o
o
o
tr
•H
tr
©
9
CM
©
©
©
to
o
o
o
CM
M
©
'O
M>
o
•C
O'
~o
o
o
>0
sO
o
o
o
o
-0
o
o
©
o
©
o
o
©
o
o
©
o
o
o
o
o
o
©
o
CM
©
©
-0
■ o
o
o
o
o
©
o
o
o
o
o
■—c
©
o
o
Q
o
o
rH
CM
o
©
o
o
©
H
>H O O
o o ©
©
o
o
o
o
o
H
ft
o
o
©
o
o
H
►A
o
o
o
o
o
©
©
o
2-119
■jc-j-y,; i
ft ^nIB m m t k tmJkMjL
■/ ♦ ’ • • • ' * ' «<* . • . •*
... V-’-c
FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 14 OF 16)
90 Q9WtVS 0 0 SO 0«?8SI Z
ooowoo oooooo
oooooo
oooooo
0000 *-<J- 00000 <x-« 00000»-<-£»00000
^OOOOOfsJ--HOOOOO<NJ-0OOOOO<Ht
FIGURE 2-9. FORMATTED PRINTOUT OF INPUT DATA (SHEET 15 OF 16)
O' «■©
O r-* O O O *H
o a
o co
& N0
O r-t
0 s <o
O -t O O O H
OCSiOOOCSJ o N O o O M
O'
K
O'
K
o
O
o
©
o
©
©
Q
o
M
o
eg
vO
40
s0
40
40
eg
to
eg
CO
>0
CO
O'
OONONO
© © N> O Kt ©
o
K>
O O O O' O O
O O o vO o o
© a
o o
O NO
O' Lfl
M <0
O O O CvJ O
O O CJ O ©
OOMOMO
©
1
o
ro
O O O O' o o
O O © 'O o o
OO^OMO
0
4
0
3
0
0
0
4
OMO
csi
40
N
40
o
O
©
©
o
o
©
Q
O’
o
O'
O
Kt
O'
K\
O'
o-
o
O'
o
40
O'
40
O'
OMOOON
O O' O O O H
ONOOON
© O O ©
in m
o o
O t~i <SJ iH
LO 40
KtOOOOO Kt O O O O O
©.O.
*H © O O O O iHOO©0©
2-121
Nonzero mass orientation Euler angles (optional) (When a static
deflection data set XYZ. NASOl'T. DATA is read in, all masses will he
rotated and a complete printout of this section of data will occur.)
• Acceleration input table data (optional)
matrices for all NB internal beams
The nonlinear beam data section prints out all the KR tables, whether
these are user-input or standard tables coded into KRASH85. Similarly, the
b x b linear stiffness matrix K.. is printed for all NB internal beam ele-
r 1 l '-u
ments, whether K.. is directly input by the user or internally calculated
[ ijJ
in KRASH. I he printed matrix corresponds to the lower right-hand quandrant
of a full 12 by 12 beam stiffness matrix (figure 1-19, Vol. 1).
Certain items in this formatted printout of the input data provide addi¬
tional information not directly input by the user. These include the follow¬
ing:
• External spring data - The actual damping constant used in the KRAS1I85
calculations of spring damping force is shown (CDAMP(IKM)).
• Internal beam data - Beam lengths are shown (XLB). The item called
VBM is a flag denoting which, if any, of the beams the program treats
as vertical beams. VBM = 1 corresponds to a vertical beam, and
VBM = 0 corresponds to a normal beam. The interpretation of the beam
orientation Euler angles, part of the time-history beam deflection
output, depends upon whether a normal or vertical beam is noted.
• Plastic hinge and end-fixity data - i,,e actual plastic hinge moments,
calculated within the program, are output. (PLM35,...,PLM25.T)
• Mass data - The coordinates for the mass and node points are not equal
to those input by the user in XYZ.DATA. The input coordinates have
been modified by the initial mass and node point deflections, also
shown in the formatted output of the input data. All calculations in
KRASH85 use the modified coordinate data.
2.1.1.3 Miscellaneous Calculated Data
The miscellaneous calculated data are illustrated in figure 2-10, and is
described in the following subsections.
2-122
2. i. 1.3.1 Model Parameters. - The overall vehicle weight, c.g. position, and
inertias are shown. These are used to see how well the anlytical model
matches the actual vehicle being analyzed. This output is always for a com¬
plete airplane, even if only a half-airplane model is input (RUMM01) = 1.0).
i’he initial position of the vehicle c.g., relative to the ground, is also
shown.
2.3.1.3.2 Beam Loads and Deflections Corresponding to Yielding. - This output
is generated only if NIC on card 50 (figure 2-3) is input nonzero. The beam
loads and deflections corresponding to yielding are used as guidelines for
establishing nonlinear deflection points for internal beam KR curves. The
loads are calculated using the stress and buckling equations discussed in
Volume I, Section 1.3.17, along with the appropriate yield stress for the
beam material given in table 2-3 of this report.
The loads corresponding to yield stress are uncoupled loads (e.g., the
shear forces are those corresonding to yielding without any bending moment
applied.) Similarly, beam deflections are those resulting from the corres¬
ponding load only without the coupled load being applied. In actual loading
situations, so~e degree of coupling is always present, so the deflections
corresponding to yield provide only a rough indication of appropriate values
to use for setting up KR curves. Furthermore, no attempt has been made to
include in the analysis the effects of stress concentrations, geometric
shape factors, and end attachment details.
2. 3.1.3.3 Overall Vehicle Forces/Accelerations at Time Zero, . - This block of
output data is printed twice. The first time shows the six net loads (pounds
and inch-pounds) at the airplane c.g., and the resulting six rigid body accel¬
erations. These c.g. accelerations are then used to calculate ttie rigid body
acceleration at each mass point in the model. These mass point accelerations
yield inertia relief loads at each mass point. If these inertia relief loads
are included in the total airplane force/moment balance, the net c.g. loads
and accelerations should be zero. The second printout shows that the c.g.
loads/accelerations, including inertia relief, are indeed very small (less
than E-16 for all accelerations). The above calculations are performed in
2-123
subroutine NETKOR, the purpose of which is to calculate the net forces acting
on each mass. These forces are used in the NASTRAN static load solution.
Inertia relief loads are included to guarantee that a balanced set of applied
loads is input to the NASTRAN model.
2 . i . 1 . i . . Individual 1 fees Ac» e 1 o rat i uns At iii.ie Eero . - 1' i guru 2- 1 0
a I - ■ avows tiii 1:0 : maids and aece 1 erat ions lor each mass in the model.
' he sp, i : i, d it a "it pm or ,.i, h -:,es i • as 1 >1 lews:
i ::: • 1 : • i i it I ad-., . . c . axes
1 i : 1 t <. i a.i ! I, ads, > . c. . axes . ! in si- an. tin- loads due to input
t i-vt hi st or ies ot external loads at spec i I iid masses, per the
Sno-seri s cards. This is the r.ethod used t.. input aero-
d’.namii loads into the model lor the sample case.
;. •: Aerodynamic lift, c.g. axes. These data reflects any aerodynamic
lilt calculated by means of inputting It on the 1100-series
cards. This option is not used in the sample case. The aero¬
dynamic loads calculated using the 1100-series aero data are
not included „ne load calculations in NEITOK. 1 here)ore,
these loads will not get into the NAS IRAN model to determine
tin’ proper balanced initial conditions.
• ir.i •: Inertia loads, c.g. axes. The inertia loads are calculated in
NT!TOR, as described in Section 2. 1.1.2 above, to achieve a
balanced set ot loads for input to NASTRAN.
1 i -■ •: Net loads, . .g. axes. I hose loads are the sum of all the above
1 i. i -. in Hi t 1 ads arc t ;.e input to the NASTRAN static load
bit i ",i.
I im h : \ c i erat i ns, mass axes. 1 hose .rre the rigid body airplane
m cvlciMl ions at time zero at each mass point. As explained in
Section 2 . 1. 1 . ■*, these accelerations are ea I culated from the
airplane c.g. acceleration, which in turn is calculated from
all the loads except inertia relief loads. The mass point
acce!erat ions in line A times the mass point inertia matrix
violds the inertia reliel loads. Those acce1erations are output
in mass axes to facilitate comparisons with KRASH85 time-history
cMit j ut at time zero. The accelerations for the latter are also
in mass axes. I he two sets of accelerations should be equal
lor a properlv balanced set of initial conditions.
All quantities shown in this output have the units of pounds or inch-
pounds lor loads, and g’s or rad/sec 2 for accelerations. The sign convention
is positive forward, right, and down, with right-hand moments about those
axes. These data are presented basically as reference information; the user
need not examine these data closely. The determination of whether or not the
balanced initial conditions are acceptably accurate can be made based on data
that are presented at the time zero printout from program KRASH85. (Sec-
t i o n 2.3.3).
2.3.2 MSCTRAN Output
The output data from MSC/NASTRAN are discussed in this section. Fami¬
liarity with these output data is not necessary to successfully run program
KRASH. If difficulties occur in achieving a balanced initial condition,
then a review of this data may be necessary to help isolate the problem.
2. 3.2.1 Executive Control Deck Echo
This is shown in figure 2-11, and consists of only four lines. These
are generated automatically by program KRASH1C. SOL 24 refers to Rigid Format
Solution No. 24, which is the small deflection linear static solution.
2.3.2.2 Case Control Deck Echo
This is also shown in figure 2-11, and contains only 13 cards. These
are generated automatically by program KRASHIC. The output control card
DISPLACEMENT (PRINT,PUNCH) = ALL, used in conjunction with the appropriate
.101, cards, causes the output displacement vector to be written as data set
XYZ.NASOUT.DATA in the user's library. If the user wants to eliminate or
revise some of the NASTRAN output data, then Format No. 1020 in subroutine
NAST, in program KRASHIC, should be revised accordingly.
2.3.2.3 Input Bulk Data Deck Echo
The complete input bulk data deck is reproduced in this echo, shown as
figure 2-12. All these cards are generated automatically by program KRASHIC,
in subroutines NAST and NAST10. The CONM2 (mass property), PLOTEL (plot
data) and EICR (eigenvalue) cards are not used in the static load solution
employed (SOT. 24). KRASHIC converts a KRASH85 input data set into a NASTRAN
MODEL PARAMETER'
OOOOOoOOO*
OOOOOOOOOO'HOOO-
«ooooooooo<moo
lOOOOOOf'JOCsJ
irjM^i/lsONOJUi/i'
OOQOOOOOOOOOO □ O O
f-'IOOOOOOOOOlL/IUIO OOO
K^O-OCOf^OOOOf'JfJ^O OOO
-JOO
NvrtOJfHMMyNK^HOH^JJOO
ioooooooooooooooqooooo o o
^COiflM^OOOOOOCOCOUIUlLnOOOOO oo
iNl^ JITKlO4it0OO>JlNfJNOOOOO OO
jLn^'tni/iN^c'jo^-^ocOLfiLno'O'MOoooo co co
iNO'NrviSHjffli/lajocoajNNvjiOiDC-o-ooooo
OOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOO
(OJ^H-tKlCjMlfl^^JNOfMNOl^l^SNMOHOOOO
^ooooMNjsoowi/ifflii'a NfgMiflmmwHcoiocoo
sj O O CJ CJ O' « Jiff HMKNSHrtHMNlMHffNNNN
I if ij sfl -O J) U1 ^ I
OOOOOOOOOOOOOOQOOOOO OOOOQOO
fs.CO -^0000
tfOOOONN^NOfflNUKOff'ff'NNNIil l/l CO H © ® CO (O
JOOMNff O' r-» r^- fN.
^HHNS^^<gffi-.rH^ J)NH«l/ll/li/li)OJ)K>^N^JNN
oaoooaoaooooooaooooooooooaoo
00000 oo 000 «t s j® 0000000 c 0 c 0 r ^>00000
(O^-r-o-ocorjcoooOJ-^oooooor^fON^r^^oooo
CONCJOOMNunOMffHlCOtjfJOOOfflOfflJlff oooo
ONNOOff'JJNlflttHaMfflHHlflJll/lKIMMNO®®©®
o o z ^ ^ ^ o
Z ►•ooo o
co a
** O' >.1 OOO o
► ^ cj O '■* u"i t <-•
«-< —• < ff J1 Jl -0
(.1 •'i a m tj 9 Ji o
O -X O O *— O' ^ <\l in
a • a; m cd ►< o o o-
® o W lu.
O 2 wi *1 ^ o O — <
INNSHHhKIN.O'O'O'C
>OOOQQOQOOOOOOOQOOOOOOOOOO
>ooooooooi/linooooooiTitninK> .ooooo
iinin^ioinooc-do^oooooo^vj-^r-.j-oooo
>-c-oo'cooino'r-<N.rjoxi^)Ooof'jfM^kno'oooo
IOOff'<NN®Nff JONNJll/ Jiff ff ff NOOOOO
OOOOOOOOOOOOOOOOOOOOOOOO oo
ff^/i®Ji(0«inff xi^mkii/i»o£i/ijicoO'h(ocjn coco
CO<s/vj<\jcOrj^O'if(sOO^CO'OcOCO~yvJ-c\j>j-rv<sj^<r «-< f-<
J10HffffJlNOJffO®0 MJlJl O-CMHffNffl^ ^ >0
HMMNiNSffH®JlfffgMHHlf|JlCOJN^lMOOOHrt
O O O O O o O I
OOOOOOOOOO^OOO
■ SrrtNlO-ffHNffff'OOfJN
• ►♦OOOOOOOOOf^OO
(HNMHOOOOOOfJOfJ
u V O -t -J
~ - U. O 2
X x--
X o u u o
LU u u u u
> X N X N
IMffJl/)N®ff'OH(SJMffJl-CN®®ffNffOOH^fflOO
N M H H
INKlff®<fiS®fl/|HN»rt^Nff^HPJJff'NNN®®U\Ul
HHrtHHHiHH H H H H H
«csiK>^i/lv0f^c00 k O<-*<s/fn^mv0r>-c00‘O^fsifn'tf , m^)^®
HHHHHHHHHHNCJNNMfJNNfJ
FIGURE 2-10. MISCELLANEOUS CALCULATED DATA (SHEET
ooooncoocioOoanooocioooQaa na
n a i ji o a w h m o .♦ f j h c j ® o j ^ ^ <o ifl o m m
N O « rt M O —*C Lfl J CO l/l O O <J N <J fj O T ifl ^ ffl O MM
l/l K CJ tj O O C J M O >N M J CO « h w Ifl C- CJfflHNOOOO
000000000000000000000000 OO
N i f m f •» (j « N W <r J ,-j « 8 ^ O (0 1 ,* J O K1 O M M
o >-* —> m o <~t o if) yf O trt o o rj fw (J ‘v o sf i/l «r CO O mm
i/l ift n fj n O O O -J m 5) ^ m ^ (0 « fj W Ol ff cj (0 H n o o o o
OOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOQOOOOOOOOOOOOOOOOOOOO
OQOOOQOOOOOOOOQOOOOOOOOO OO
■jfjfjNHS^HHj'oi/iNisoffOiONino'cOMM vj-
Q -0 CO © © iNlft.ftfO«aHS^HH*ffN^HKl COCO
Wff'HHKlNf/ff'OlOJfflOJOHH/I^N^ff'KlrtHOOtftf
rf/gJlt3M[flMl/lHHMMM^NNJJfOJ'>f«lMNOOWW
OQoooooaoaoQQooooooooooa o Q
J 'J CJ fJ H N ^ M H f o M N O O' CO <0 N l/l O' (0 K1 1*1 <r sf
O^COa /)NlflJ.»OMff^S«HHjfN^HM COCO
f j © - rt fj rj it o a) jtcooHHijNjaMHHoo^'j
IIT'JMI'JPJOONM
oaoooaoooaoooooooQOOQaoQ
a ® <o co o /i t/tio i/i o j-^O o -r -t -a i o m i/i h ^ o
J (/ '/0 M .J- O O' N K1 N M lA M M -O 0 N O N ^
OCX) £> CJ M o «M/lNNO(JO</)OON<0'OHUlff'(
l/lnrtMHNHMN^NNHHUUnNNIfl^lflNlHO-C
oooooooooooooooooaaoQooo 00
COCO
i''i/l.TJ(OCffl/l^l/lWN(OwnjO > C.OOI/ll/lNJ O' O'
-J Cj rj X>McOOU1-OMO r '-''-'in>-lr-<OOC'JX>MO-CO©'OOX>'£»
Mfl"iHtf^CJNlfl^lO{yJHO'OON'
aooooaonaoaaciaoaooaoaoaaoaoo
tHrtMiJjHUMJ J'JHi^tOtO'J'J^CO'OONNMM
M 1/1 -t O CJ iOJOJl/lOOWNMN O^I/tJ’MONNMM
© J ^JlfJM(0N h l^C0l0Nf/l/lff'M(0«Nff‘ff'OO
I 1/1 U1 .£> -t cs» J) iO r
OQQOOOOQOOOOQOaaOQOOOQOOOQOQ
H* -< H M (0 f U H H -J CO ^ O O OCOtOvf JOl'Jl/lO/lXIHH
M o O -♦ O M o ^ XI ►•■' CO a O O tJ U J tu fj O a O M M (0 (0
l/i a .o o 9 co a N - to s o © y ifl .©■ .j- cj csj tfi o m ©■ <-i cm o o m «-h
— N O N O H o
Crt .
—I O' O CM O CsJ O
000000000000000000000000 oo
i H iO '' f I/I 'J o O N N N CO lil i/l ff o H O N f W (0 o o
O C C CC'-hO ■Ji/lfflffli/li/li/lHM.fi^O oo
c- o © ^ «-• ji/ioo-H-*^oc\j.j > yoooM<rior-~ixioo.ox>
f;HH\rtNHHSO ©
OOOOOOOOOMOOO*-H»^^OOOOOOOOOCMOO
OOOOOOOOOOMOOO^.-iCJMMOOOOOOMOO'X
tl II II II II II
X >- M I- »- K
4 < < a o a
a o a
II II II II II II
g X>NI-M—
Z 444000
LLI M o U> O <0 O
J in O ^ CO ff l/l H “1 # M .J ^ H M X ff rj M M l/l 1/1
4 ll M li II II II
cr X > N X > N
UJ U. Li. Li. L H H
ALL OTHERS IN A/P AXES
i
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
O O O o O o
O O O o O o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
O O O O o o
o o o o o o
o o o o o o
o o o o o o
Q □ Q
a co <t
m in O'
S N K1
O' O' >t
o o o ^ <t f"
O o Q
CO ® •0-
r-« «-< O'
K1 N"l
O Q O
O' O' O'
r-< O'
O' O' ro
NN^
O O O « vO N
ooo
rv.
k 0-
r-'- ro
O' O' sf
O O O 0- O' N.
O O O'
10 in m
ooo-
OOONNN
ooo
1*1(0 0
S N S'
M r* r*l
O' O' ^
OOO^^N
O O O (
ooo
O O st
^ O'
O' O
1 M ^
OOOrtrIM
O O O -4 <-* K>
OOONNW
O O O -0 O' M OOO^ ^ M
OOOUUAK1
o o O *0 0 r
o o o o o o
O O O o o o
O O O O o o
o o o o o o
o o o o o o
o o o o o o
O O O o o o
o © o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o O O o o
o o
a a
~0 CO
Z'-. O'
•o o'
CO O'
ooo
ooo
in f" -o
in vT co
O <f <T
o o a
•S O' >*
MON
in o k
CO O' x*
o a
CO O
in o
I
ooo
-* * O'
O' CJ -o
0 in
Csl O 0
o a
o o
ss
O -H
ooo
m o' m
CNJ 0 Csj
(*1 O N
sj- n o
> *4 o #
o o ooo
ui o o ifl o to o n o -j h k in co o O' ki in
H 9- O ^ H N O' 0 O <\* CO <Si H H Q M H (\J H ^ o M (O N
i a ana
» O H O co
i o o o- in
i *-« 0- vj- m
(O' o o co
' O' O 0 N O
o o
O O'
K! O'
o' in
sO N to
in O' m
W r* *1 CO O'
HMOtO-tHT
a o
O' iy
co O'
o o o
O' M if
m h co
K1 vj- <f
M U1 S 43 (0
0- <0 O co O' co
O' N. O CQ *4
CM O .H CM NHOHIflN
O’ N O H 4) H
FIGURE 2-10. MISCELLANEOUS CALCULATED DATA (SHEET
o
O
in
o
O
rH
rH
UO
NO
o
O
O
o
O
o
©oo
o
o
O
o
o
o
o
o
O
o
9
ID
o
n
o
a
© o a
a
a
o
©
©
Q
a
a
o
f-
o
o
3
rH
3
o
in
in
rH
m
uo
®
rH
o
3
3
CM
NO
3
3
m m
O- O' M3
M3
SO ©
3
3
o
o
o
©
©
O'
m
uo
©
in
UO
rH
r-'.
3
o
o
O
o
o
O
O
o
o
9
o
o
o
O
o
CM
CM
m
o
O
o
3
3
©
3 3 NO
o
o
o
NO
NO
M3
o
O
o
CM
CM
O
o
O
3
3
©
o o
O
o
o
o
o
o
O
o
o
o
o
o
o
d
o
o
3
1
3
CM
o
o
o
O'
O'
1
■3-
o o
o uo in ©
o
o
o
>3
1
3
O'
o
O
©
3
1
3
3
o
o
o
3
3
CM
1
o o
o
3
CM
NO
CM
CM
NO
CM
CM
NO
CM CM NO
rH
NO
rH
rH
NO
rH
rH
NO
rH
o
o
o
o
o
o
o
O
o
o
O
o
© O O
o
O
o
O
o
O
o
O
o
a
o
o
a
a
o
a
© a a
o
a
a
o
©
o
©
n
a
o
NO
M3
NO
NO
CM
© o o
3
3
3
I s -
r*>
O'
r"»
N-
CO
NO
NO
M3
rH rH O
rH
M3
3
3
NO
in
uo
CM
NO
NO
CM
CM
NO
rH rH NO
CM
m
CM
NO
O'
N N ^
CM
CM
©
o
o
o
in
m
r-~
o
o
o
o
O
K
o
o
o
rH
o
o
o
uo in r-
o o
o
O' O' r*
o
o
o
3
■o
rs.
o
o
o
NO
NO
o
o
o
3
3
Cs.
o o
o
rH
o
o
o
NO
a
o
o
3
3 NO
1
o
o
o
in in no
O O O 3 3 M
1
o o
ONHM
1
o
o
o
O'
O'
NO
o
o
o
NO
NO
NO
o
©
o
3
3
NO
1
d d
©
3
rH
3
o
o uo
o
O
in
CM
CM
D
o
o
O
O
O
© o b
o
o
o
o
o
o
O
O
o
©
o
o
a
a
©
© a ©
a
a
o
©
©
©
a
O
© m m3
rH
©
©
rH
NO
r-
N N N
NO
N.
NO
NO
©
N»
fN.
in
m
CM
NO
NO
NO
CM
•C'Ofl'
r>.
N- ©
rH
rH
3
rH
NO
o
o
o
o
o
O
o
o
o
o
O
o
o
o
o
■3-
3
o
o
o
o
CM
CM
>3-
o o
O Cm CM CM
o
o
O NO
NO
© © © 3
3
©
o
o
O 3 3 O
o o
o
CM
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
rH
H
CM
1
o
o
o
CM
CM
NO
(
O o O rH rH 3
1
o
o
o
© © rH
1
o
o
o
rH
rH
o
o
O
CM
CM
CM
f
o o
o
CM
CM
3
CM
CM
CM
CM 3
CM
NO -3
<M >3 CM
rH
CM
NO
NO
rH
NO
CM
NO
CM
NO
CM
NO CM
CM
o
o
o
o
o
o
o
o
o
o
o
o
O
o
O
o
o
O
o
O
O O
© O O
o
o
O
O
O
o
o
O
o
o
o
a
O
O
o o
O
O
o
a
a
a
o
O ©
o
a
a
o
a
o
o
Q
Q
©
o
©
a a
a
NO
CM
rH
CM
NO
O'
O 3
m
f'-
NO
3
O
3
NO
rH
CM 3
a
NO
CM
no
in
cm in m
in
CM
o-
Nv r*.
*3
CM
©
NO
o
3
3
CM
rH
CM CM
3
,—1
-o
a
CM
NO
m ©
a?
rH
M3
NO
CM
NO
3
3
NO
a-
in
CM
3
o
rH
©
NO ©
© NO
NO CM 3
in
©
<3
rH
rH
NO
CM
CM
3
3
3
rH
3
UO N-
©
n*
3
o
o
tt)
H
o
o
no
n-
sO
in
o
rH
O'
r-C
©
CO
o
rH
©
WHO
N Ml H
o
O'
3
rH
uo
CM
o
CM
N-
O
NO
3
O
rH
o
rH
rH UO O
o
U0
3
o
v
in
'O
H
o
v
* g
rH
cr
rH
o
CM
1
in
i
CM
CM
1
o
CM
rH
1
CM
in cm o
rH rH CM
l 1
NO rH
1
o r"
i
rH
1
CM
rH
3
1
o
NO
1
3 eu
i
in
CM
o
rH in
1
CM
CM
1
o
rH
1
CM
CM
CM
CM
CM 3
CM
CM
CM 3
rH
o
O
o
o
o
o
o
O O
o
o
o
O
o
o
O
o
o
o
a
a
a
a
o
2
a o
o
o
Q
o
©
©
o
a
©
o
m
O' o
NO
NO
rH
CO
NO
CM
CM
CM ©
NO
© cm
rH
CM
NO
NO
rH
©
CM
CM
3
3 3
r-
m
NO
©
©
t
O' NO
r*.
3
3
rH
in
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
©
o
uo
o
3
o
O
3
O © N. 3
o
o
3
o
o
o
O
O
o
o
o
o
o
3
O 3
o
o
o
o
o
o
©
o
o
©
o
o
o
o
H
o
©
H
o
NO
o
o
NO
CM
O >3
o d >3 <3
d
>3
o
o
3
UO
o
rH
o
o
rH
NO
o
CM
1
o
o
CM ©
1 1
O rH
1
o
o
CJ
no
CM
CM
NO
CM
CM
CM
CM
CM
CM
CM
NO
rH CM
rH
CM
rH
rH
NO
rH
rH
NO
rH
CM
©
o
o
o
o
O
o
o
o
o
O
o
©
o
©
o
o
o
o
o
o o
© o o
o
O
O
O
o
o
O
o
O
o
o
o
o
O
o
o o
©
o
O
a
o
o
o
o
a
a
o
o
a
a
o
a
a
a
o ©
o
©
O
©
©
©
a
©
©
a
o
c
*o
C J
CM
o
o
m
O'
O'
N- O
n m n
CM
CM
O
O'
© O'
CM
CM
CM
3 3
o
NO
cm
in
NO
3
CM
NO
in
UO
NO
O'
m
>3
3 in
O' K NO
O'
o
©
N-
rH
m
o
NO
NO
3
c-
o
© CM
&
cj
NO
CM
■o
r>-
N~
CM
o
3
M3
o
O'
CM
3
M3
rH
rH
3
©
CM
3
NO
rH
3
o
in
cm
3
NO
NO
rH
H
uo
in
C-
NO
NO
CM O'
n o
uo
O'
NO
©
M3
3
o
3
f-r
CM
3
© 3
3
0
■o
o
o
cm
3
o
•-*
o
©
3
NO
3
Hi
o
rH
NO
■-*
N>
©
o
o
O'
CM rH
O' 3 NO
in
CM
o
3
3
3
o
CM
NO
3 3
o
3
3 3
3 rH
o
O'
Cm
o
CJ
-i
NO
rH
rH
o
m
m
O'
rH
NO
o
H
CM
»h
rH
rH
o
rH
rH
3
O' CM
o
NO rH S.
3
rH
o
rH «
3
CM
m
o
3
NO
CM
3 d
o
r*
CM
rH
(0IAO3
2-129
956180 01 -1.645120 01 4.784140 03 2.29263D 02 9.18382D 01 9.968400 03
CM
CM
10
o
o
o
O
o
n
a
o
PA
CO
CO
S©
to
>3-
•o
CO
<r
to
10
*3-
CO
<0
CO
o
PA
O
O
o
s©
s©
10
O
O
o
o
O
O
O
o
o
o
o
O
cm
i
O
O
o
rH
1
rH
1
CM
O
O
o
o
o
o
O
o
o
o
o
O
PA
o
O
PA
o
o
PA
o
o
PA
o
o
O
o
o
o
O
o
o
O
a
o
o
a
a
a
O
a
a
©
CO
P-.
v©
CO
CO
*3-
n3-
<r
PA
PA
CO
rH
rH
O'
O'
O'
O'
O'
O
O
PA
PA
PA
PA
PA
PA
PA
CM
O'
O'
CM
CM
<r
<r
vt
'i-
fv
O
O
o
O'
O'
p'-
o
o
o
rH
rH
r^.
o
o
o
rv.
r>.
h*
PA
1
O
o
O 10
10
PA
i
o
o
o
rH
rH
PA
i
o
o
o
PA
PA
PA
1
>3*
CM
CM
V©
o
o
o
o
a
o
o
a
rH
rH
rH
0)
CM
O'
O'
i0
fA
rH
rH CO
rH
CM
CM
O'
CM
O
o
O
o
o
o
o
o
O
o
o
o
o
o
o
O
1 CM
1
O
o
o
CM
CM
CM
o
o
o
o
O
o
o
o
©
o
o
O
CM
PA
rH
PA
CM
CM
o
CM
CM
CM
rH
CM
CM
O
O
o
o
o
O
o
O
o
o
O
o
O
Q
o
a
a
a
a
a
a
o
a
a
o
a
CM
rH
o
s©
O'
>3-
o
i0
U1
CO
PA
rH
1 rH
r*.
r-*
CM
N©
PA
rH
o
>3-
rH
>3-
rH
rH
>3-
nO
V©
O'
CO
CM
rH
CO
PA
O'
PA
CO
CM
'O
CO
>3
P-.
CM
CM
O'
O'
rH
O
o
O'
o
o
10
CO
CO
PA
o
o
K
PA -O’
O'
o
o
r>» n-
CO
CM
rH
o
o
PA
rH
rH
CM
o
o
10
CM
CM
O'
o
o
CM
O'
CM
o o o o o o
oooooo
o o o o o o
o o o o o o
o o o o o o
O O O O O CM
O O O O O rH
Q D o a
CM N O vO
rv Lf» CM CM
PA O' M
10 rv k <nj
pa o o O' pa o
o o o o o o
o o o o o o
a a □ a
O' & m <r
<0 O' o co
eg O' h- PA
10 O 10 o
H O O W O vO
oooooo oooooo
oooooo oooooo
o o o a
rH N O' O'
O' S© 10 o
4* M> f" 10
vj- o rH O'
S O O VO M
M O O H H H V# o O >0 W N rH O O CM sO CM
oooooo
OOOOOO
FIGURE 2-10. MISCELLANEOUS CALCULATED DATA (SHEET 5 OF 5)
AUGUST 3, 1984 MSC/HASTRAN 8/ 1/83 PAGE
FIGURE 2-11. MSC/NASTRAN EXECUTIVE AND CASE CONTROL DECKS (SHEET 1 OF 2)
FIGURE 2-11. MSC/NASTRAN EXECUTIVE AND CASE CONTROL DECKS (SHEET 2 OF 2)
KRASH MASS POINTS CONVERTED TO NASTRAN GRID CARDS
o o o o o
O-OO'CO'OOvOO-C^vOO^OOvOO'OOvOOOOoOOOOOOOOOOOOO'OO'OOO
O O O O O O O 0 4 0 4 0
r'*f\J<7-CM0'0JN1<NJO4OCSJlfle\J^<MOC\lOCNJC\J O o O O lf| O O O N U1 N s
iriirir>- s 3-or^oinMa'oc'fv^ooncooo'csjr^
cooMtoocJoa>OvOMcjMocOKif^vfr^o^csj
0>-<4r-IO>-40'eOOMMK>COtf'04 0'4cOr0 04
rHU10r-40K>ir|'OrO#H(SJ«0>H-<fKrHKCMs09'(T
C N f-t(M-^OOCSJO'MfSJ^)r-10 ' r HsJ'0 '>yK>ChMO
xpr^9-9'ooep<Hvo«Hr^cOO'K l )or^oflO'00(M
>^-»noor^^rrtCNj<f f HOi0
lONOlflOOO-OONO-tOlflOlflOlflO^ONOtfl
ONOtOONONOUlOftiOMOMONO^OOOMt
• fO • 4 • 1/1 • »<0 -O' • O • >-« • <\J • fO .4 • l
CO O tSJ 4 COH^HCOHlflH'firlitr
IMONOI
» • (0 • O'
I ^ H H H >
O CD CD CD CD • CD
O O o o n r»
ooooooooooooOOOOOOOOO
OOOO O o O O O O O o o o o o o o o o o
* , -«*C>j*r0*4*tf1*N0*r^* c 0*0'*O*rH*C\l*K1*4*in*s0*r^*C0*0'*O*r-t
O Q Q O Q o O O O QHDHQhQHDHQHQHQHDHOHQNQN
tfKKffttKaKCCIiaKKKKftaKaKQ:
.«/V«Vv>tD*CD*CD*CD*tD*CD*CD#CD*CD*CD*CD*CD*CD*CD*CD*CD#CD*CD*CD*CD*C!>*<
FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET
>00000000000000000
«e -i in o
CQ f-1 O' >}■ r*
3 <0 O' -< -*
Z HHHHNNtrtWrtHHHH-lfgNHHNNHHHH
»H oooooooooooooooooooooooo
ooooooooooooooooooooot
ooooooooooooooooooooo<
hhh^nnmmhhhhhhnnhhnnh.
ooooooooooooooooooooo<
► v></>aaa:a.a:a.G:ci.a:a.Q:Q.a:cia:a.a:a.tta.o:c
FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 2 OF 11)
INITIAL CONDITION STATIC SOLUTION
ro • eg ■ <\i • .# • r- • ifl • W • • *o -O' • • <0 • so • o ■ ®
mo^o>3 , o«oor«.orooooKocooo'oioo^o^OMoo'0<ro^(
ors.<DO'r-«(NiO'co^a s oovorv.<ro'Ki
h'OOOO'OCT'O
ooeoeouiooo^ooo
00>OUSfOOOOO'ff'(OK>
oo-*^tOooocoo-L^.X)-«coor'~L/l>Of-«iflin
oo®M^oooow>eoN<^iAff'Ui'3-»H
CM CM
iH rH rH
o ■ o • o ■ o • o • o ■ o ■ o • o • o • o • o • o • o • o -o ■ o • o • o • o • o •
oooooooooooooooooooooooooooooooooooooooooo
>-4CgKt<^(n>Ah>®0'Oi-i«Mt04’Ln<X)N.®0'Or-t
HHHHHHf-CMHHNPJ
f—
UJ
• o -o • o • o • o • o - a -o -o • o • o ■ r <
3OlOOOO(MOC0OrHOfMOCMO»-iO<MOOOO £ <
[)HHNHMS>tOJ|NJUlNH(OM>'HOOHO >* *
JHNHIflHMH J'HvOHsO HNHMH N I/I N U) tfl »
- ui cr r» >»■ r-c >o ki
3 «H X
to
jooooooopoooS
300000000000*
jr-i<MKi«finser^®a'0«H
CNHMHNHNHNrHNHNHNHNHNNNN
■ShilrZKih^hil-Eh-^hll-iKil-
coxoxorzoxoxoxozoxoxoxox
•CJ+U + O + O + U + U+ U + O + O + U + U+ i'VVV**
2-135
FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 3 OF 11)
IT.SAMPLE. OA TA AUGUST 5, 1A84 HSC/NAST RAN 8/ 1/8J PAGE
21 MAGG/28 BEAM TEST CASE ONLY-NOT VALID AIRPLANE MODEL
a
CSJ O' M-t CT-
o o o
o o o
o o o
CD U
D O
o o
o o
0 3 0
© O O
O o o
fj CM CM
CD O
o o
o o
o o
o o o
o o o
o o o
TO m TO
CD O
o o
o o
o o
TO NT
o o o
o o o
o o o
•o-
CD U
o o
o o
o o
IT ►- 3
o o o
o o o
o o o
ui i/i in
: S
-0 0-0
-* O sT
NON
I
o o
o o
o o
© o o
o o o
O O •
MH o O
o o
o o
o ©
o o
- o
o o
c
IA
O'
>r
o o
o o
o o
CM o
o o o
o o o
o © •
CM o o
o o
© o
o o
o o
• o
o o
o o
o o
o o
m o
o o o
o o o
o o •
moo
o o
o o
o o
o o
o o
o o
o o
S* O
o o ©
o o o
o o •
>0 0 0
o o
o o
o o
o o
• o
o o
o o
o ©
o ©
o o o
o o o
o o o
-« O
o o o
o o o
o o o
NON
o o o
o o o
o o o
mom
© o o
o o o
o o o
o o /
SS3 ;
o o O (
o o o * <
: h h ri a .
05 U
o o
o o
© o
10 b- D < 05 O
o o o o o o
o o o o o o
*000*0*00
QfNNNONHNN
» o * * * a. * x: * * «* u * * * a.
to t- 3 < tO U
o o o o o o
o o o O © O
*000*0*00
ttmmmcrmMHmm
< < >-
CO (0 <
ko***a*x:**-
m b- 3 < to o
o o o o o o
o o o o © o
* 000 * 0*00
WI-3
o o o
o © o
* o o o
oc in m m
FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 4 OF 11)
PBAR* 5000 5000 29.50000000 25250.00000000* 5000A
* 5000A 58000.00000000 81250.00000000
MAT1* 5000 10000000.00 5800000.00 * 5000B
o o o o
o o o o
o o • o
co o o
o o o
o o o
o o o
o o <$■
• O Kl
o o
in
V- 3 < CD U 4 $ O
ooo o oo ooo o oo
ooo o oo ooo o oo
* 000 * 0*00 * 000 * 0*00
ttNNNKNHNN
4 < l- < < V-
CD <0 4 CO CO <
• u * **o.*r**wo***Q. * r * * c
OOO O OO OOO O OO
ooo O OO ooo o oo
* 000 * 0*00 * 000 * 0*00
QCC0OC0QC<0<H<0C0 aO'O-O'Q'ff'HO'O'
4 4 ►- 4 4 J-
CO CO < (0 to <
u***a.*r****u***a.*r**w
CO K 3
ooo
ooo
* o o o
QC O O O
FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 5 OF 11)
CBAR* 26000 26000 1502 1602 * 26000S
* 26000S 0.750502420322 0.682910106752 0.0 * 26000T
o © co o o m © o
ooo - o o o • o o o •
■ H ^ N • N H M
K 3 < © U
© o o o o
o o o o o
©0*0*00
~o a. o <-* -o -J3
C\J CM < OX K CM CM
© <
* * Q. * Z * * <
© 2 < © a
o o o o o o
ooo o o o
* 000 * 0*00
< NN ( M < CJl-NN
(/) h- D < © O
OOO O O O
OOO o o o
* 000 * 0*00
cx©©©a:©'-<©©
© © <
►u***a*z**«
S z z .z z z
* O 0*0 0*0
W0K0*0»-0*0K0
UiOZOUJOZOuJOZO
UHLUHUNlUNUMliJM
s s g s g i
► u.*£*u.*Z*u.*Z*
FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 9 OF 11)
INITIAL CONDITION STATIC SOLUTION
O O CO O O CM © O NO O OOO 0 0-0 O CM O O’-<O^-<OC0OOO<M(
■OOO -OOO OOO - OOO -OOO - OOO - OOO ■ O CM o • O M O • <
• <r ■ <r <r w • tn tn 'O • -o Cf N > n n co •ffl-off' • cr co o ■ o n h • h co n • cm o- i
O CM O M O CM O NO o M O NrtOHO
r-i r -1 vjD
) H O (O O N
> • O CM O •
^ ^ >r • >y >o
) tt ' H S H ff 1
«H l/l
O to o S O N
oo-o • o m
tfl • M SO •
H J) H M H O
‘ ISJ O H ■ N O H
r. z
o*o
*01-0
r z t: z
0*0 0*0
z ^ z z z z z z z
0*0 0*0 0*0 0*0 0*0 0*0 0*0 0*0
0!-0*0»-0»0h-0*0t-0*0h-0*0t-0*0>-0*0k-0
ozouiozoujozoaiozoarozouiozouiozoutozo
<ruj-iuiniuiiitj'fiut'flu>'ujN(jtoiuou^ujff'uoiiJOUHujH
z a: r a Z a z a z a z QtHiHctHZH
rtnnrinnnnnnnnortn
azcczcezazacza
ooooooooooo
• u.*z*ii-*r*u.*z*u.*r*u.*z*u.*
z z
0*0
* o o
ut o Z o
U CM U! CM
a H I H
o o
u. * £ *
z z
0*0
* o ►- o
UJ o z o
u M tU M
0*0
* o >- o
u> o z o
u w -f
CC H Z H
° 2
U. * Z *
z z z
0*0 5
* O H- o * o
U* O z O uj O
o 1/1 IU I/I u <o
a ^ Z r-« o: h
o 6 o
u. * Z * u. *
• -V - * N *- . • * vVl'- L
FIGURE 2-12. MSC/NASTRAN INPUT BULK DATA DECK ECHO (SHEET 10 OF 11)
input data set, using the following, NASTRAN t - ) ■ -un-n t .
• GRID points
• CBAR bar element s (with I'BAK p.r.ip.-rt ies .<nd MA'i i materials)
• RBAR rigid bar elements
• FORCE and MOMENT cards fur applied loads
Although only a linear model is I o risk’d, the following KRASII85 nonl ineari ties
are included in the NASTRAN model:
• Oleo beam elements (initial position must be fully extended)
• llnsymmet r ical beam elements
A nonlinear KRASH model is acceptable (KR tables), as Long as the initial
conditions are in the linear region. The executive and case control decks,
plus the bulk data deck, are all contained in date set XY7.. NASBI.K. DATA, which
is generated automatically bv program KRASfl 1C.
2 . 3. 2.4 Sorted Bulk Data Deck lie.ho
This is just an alphabet i cal l.v sorted version of the bulk data deck
shown in figure 2-12. The last page of this is shown in figure 2-13. The
KPS I LON value shown is a measure of the error in the static solution. Any
value less than E-7 is acceptable. Generally speaking, any significant
error in the model will result in a very large value for EPSILON (0.1) or
will cause the NASTRAN solution to terminate with an error message.
2.3.2. r > Displacement Vector
Figure 2-14 shows a sample of the displacement vector output. These
daLa represent the desired solution. The three translations and rotations
at each grid point in the NASTRAN model are shown. The sign convention for
these displacements/rot ations within the NASTRAN model is as follows:
T3 Positive deflection up, inches
R1 Positive rotation left wing down, radians
R2 Positive rotation nose up, radians
R3 Positive rotation nose left, radians
All deflections/rotations are measured in an axis system that is parallel to
the c.g. coordinate system defined in Section 2.2.
The grid point identifications within NASTRAN are related to the KRASH85
mass and mode points as follows:
Node point (I, M) becomes grid point (100*1 + M) e.g. Node point 11, 2
becomes grid point 1102. Hass point 5 becomes grid point 500.
In figure 2-14, grid points 1199, 1498 and 1499 do not correspond to any node
points in the KRAS1I model. In the KRASH model there are two transverse
beams attached to mass 15 and one to mass 12; i.e., beams which connect
laterally between mass 15 (and 12) and a phantom (unnumbered) point at the
same location on the opposite side of the airplane. For these lateral beams,
a grid point on the airplane plane of symmetry (y * 0) is established in the
NASTRAN model in order to constrain the deflections of lateral beams. Grid
points 1199, 1498, and 1499 are all such constrained grid points.
The deflections and rotations for grid point 500 (mass point 5) are all
zero. This is because mass point 5 was specified by the user to be the con¬
straint point in the model. This was done by inputting NBAL = 5 on card 60
of the input format (figure 2-3). This can be seen on card sequence num¬
ber 90 in the input data echo for this sample case (figure 2-8).
2.3.2.6 Load Vector
Figure 2-15 shows the vector of applied loads for the sample case.
These are the NASTRAN input net loads generated by KRASHIC in subroutine
NETFOR. The sign convention for these loads is the same as for the displace¬
ments, as defined in the previous section. The loads shown for grid points
201, 1102, 1498 and 1502 are the result of using F0RCE1 type cards in the
•C O O X> •£> C O 0 -0 •£> -0 .0 >0
yj f J J <f T J J -J 'J
M W M M M M M M M M TO K»
N N N N N W W fJ CJ M N N N
^ >0 >C 4 >O'O'O'C 0-0^0-0 0
uufiifluiuunuiinuunuiuiui
>T <r
»✓> m '-1 ro rO M ^ r/» fO ^ f -1
rg c>j '•j (Ni c-j c\j «m f>J cj c\j r>i <\j tsj
I^^OOOOOOOOOOrHrHOOOOOOOOOOO
■ OOHrtMNifinUl'O 0 NOOHHHtgJI 0 Ul 0 0 NH
IftJlflHHHHrtHHHHHNUlHHHHrtrlrtHHHN
» oooooooooo oooooooooo
(OOOOOOOOOOOOOOOOOOOOOOOOO
lOOHHHM^inUlil-ONOOHHHM^l/'Ul -O -0^0
INlflrtHrtHr-IHHHHHNLnHHHHHHrtrtrtHN
><-«rHOOOOOOOOOO*-H*HOOOOOOOOOOO
INl/lHHHHHHHHHHNIflHHHHrirtHHHHiJ
1 III 111 Lli Ll) 111 111 111 III Li-I Li-1 Li.i LU «X
it-Kk-f-K-t-i-H-k-^-^-k-araaaaaciaraaaoicro
iOOOOOOOOOOOO«*«t«X«x«X<t«X<t<t«*«*<<*Q
icacocacQcflocacococDcacDtfiz
aaa&Q.aa.aa.aaQ.Q:o:B:c0Q:Q:aaQ:Q:Q:Kixuj
U- O <M
-J r».
i/I H N
K> V) o
o a «H
k> ui o
i i i i i i i i i i i i • • i i i * t
QZ^MW ?lfl ON(09'OHPjMsnnON®ff'
a Di/tiftini/iifltfiflt/iiA o o ■*> o -c -o -o -o o
«* O
LJ
M <f ID
o -C -D 0 -o --0
* - « * <"
FIGURE 2-13. MSC/NASTRAN SORTED BULK DATA DECK
r-
7 * «, k u 1 n i ji it
o-
M
CD
<
a
co
\
N.
CO
Z
<
01
►—
</)
<
z
\
u
£
O'
<0
O'
h* ’-\
>Oai^.
O' >3* >t O'
** MM
NI
NI
NI
NI
NI
NI
NI
NI
NI O'
o
o
o
O
o o o o
O
O
O
O
O
O
O
o
O
o
ui
UJ
UI UJ
UJ UI IU UJ
UI
UI
UI
UI
UJ
UJ
UJ
UJ
UJ
UJ
in m m in
O' O' ^ CM
CM
o
o
o
NO
o
NO
rH
rH UI
NI
NI
NI
NI
CO CO NI O'
O'
CO co
CO
K
p"-
r-
h*
vO
m
in m m
N Mfl O
o
rH
rH
rH
CM
CM
CM
nO
NO
CM
in m m in
m m h so
M»
m in m ni ni
NI
CM
cm m
o
o
O
O
CM CM co 0 s
O'
CM
CM
CM
s.
rv
m
m
O
o
O
O
O
O
o
o
o
O
o
o
O
M>
sO
vO
sO
O NI NI s© CM
CM
o o
O'
O'
O'
m m m O'
O'
nO
o
O
O
o
o
o
O
o
o
o
o
O
o
o
o in
m
i
m m
i i
o O' O' h in
iiii
m
1
o
o
o-
i
O'
1
0*
H
1
rH
rH
1
in
i
m
i
ui
1
o
o
O
ni
NI
NI
NI
NI
NI
NI
NI
NI
ni
NI
NI
NI
NI
NI NI NI CM NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
NI
o
O
O
O
O
o
O
O
o
o
O
O
o
©
O o o O O
o
O
O
O
O
O
O
O
O
O
O
O
O
O
©
UJ
LU
UI
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UI
UI
UI UJ UJ UJ UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ
in
rH
pH
©
o
in
M>
M>
CM
O'
NI
NI
NI
NI
O' O' O' H CO
CO
i-H
rH
rH
P^
N-
n-
CO
<0
O'
rH
nO
rH
M3
o
O
m
pH
CM
m
o
O
M
NI
NI
NI
NI
m m m ni o'
O'
in
m
m
m
m
sO
M>
M>
o
o
NO
>X>
nO
O
CM
O'
O'
o
CM
|H
in
CM
O'
O'
O'
O'
V*
m m in h rn
pH
h*.
r-.
p*.
o
O
o
UI
m
o
rH
CO
O'
o
CO
CO
'O
O
in
M>
m
H
©
H
r-i
H
pH
H H H N
N N N K| O
st
n-
N*
p'.
O'
O'
O'
nO
sO
O'
NI
r^-
co
O'
CM
CM
pH
pH
o
O'
CM
O'
CO
O
O
O
o
O'
'O
sO
M3
v©
sO
K
rs.
NI
NI
o
CM
NI
CM
CM
CM
CM
O
NI
o
o
O'
SO
O'
P-.
ni
CM
CM
CM
CM
v© M3 s© O NI
NI
o
o
o
o
o
NI
NI
NI
O'
O'
CM
CM
rH
CM
CM
1
CM
1
CM
CM
1
H
1
o
o
«H
cm ni m \o
CM
1
CM
1
CM
1
CM MD >© vO H f>-
1 1 1 1 1 1
N»
O'
i
O'
O'
O'
T
O'
1
O'
O'
O'
1
O'
1
CM CM *
CM
NI
NI
NI
NI
CM CM CM CM
CM
<M
CM
CM
CM
CM
CM
CM
CM
NI
O
O O
O
© O O O
O
O
o
o
O
O
O
O
O
O
o
iiii
UJ UJ ui 111
^ o* O' o*
MMMK1
n- n. r^.
CM CM CM CM
O' O' O' O'
I I I I I
LiJ III ) 11 III III
M M O' O' O'
CM CM U| <0 CO
O O CM sO so
s© M3 H CM PM
OOO'O'O
I I 1 I I
m iif hi ni in m ni in til
NNNCOCOtOMMvO
CJMMO'O'O'NNK)
O'O'O'COCOCOOOCM
c'O'O'ioLOiON.r^O'
OOOO'O'OMMCO
000000000000'0>0'0'OOK\K1NIAU|OONNNNN(MU|ID'0000
UJ
>
o
O
O
O
o o
o
o o
O
0.
0.
NO
nO
1
M)
1
•*© O H rH CM
1 III
CM
1
CM
1
o
o
rH
rH
1
rH
1
rH
1
rH
1
rH
1
CM
1
CM
1
'f
O
O
o
pH
rH
rH
O O
rH
rH
pH rH pH O O O rH
O
o
©
rH
pH
©
O
O
O
O
pH
»H
pH
rH
»-
o
o
o
O
o
o
O
O
o o
a
O
o
O O O O O
O
o
o
o
©
©
o
©
O
©
o
©
© © ©
©
1
1
1
1
i
1
1
1
H- H-
i
1
1
1 1 4- H- H-
♦
*►
H-
♦
H*
♦
♦
H*
H-
H-
1
1
1
1
z
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ UJ
UJ
UI
UJ UJ UJ UJ UJ UJ UJ
UJ UI
UI
UJ
UJ
UI
UJ
UJ
UJ
UJ
UJ
UJ
UJ Ui
UJ
NO
K
in
O'
0-
O'
rH
NI
CO NI
nO
M>
>© rH UI O <M CM
<0 rH
/M
O'
M)
rH
M3
N.
m
r^i tO Ai
PM
UJ
NI
o
o
NO
O'
O' CM
fX
rH UI
o
o
O O O > O CM
CO
CM
O'
O'
oo
N|
<9
pH
O
pH
m
v0
O'
'O f".
I*"
H
NI CO
m
o
NO
CM
M>
o in
CO
SO
N. N O N CO CM
in
UI VO
v©
m
n.
in
00
rH
00
s©
©
O' U| o
NI
z
<0 CM
NI
m o-
O'
so
O'
nO
MMHiHHO
£
©
n.
N.
O'
rH
O'
v©
N**
O'
pv
O- CO rH
O'
CM
sO
NI
CM
nO
O'
CM
K
N| NI N O CM N
co
'O SO
v© in
O'
m
NI
00
NI
NI
M3
CM
O'
CM
sO
UJ
O'
NO
rH
CM
O- o
O NI
CM
m
•O O'
NI
NI sO N| rH
o
v©
CM
CM 0-
'O-
O'
O'
o
O'
00
O'
CM N.
M>
v©
Q
9
O
O' rv co O' rH o
1 1 1 1 1
o
rH NI CO H CM
1 1 1 1 1
NI
N.
MUMNvO
rH
O' CO CO rH
rH
rH
rH
CM
pH
©
©
* © «
1 1 1
_J
CM
CM
pH
rH CM CM rH
pH
pH
rH
rH
pH
pH
rH
pH
CM
pH
pH
z
o
o
O
O O O O
O
o
O
O
O
©
O
o
O
©
O
<
Q.
l
1
1
1 111
1
1
1
|
1
1
I
1
1
1
1
—1
UJ
UJ
UI
UJ UI UJ UJ
UJ
UJ
UJ
UI
UI
UJ
UJ
UI
UJ
UJ
UJ
a
©
r-
CO
o
o o NI O-
rv
O'
in
O'
m
€0
M3
00
CM
O'
CM
01
CM
CM
N-
CO
CO O NI 00
V©
o
NI
K
NI
O
©
©
O'
O'
CO
M
K-
CO
O
CO
co ni O' m
CO
m
h*.
CM
r*.
00
CO
©
O'
©
in
<
&
CO
K
co cm o
O'
o
CM
fM
CM
NI
f'.
NI
NI
p".
©
o
o
UI
M in
O'
o
O'
r-i
O'
O'
O'
O'
'©
O'
CM
o
o
o
o
O
o o
o
O
O
o
o o
CM
o
'O
M> O rH CO O
NI
O'
o
o
NI
N
NI
oo
CM
00
O'
O'
<©
o o
o
<
o
o
o
o
o o
o
o
o
o
o d
s0
1
vO
1
rH
1
pH O O’ NI NI
>6
CM
o
o
'i'
NI
O'
CM
1
pH
CM
1
NI
1
NO
Pv
1
o
O
o
CM
CM
rH
NI
NI
O'
CM
CM
pH rH
CM
CM
CM
CM CM rH pH pH
O
o
o
O
o
CM
CM
o
pH
iH
CM
CM
p
z
o
o
O
o
o
o
o
O
O O
o
o
O
o o © o o
O
o
o
o
o
o
©
O
O
o
O
o
O
a
O
O
2
o
1
1
1
1
l
i
1
1
1 1
1
1
1
1 1 1 1 1
4
♦
1
1
+
4
1
1
1
1
♦
1
i
1
1
i
w
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ UJ
UJ
UJ
UJ
uj uj uj uj ui
UJ
UI
UI
UI
UJ
UJ
UJ
UJ
UJ
UI
UJ
UJ
UJ
UJ
UJ
UJ
>•
t
NI
rH
NI
NI
m
CM
o
CM
sO o-
eo
O'
CM
CM s© n© O CO
CO
m
O'
O'
O'
<0
O'
CM
O'
CM
rH
O'
n-
O'
M3
NI
—i
D
rH
O*
4-
sO
O
NO
o
m
CM
nO CM
O'
o
O
O O' N- CO N
CO
sO
O'
O'
o
O'
o
CO
NI
00
O'
O'
V©
o
O'
CM
2
~J
rH
O'
CM
m
CO
o
O
NI NI
NO
o
pH
■H O' M O O
m
v©
fv
N.
CM
>©
CM
m
r-
m
pH
©
NI
©
K
O
O
O'
co
CM
sO
H
O'
pH
o
NI rH
n0
NI
n©
.0 O' M O' to
co
CM
O'
m
O'
L0
O'
in
O'
PM
O
CM
M3
O'
in
CO
CO
o
U|
CO
O'
o-
CM CM
K
CM
O'
O' UI 00 ro o
s©
CM
CM
CM
O'
m
O'
oo
rH
m
pH
NI
O'
o
o
UJ
CO
<
o
CO
NI
O'
CO o
o
CO
n-
O'
>0 rH
NI
O'
CM
CM pH rH 0- O
NI
O
N>
>*
m
O'
O'
NI
O'
O'
O
©
M>
©
NI
M
NI
CM
rH
r-
NI O
o
NI
rH
rH
•H O'
CM
rH
rH
pH O' CM CM •©
pH H O
>©
CM
CM
CM
N*
CM
fs.
N©
rH
rH
CM
O'
r*.
<n
2
<
< Ui
t- CQ
<
a co
• CM
Ui \
-J CO
a o’)
52
lO
<
<n
hi r
aOCDC9CDCDCDOCDCDCDCDCDCDC3CDCDCDCDOC50CDCJ>CDCDOCDCDCDCDCDOO0CDCD
OOOHOOOHOOOOOOHCMiOO'OHOOHeOO'OiHCMOHCMOHOOOO
MOOOOOOOOOOOOOOOOO'OOOOOO'O'OOOOOOOOOOOO
HWftlM^UJin'«NC00'OHHHHHNNM'0^0 , 'tlfllfllfl'0'0'0NN«)0'OH
^ HHHHHHHHHHHHHHHHHHrtHHHHNN
M
O
a
2-147
£hk
FIGURE 2-14. MSC/NASTRAN DISPLACEMENT VECTOR
LT.SAMPLE.DATA AUGUST 3, 1984 MSC/NASTRAN 8/ 1/83 PAGE
21 MASS/28 BEAM TEST CASE ONLY-NOT VALID AIRPLANE MODEL
o
o
o o o
o o o
ni ni eg
o o o
I
Nl
a
o
in
in
co
o
h- h- rH
O' |v»
<t CO H
in o' vo
co o- ui
M3
m3
m
Lu LU UJ
m cm o
m o co
m o- o'
*h co ui
N CO
OOOOOOOOOOOCMOvTO'NlOCMOO'O' M> O O
o
o
o
o
O
O
O
O
O
o
O
M3
o
O'
m
O'
o
O'
O
O'’
1
O'
rH
o
o
CM
CM
CM
CM
CM
CM
CM
r—i
CM
CM
CM
CM
H
rH
rH
rH
O
rH
o
o
O
O
O
O
O
O
O
o
O
O
O
O
O
o
O
o
O
o
o
4
4
4
4
4
4
4
4
4-
4-
4
4
4
4
4
4
4
4
1
4
LU
Ui
UJ
Ui
Ui
UJ
UJ
UJ
LU
Ui
UI
UJ
UJ
UJ
UJ
UJ
UJ
UJ
UJ
in
m
Nl
m
m
m
O'
n
CM
o-
Nl
Jv
H
't
CO
M3
co
M
O'
rH
co
O'
CD
o
M3
m
<r
O'
Ul
CM
CM
o
CO
o
CO
*—4
rv
<-H
rv
cn
CO
O'
m
CO
m
Nl
rv
in
ui
Nl
N.
Nl
H
i—1
m
m
CO
M
O
O'
K
m
>0-
CM
M>
o
O'
CM
rH
CO
CM
rH
■o
m
CM
ni
o
ui
«H
<0
r-H
O'
in
CM
M3
CM
CM
CO
O'
fv
rv
iv
CM
CO
O'
rH
rv
O'
sD
o
CO
CM
Nl
CM
M3
ni
CO
O
r—1
o
m
O'
M3
o
Nl
O
M3
rH
O'
M3
CO
fv
m
o
rH
H
CM
CM
CM
m
fv
CM
in
o
O'
rH
o
o
Nl
o
O'
O'
m
m
rH
rH
rH
rH
o
O
CM
CM
CM
o
o
O
o
O
o
o
O
4-
4
4
4
4
4
1
UJ
UJ
UI
UI
UI
LU
UJ
UJ
O O' J
o <r o-
rv.rv.ro
rv ni in
cO -0 rv
OOOOOOOOOOOO'OCMCMNlO-t
O O' ©
CO M H
m -o O'
O CM H
H O CM
O N >J O
o
O
O
o
O
o
o
o
O
o
O
o
rH
o
CM
1
rH
1
CO
O
rH
o
CM
1
CM
1
CM
1
O
O
b-
CM
Nl
N't
Nl
Nl
Nl
ni
Nl
Nl
Nl
vt
Nl
O'
O'
vt
't
N!
N!
N1
«t
m
CM
L>
O
O
O
©
o
O
o
O
O
O
o
O
o
a
O
o
O
O
O
o
o
O
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
UJ
UJ
UJ
Ui
UJ
UJ
UJ
UJ
UJ
LU
UJ
UI
UJ
UJ
Ul
UJ
UJ
UJ
UJ
UJ
LU
UJ
LU
co
o-
m>
rv
o-
O'
o
o-
M3
O'
CM
CO
Ul
CM
CO
o
CO
N1
Ul
O
vt
N1
>
rH
<t
O'
co
O'
CO
o
N-
M>
CM
M3
o
rv
O'
O'
Ul
O'
N!
o
o
o
M3
b-
ui
o
vt
rH
Nl
rv
CM
CO
O
N-
M3
in
Ul
O'
O'
N1
CO
rH
rH
CM
M3
m
Nl
ui
rH
CM
in
CM
CM
Nl
ui
o
rH
Nl
rH
N1
O'
o
o-
O
rH
O'
CM
O'
V
ni
Nl
CO
O'
CO
rv
Cv
M>
rH
Nl
CM
rH
CM
rH
<0
O
co
m
a
CM
o
u
in
O
M3
CO
m
O
in
rH
O'
o
co
M>
Nt
O
rv.
o
o
rv-
CM
sO
CO
<
tv
>5-
rH
M3
O’
M3
CM
Nl -t
CM
rH
in
rH
rH
rH
rH
o
>t
o
m
rH
rH
>*
I I t 1 I I
ooooooooooo
4 4
m ii) iii hi hj m in l!| hi hi iii
O'H^)vO«J»OC0'0^KlH
I <tMCrCOM<fNxjMCMM
Hff'ONCOHCOrtlflHff'
WNMCONMO'MNl/tN
M N COO'Nl^ vO U1U1 >t N
oooooooooooor^vor^moooo'or^oo
O
o
O
O
o
o
O
O
o
o
O
rH
M3
N1
>t
O’
O'
1
rH
O'
CM
f
rH
1
M3
1
o
o
o
rH
o
rH
o
rH
rH
rH
rH
rH
rH
rH
rH
CM
CM
rH
rH
rH
rH
rH
o
o
2
o
O
o
O
o
O
O
O
O
O
O
O
O
O
O
O
O
o
O
O
o
o
O
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
M
Ul
Ul
Ul
Ui
UJ
Ul
UJ
UJ
UJ
in
Ul
Ul
UJ
UJ
LU
Ul
UJ
UJ
UJ
Ul
UJ
Ul
V-
O
CM
N1
co
O'
O'
CM
vO
>t
Ul
rH
n
CO
rv.
O'
Nl
CM
Ul
O'
Ul
3
rH
M3
CM
rv-
M3
CM
CM
N!
M
vt
rH
st
>t
vt
rH
O'
CO
CM
O’
CO
vt
O'
O'
—i
CO
U)
o
rH
Cv
CM
CM
O'
rv
CM
Ul
CM
CO
n-
o
M
r*v
rH
O'
Ul
rv
o
r^
Ul
CJ
O'
rv.
O
N1
iH
o
CO
CM
CO
o-
o-
•vO
rH
Nl
O
rv
O'
CO
CO
M>
Ul
CO
O'
't
M3
M
't
CO
ro
N!
rH
CM
N1
rv.
o
O'
co
Nl
o
Ul
o
m
rH
>t
CM
CO
O
CM
O'
m
rH
rv.
N1
CM
rH
vO
rH
o
Nl
o
O'
O'
vO
O'
Nl
M
rv
M
K1
CM
m ^
m
<0
M3
CM
CM
CM
rH
rH
CO
a
M
o
CM O’ Nl
CM Nl
<
h
(0
2
O
b-
M
a
D.O0Ot50O0OOOO0OOUtD0UO0CD00U
>
h-
OOOrHOOOOOOOOOCMOOOCOOCMOOOOO
WOOOOOOOOOOOOOOOOOOOOOOOO
HNCgM«J-lfl'0NC0^OHHCMKl«J’^irilfl^NC0C'O
IriHHKHHHHHrtN
o
a
2-148
lV-V-V-VJ
FIGURE 2-15. MSC/NASTRAN LOAD VECTOR
NASTRAN input. These cards apply a constant axial force between two defined
grid points. The F0RCE1 cards in the sample case are used to account for
nonlinear effects in oleos and unsymmetrical beams. There are no externally
applied loads at node points, only at mass points.
2.3.2.7 Forces of Single-Point Constraint
Figure 2-16 shows the NASTRAN output that summarizes the forces of
single-point constraint. This shows the forces and moments that are applied
at the model constrai t points to balance the model. For point 500, con¬
straints are specified in all six directions, so corresponding forces are out¬
put. Note that the loads for the symmetric degrees of freedom (Tl, T3, R2)
are all very small, indicating that a well balanced set of applied loads is
being used as input. This is the result of including inertia relief loads
in the calculated net loads used as input to NASTRAN. The constraint forces
in the anti-symmetric directions (T2, Rl, R3) result from the geometry of
the model. A half-airplane model is used, and wing loads come into mass 5.
The constraint loads shown correspond to the missing loads that the right
wing would have supplied. The same is true for grid points 600 and 900.
Grid points 1199, 1498 a 1 1499 are center-plane grids as explained in
Section 2.3.2.5. The single-point constraint forces shown for these grid
points are the reactions at the center of transverse beams in the KRASH
model.
2.3.2.8 Forces in Bar Elements
Figure 2-17 illustrates the NASTRAN output that summarizes the bar
element static loads. The sign conventions for these loads are shown in
figure 2-18, along with the corresponding KRASH85 beam element sign conven¬
tions. The KRASH85 loads that correspond to the NASTRAN bar element loads
shown in figure 2-17 are as follows:
AS TRAN
1 OAi!
CORRESPOND INC
KRAS 118 3 LOAD
MIA
-MZT
M2 A
MY I
MLB
MZ.I
M2 B
—MY. I
SI
FYJ
S2
FZJ
FX
FX.1
T
MX.l
NASTRAN plane 1 corresponds to the KRASH85 x-y plane, plane 2 corresponds to
the x-z plane. Comparison of the loads in figure 2-17 with the KRASH
"STRAIN FORCES" output at time zero will show a very close agreement. Beams
which lie entirely in the airplane plane of symmetry (y = 0 plane) are
treated differently in NASTRAN and KRASH85. In NASTRAN, the loads are for a
half-beam, while in KRASH85 they are for an entire beam. This applies to beams
1000-9000, 19000 and 23000 in figure 2-17. (The NASTRAN bar element numbers
are 1000 times the corresponding KRAS1I85 beam element numbers.) Beam 24000 is
missing in the NASTRAN model; this is a I)RI element which is modeled as a
RBAR rigid element in NASTRAN.
2.3.2.9 Element Strain Energies
Figure 2-19 shows the NASTRAN output of bar element strain energies, in
inch-pound units. Missing elements (1000, 25000, 26000) are those that have
less than 0.001 percent of the total strain energy. These strain energies
agree with the KRASM85 output at time zero, except for oleo and unsymmetrical
beam elements. The use of FORCE 1 cards in NASTRAN to model these nonlinear
elements causes the strain energies calculated by NASTRAN to be incorrect.
The KRAS1183 strain energies for those elements are correct.
sO S0 M
O O O O O O
♦ ♦♦♦♦♦
UJ LU Ui Ui UJ
^ vO O' vO O' O'
M (0 o 'O w N W
a H N 03 ■tf M ^
fs £0 'O M M
(OMvOONW
sJ* Ifl O' CU M
<m p- 4 ro m m
i
Ul
w
<SI K*
0£ H
»o
Ifl __
OJ o o o o o
<r o o o o o
N vO 'O W l/l
o o o o o o
♦ ♦♦♦♦♦
Ml tu UJ UJ Ui LU
frNH't Ifllfl
H <f N M M ^
{»> f-< tsl 0 s vQ CM (Ni
(0 Ifl O H N N
in >0 H H N N
H N O <6 N ^
,-i .-t O' «J csi
4"
^OOOOOO
I o o o o o
ifl>t <r
c> o o o o
u LU LU Ui Ui
^NO'MO
M O K1 O' lil
u O' H CU N Kl
(U N O' N H
o O' O' O' CO
HHCOHnOO
H N vj vO N O
I I I
m o © o o ©
<r o o o o o
a (9 O (9 (9 (9 (9
OOOOJ JO J
M o o O 0 s <**
|/» C" »H «{f
LT.SAMPLE.DATA AUGUST 5, 1984 MSC/NASTRAN 8/ 1/85 PAGE
21 MASS/28 BEAM TEST CASE ONLY-NOT VALID AIRPLANE MODEL
X o
< u.
©
lO
LT
-T
LT
M
• j
< »
m
m
O
c
O
.
o
O
.J>
O
0
0
4-
+
+
4-
f
1
4
4-
L J
LU
L-J
UJ
UJ
UJ
LU
L J
UJ
Ul
-ij
O
V
C'
•j
/—<
>.i
■ 7 -
NT
NT
X©
O
r j
L-T
u.
O
c
1 X
NT
CJ
•’ J
0
•©
rl
-
?x
O'
1/1
NT
CJ
f !
<0
CJ
ix
-
C'
0
co
' J
C'J
' J
t T
rx
v -p
LTj
o
rx
0
uT
LT
O
m
o
o
o
o
o
c-
o
o
O
3
0
1 J
■*>
CSl
rH
O
CO
O
-
LT
0
O
0
0
0
0
o
o
o
o
o
o
o
o
O
o
m
NT
1
•-T
i
NT
rH
1
ST
CJ
CJ
1
O
fx
X©
0
=
0
0
0
0
<SJ
CL
CSJ
3
t
*
NT
3
m
3
'O’
3
rH
O
3
CJ
NT
st
T
3
CJ
m
o
o
o
o
o
o
o
O
o
o
o
O
o
O
O
O
O
O
O
0
0
0
0
1
4
-r
4
-►
+
■r
4-
+
4-
4
4-
4-
4-
4-
4-
4
4-
4 -
H-
H-
UJ
HI
UJ
UJ
LU
UJ
UJ
UJ
UJ
UJ
LU
UJ
UJ
UJ
i*J
LU
Ul
UJ
UJ
o
m
a
Li
rH
CJ
o
! J
C J
•T
o
Ul
CJ
X©
rx
©
CO
—T
LM
co
0
'J’
O'
rj
o
CSJ
J5
CJ
NT
rH
3
vD
m
rH
V©
X©
3
NT
O
X©
O
O
O'
3
pH
rH
NT
O'
CM
CJ
m
NT
o
fx
X©
O
CJ
3
|Xx
©
O'
O'
N-
o
o
NT
O'
3
rH
CSJ
u>
o
NT
©
«4-
0-
O
rH
l—i
O
CO
N*
O'
NT
►n
3
NT
rH
rx
c
CJ
L>
rH
O
3
n
O'
O
v©
CO
OD
Ns.
0
O'
in
rH
co
rH
O'
O’
m
N.
CO
CSJ
O'
r*H
O'
co
3
-0
Ox
rH
lO
0
rH
m
rH
co
0
0
0
rH
CsJ
H
nt
CsJ
CJ
CJ
CSJ
CJ
cO
rH
NT
r.T
x©
rH
m
rH
NT
rH
CSJ
in
x©
S*
0
0
0
pH
l i 1 i
CJ NT
o o
a;
<
co
u
nJ"
'3’
2f
O’
NT
xj
O’
•J-
'J-
NT
NT
NT
NT
0
0
0
NT
NT
NT
0
CSJ
CJ
O
O
O
O
0
O
O
O
O
O
O
O
O
O
0
0
0
O
O
rH
0
rH
rH
4-
4*
+
4*
•*
-r
4'
4*
4-
4-
■r
4*
4-
4-
4
4-
+
H-
1
4
1
|
UJ
UJ
UJ
LU
UJ
UJ
UJ
UJ
UJ
Ul
LJ
UJ
LU
Ul
LU
LU
UJ
Ul
Ul
LU
UJ
LU
UJ
CO
CJ
O’
N-
sr
O
CJ
C J
\4>
xO
o-
O
m
CJ
CJ
rH
xD
O
lx.
O'
CO
CO
CJ
NT
co
•T
0
in
N.
CO
O'
CO
-O
O’
X©
O'
O'
a-
CJ
NT
■3-
O'
S©
xO
0
CO
0
N-
O’
O'
rH
NT
©
O'
rH
NT
in
LT
■ J
fXx
N.
C'
sl-
CO
CO
m
N-
rH
m
c-
0'
xO
CO
fx-
■t
co
CO
O
•*
co
CO
rx.
fx.
co
s3*
rx.
X©
©
O'
0'
O
x©
a
N
in
s^-
x©
O
■&
0 -
rH
Q
rH
rH
co
LO
<r
O'
0
NT
NT
rH
m
M
O'
rH
in
rH
Ns.
rH
CJ
CJ
Nx
O
fx.
co
CO
CJ
NT
0
0 0
O rH
rH
or
<
fXLnrHrHrHrHrH3rH3CS)CSi3CJin333rHin33LnO<
lilt
ooooooooo
44 + 444444
in i*! ni ni hi m Lii hi hi
cjNTNT3rxfxo33
r-i^-<rOv3-f^ocsJC0C0
OC 0 H-tK 1 NUTHH
CQNHHOvJ’COO'O'
LL> Hi
in 1X1
CsJ W
O O
o o
CO CO
_JOOO©OOOOOrH3in0'rHO©NTNTOrHNT©O©OOO
NT CsJ
O rH
4 I
UJ LU
si" H
O' ©
LO rH
CO ©
^ 3
cn
a
O
0
O
0
0
0
O
0
0
©
1
CJ
O'
1
©
1
st
CJ
1
rH
1
©
1
©
1
0 .
5 .
CJ
O
0
O
O
rH
1
pH
1
h
<3-
m
©
©
©
©
©
©
CJ
©
©
in
in
in
st
3*
0
O
rH rH
m
m
0
m
m
z
O
0
O
0
0
0
O
0
0
O
O
0
0
0
O
O
0
O
O O
0
0
0
0
0
♦
4-
♦
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1 1
4
4
4
4
4
UJ
UJ
Ul
LU
UJ
Ul
Ul
Ul
UJ
Ul
UJ
UJ
LU
Ul
UJ
Ul
UJ
UJ Ul
UJ
UJ
Ul
UJ
LU
CSl
sT
O'
O'
•3-
O
CJ
a)
CSl
sf
CSJ
CO
O'
CJ
rH
rH
O O
3
NT
NT
3
3
z
CO
3*
rx.
rx
\3-
CO
NT
m
NT
3-
©
h-
rH
©
NT
NT
co in
CJ
st
rx
NT
NT
CO
CJ
NT
3-
NT
m
0
st
©
rH
rx
3-
csj
csj
O'
NT
•3
rH
rH
co rx
rx
©
O'
CsJ
CJ
1
Z
O'
rH
n*
rx
N-
O
NT
NT
m
rH
CSJ
CJ
O
m
m
m rx
rx
rH
rH
CSJ
CJ
0
<
co
CJ
in
in
m
O'
©
rH
CJ
NT
O'
O'
O
©
CO
©
O'
O'
rH CSJ
0
rH
rx
fx
rx
-j
z
-J
CSl
co
0
O'
3-
m
CO
O
rx
rH
0
CO
NT
CJ
3
O'
O'
© m
m
©
CO
O
O
rx
rx
UJ
1-
fx.
O'
CJ
©
© m
NT
CSJ
csj
NT
1
NT
1
m
1
CSJ
rH
CO
n.
OsJ
Csj
m ©
O'
O'
1
rH
1
O
O
CSJ
1
CSJ
1
z
© m
©
©
©
NT
NT
CM
csj
rH
O'
m
m
m
cr
0
O
0
O
O
O
0
0
O
O
0
0
0
0
Q
4
4
4
4
4
4
4
1
1
1
1
4
4
4
<
J"
UJ
Ul
UJ
UJ
Ul
Ul
UJ
UJ
UJ
UJ
UJ
Ul
LU
UJ
1
in rx
0
O'
m
O
m
3
3
rH
©
©
O'
3
co
©
O
m
NT
0
NT
NT
O
O
CJ
0
m
Csj
CJ
z
CO
m
NT
CO
O'
O'
0
CJ
CJ
rx
O'
3
NT
NT
O'
rx
co
CO
csj
NT
O'
CSJ
csj
©
rH
©
NT
NT
CO
</
fx
rH
O'
UT
©
NT
0
CJ
CSl
fx
CJ
0
CJ
CJ
z
-J
0
O
0
0
0
O
0
0
O
©
rH
©
O'
rx
©
fx
CJ
CSJ
0 rx
m
CSl
O
O
O
NT
NT
w
0
O
0
0
0
O
0
0
O
3-
NT
CJ
NT
NT
O'
O'
pH
rH
0
■5
pH
rx
O
O
O
m
m
z
o
o
(/)
K
to
z
o
a
z
o
u
CsJ
< LU
I z
Q <
Z •
rH 3
O O
4 4
UJ UJ
in CsJ
CO rH
CO 3
rx O'
co ©
si- 3
in ©
o o
♦ 4
UJ UJ
O' ©
© 3
m nt
pH >t
CSJ LO
3 co
© ©
o o
rH NT
3 in
O pH
co rx
rx o
© © © ©
o o o o
4 4 4 ‘
UJ UJ UJ UJ
CSJ 3 0 rH
pH O CSJ H
CO H ffl M
v© I s - 3 O
3 © rx o
3 m 3 co
V© sO
o o
minmincsjcsjrHsOsoinrH
ooooooooooo
4 4 4 4 4
4 4
m m
o o
4 4
UJLiJlUUJlUUJlUUJUJUJUJUJUJ UJUJ
vocsjo'r^r^csjinmocsjsosrpH mm
(OsfivO^'WNvt'tCOO'sOsf'fl Nl M
(MrilflvOCONOOCONNvDH CSJ CM
'O-tKIMO'O-t'fO'vOrtrlO CSJ CSJ
'tONM'fCO'O'OOO'KlHCO Cx fx
(MflO'O'OMNCSIHmO'vOSOONN
a
rx
1
rx
3
CSJ
CO
rx
m
NT
CSJ 3
1
©
1
3
1
m
1
©
3
3 ’
3
1
3*
l
CO
rH
1
pH
1
3
1
3
O
O
CJ
1
CJ
1
©
©
m
©
©
NT
NT
CJ
CJ
©
pH
m
m
m
O
O
0
0
0
O
O
0
O
O
pH
0
0
0
4
4
4
4
4
4
4
4
4
4
1
4
4
4
LU
UJ
UJ
UJ
UJ
Ul
Ul
UJ
UJ
UJ
Ul
UJ
UJ
Ul
rH
©
NT
3
NT
m
O
3
3
m
rx
©
3
3
3
3
CO
rH
NT
m
rH
3
3
3
m
m
CJ
CJ
UJ
©
©
3
CO
©
NT
3
O
O
3
©
3
NT
NT
7.
©
3
rx
rx
NT
0
fx
rH
rH
0
NT
©
NT
NT
<
CO
NT
CO
rx
3
rx
rx
NT
NT
CJ
CJ
0
CJ
CJ
-1
0
0
0
0
O
0
0
0
O pH
3
3
©
O
0
3
©
©
O
m
NT
CJ
O
O
O
NT
NT
a
*
•
•
ooooooooofnmo'csj>i*cocommopHi«nN>ooomm
ooooooooooooooooooooooooooo
ooooooooooooooooooooooooooo
Z ooooooooooooooooooooooooooo
uj • rHcjNi3m©rxco30rHcjNT3in©rxc030rHCJNTm©tx«o
Z o HHHHHHHHHHCSJCSJCvJNCSJNMCSI
2-152
FIGURE 2-17. MSC/NASTRAN BAR ELEMENT FORCES
BAR ELEMENT FORCE S
»* 5, ■ 2'* W*
i ■■ rawr*
r
o
nt
u
tx
CO
\
0 10
>
rH
o o
0
N
H- +
UI UJ
O'
UJ
CO
r—i r—l
Z
M> M3
<r O'
UJ
1
z
<
oi
>-
0
<
z
\
o
0
r
CM CM
NT NT
O' O'
CSJ
O
O
i-4
O
rH
O
O
O
rH
o
rH
rH
rH
rH
r—i
O
rH
rH
rH
O
o
o
o
o
O
O
o
O
O
o
O
O
o
o
o
O
O
o
o
O
o
O
O
1
1
4-
4-
1
4-
1
4-
4-
4*
1
4-
1
1
4-
4-
4-
4>
1
1
4-
4-
UJ
UI
UI
UI
UI
UJ
UI
UI
UI
UI
UI
UJ
UJ
UI
UJ
UJ
ui
UI
UJ
UJ
CO
h-
CM
CO
h»
CO
M3
o
rH
o-
CM
M3
O'
10
o
CM
o
o
O
CM
't
M3
CO
CO
CM
CO
O'
M>
N.
10
o
CM
M3
CO
CM
M3
f'-
O'
O'
rH
CM
CM
O'
LT|
h-
to
CM
CM
H
CO
O'
rH
n3*
rH
rH
N-
CM
O
NT
vt
CM
CO
rH
O'
sO
<0
a-
st
sO
O
NT
O'
CM
O'
O
rH
CO
CO
CO
nt
O
rH
rH
o
NT
N»
CM
O'
CSJ UT Lf>
M3
CO
o
CM
<0-
NT
r».
rH
LO
rH
rH
rH
rH
rH
r-i
M3
NT St
M>
NT
10
rH CO
O
CM
rH
CO
rH
rH
10
CO
N.
rH
NT
10
10
N-
o
UI
rH
rH
O'
CSI
CSI to
rH
rH CO
r—i
rH 10
CM
r—i
CO
CM
f".
M>
CM
CM
rH
rH
O'
o.
r4
rH
<
tt
►“
0
<
o
wm co
z
H*
M>
CM
O
O
rH
O
NT
sO
0
CM
0
St
CM
O
h»
O'
M>
rH
0 O
O' O
O'
CM
O
L H
u.
M3
St
0
M>
M>
!'*.
NT
NT
O
0
rH
O'
O'
0
s£)
(H
O'
0 N'
CM
O'
0
o
T.
co
o
NT
N-
h*
M)
0
0
CM
ui
St
N.
0
O'
K
CM
O'
O'
r—i
CM
CM O'
0 rH
O
0
o
r +
0
O h
O
NT
0
O'
CM
M>
FM
CM
NT
O
St
<r
NT
CM
rH
NT
o
O
CM NT
O O
O'
O
o
\
UJ
a 0
z
UI
O
O
iH
NT
rH
rH
rH
O
0
rH
CJ
rH
0
NT
0
O
O
O
o
O
M> NT
rH
O' O
rH
0
rH
o
o
w Z Z
0
D
O
3
<
0
a
0 0
0 LU
Z Z
a
0
o
o
z
z
<
a
a
<
>
> >
O 0
a O'
LU LU
z z
UJ LU
< <
h- H
O O
>
0
rH
CM
NT
NT
NT
NT
NT
CSJ
s*
O O M o
CM
CM
CM
rH
NT
rH
NT St
0
a
o
O
O
O
O
O
O
O
O
o
O
O
O
O
O
O
o
O
O
o
O
O
O
O
O
UJ
4-
4-
4-
4*
4*
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4*
+
•4
4-
+
+
4-
4-
H-
+
Z ui
UJ
UJ
UI
UJ
UJ
UJ
UJ
0
UI
UJ
0
UJ
0
0
0
0
0
0
0
0
0
0
0
0
UI
i
CM
0
CM
N.
O
n-
o-
N-
sO
O
NT
CM
M>
0
OJ
r^.
O'
O
N* 0 O'
NT 0 0
rH
O
O'
Ps.
NT
O'
NT
O
0
CM
O
O
O
CM
NT O*
M>
M3
rH
o-
r>-
r>.
O'
M>
Z sr
St
O'
O'
O'
O'
CSJ
N*
rH
NT rH
COOM
0
O 0 NT
O'
O'
O
O
o
O'
M
NT
CM
CM
O'
r*»
o
0
CM
0
NT
O' CM CO
o
rH
0 0
NT
NT
O'
sO
UT
rH
M3
CM
<
O'
N*.
O’
M3
CM
o
NT
O
NT
NT
0
NT
0
vf
O' NT
CM
O
fN.
O'
rH 0
rH
NT
ce
M>
CM
o
M3
O'
CM
NT
O'
ut
NT
M3
O
NT 0 M3
CM
M3
CSJ 0 0
NT
M3
O'
O'
0 M)
r*
NT
N.
CM NT NT St
NT
CM
rH
M3
rH n±
NT
M3
CM 0 rH
CSI
CM
NT
CM
rH
HHHHHHHHHHNCVJNCJWN
1
w
>»
fc
-J
3
a
z
0
«
o
O
0
0
0
II
0
O
M
0
u
3-
Q.
<
>
h
H
0
0
1
0
h- 0
K
z
Z 0
o
0 4
Z
w
Z L)
<
h-
0 0
< 0
M
-J Z3
0
a
0 0
QOOOOOOOOOOOOOOOOOOOOOOOO K
MOOOOOOOOOOOOOOOOOOOOOOOO o
I oooooooooooooooooooooooo I—
HfSJNT<0 , U)M3F'-®G'OrHCSINT>0;UTM>r^C0pOrHCMNT^»C0 ga
0
or
<
CO
UJ
o.
<
o co
• CM
UJ N
-i 0
a. 0
r <
< z
O
• rH
I- CSJ
2-154
•v' v” -
»jCmjfm
b»A.^k;
FIGURE 2-19. MSC/NASTRAN ELEMENT STRAIN ENERGIES
2.3.2.JO Grid Point Force Balance
Figure 2-20 shows the NASTRAN output that tabulates all the forces and
moments acting at the grid points. The totals shown at each grid point are
not always zero; the loads due to RBAR rigid bar elements are not included
in the balance. Therefore, mass points which have node points connected to
them, as well as the corresponding node points, will show nonzero total
loads. (Grid points 200 and 201 in figure 2-20 for example.) Mass points
without node points (such as 500 or 600) will show zero total loads. Due
to this anomaly in the grid point force balance output, these data are onlv
marginally useful.
2.3.3 K.RAS1185 Output
2.3.3.1 Initial Output
The initial output of KRASH85 is identical to that of KRASHIC,
described in Section 2.3.1. These data were illustrated in figures 2-8 through
2-10. The only exceptions to this are the mass and node point coordinates,
as well as the initial mass and node point deflections. The values shown in
the KRASHIC input represent the values before the last iteration of KRASHIC/
MSCTRAN. The values shown in the KRASH85 output are those following the
last iteration. There will be slight differences in the deflections between
those two outputs, unless a very large number of iterations are used (>10).
Figure 2-21 shows this section of the output from KRASH85. Note that
the initial deflections and corresponding coordinate positions are slightly
different from those shown in figure 2-9. As an example, the initial node
point z deflection for node point 11, 1 changes from -.3946611 in figure 2-9
Co -.3946607 in figure 2-21. These values represent before and after the
tenth iteration. The corresponding node point z coordinates show no
difference between figures 2-9 and 2-21, since thp coordinate values are
shown only to .00L inch. The differences are much finer than that.
Also, the initial deflections are in data set XYZ.NASOUT.DATA, which
is always shown at the botton of the KCHO of input data. If all deflections
I
in this data set agree between the KRASHIC and KRASH85 outputs, then further
iterations cannot improve the accuracy of the initial conditions balance. If
the two sets of data do differ, and the user is not satisfied with the quality
of the initial balance, then further iterations cent Id improve the initial balance
KRASH85 includes some additional miscellaneous calculated data, in addi¬
tion to that described for KRASHIC in Section 2.3.1.3. Figure 2-22 illustrates
this output, which is calculated prior to time zero in KRASh’85. These data
include
• Beam uncoupled, undamped frequencies
• Beam damping constants
0 Euler angles, beam IJ to airplane
•_ Load interaction curve load ratios (optional)
The beam frequencies output are the undamped, uncoupled individual beam
frequencies associated with the six degrees of freedom of each beam. The
frequencies listed under the headings (1), (2), and (3) correspond with the
three translational degrees of freedom (x, y, z) and those listed under the
heading (4), (5), and (6) correspond to the three rotational degrees of
freedom (<f>, 6, ip). The frequencies are computed using equations 1-55(a) and
l-55(b) from Volume I, Section 1.3.5.3.6.
The frequency values summarized should be reviewed for indications of
potential stability problems which may occur with the numerical integration
routine used in the program. For example, high frequencies combined with a
relatively coarse integration interval may result in numerical integration
instabilities. In general, beam member frequencies should satisfy the follow¬
ing criteria:
1) Member frequencies < 500 Hz
2) The product of the maximum beam member frequency and the integration
interval <0.01
2-156
INITIAL CONDITION STATIC SOLUTION
r - v* .•
o o o
o o o
o o o o o
O O O © o
o o o
o o o
o o o o
oooo
o o o o
oooo
r«. -o
CO CO O'
yf O O O nT Kl
oi/iooino
0^00^0
o o o o
o o o o
o o o o
o o o o
NOOONi
♦ ♦ I
Ul UJ UJ
Ul Ul <NJ
CM CO CO CO
OC CO CO -O
N N *
co CO Kl
<r ui
M J t J H IT
H -t H Ifl
cr cm ^ -y
mir o oifl
H CQ vO cO X5
X N «t N w
o o
CO CO
co CO
O' o
o o
O rM *•«
Ul ^ O' r-t
O' 5) d H
Ul Kl m
J M rt N|
CM CM co
a> # <r ^0
CM sO sO CO
o o o o
UJ LU Ui UJ
Ul H o Ul
(0 N 'J Ul
CO >?■ Kl >f
CO •T >}■ -f
y- Ul Ul CM
CM CO CO O
ifl i O' J N J
Kl O <T >H O O
H Ul M ^ M N 1
W CJ H o f CO
Ul Ul Ul CO CM CM
NMONNM
O' J H O
N K 1 O' CO
Ul Ul CM Ul
O' -J CM O
lilNHO'
NOON
O CM U) Ul
CM O' O CM
•«>f «f N
•O O -T CM
■J ■JOU1
u\ T -h a
cm r>. ,
Ul K. fM O' i
O CO CO
iH O' O' fM
vj- CM sO CO CM CM
NOON'
CM Ul Ul Kl
o o o
o o o
O O O O o
o o o o o
o o o
o o o
o o o o
o o o o
o o o o
o o a o
) <0 •&
1 ui 03
< O O O <-• O'
(A Ul CO
M 3 vO CM
O fM o O Cm Kl
o o o o
o o o o
O O O o
O O O o
O O
CM o
OHOOHN
♦ + I
UJ UJ Ui
CO MS O
M H rt Kl
H- Ul Ul CM
M KWI
CM CM st
CM CM N
>f O N |J N
-J HUl'ON
O Ul ^ Ul o
Ul M O' o- H
O' fj H U) vO
O N O H
■fi O Cm
O' O fM
O i o
K1 K1 ^ O
O O O
■* + + t
UJ UJ UJ UJ
fM fM ^ M)
CO ui sD CM
H o O CO
H O' Ul M
MHOS
Ul «J-
<t y* O' Kl
y* yO O' Ul
M O N rt
CM Ul CO -t
Kl O' O' X>
O H Ul H
UJ UJ UJ UJ UJ UJ
Ul O' O' O CO K 1
vT CO O' <M O' co
O' Pm <M Ul Kl Kl
N Ul <0 Ul CM O
■f CO O' O fM r-C
>0 U> Ul Ul fM O'
o fM fM CM
CM Kl yO yf
Ul Ul Kl Ul
Ul .T CM Kl
O H J> CO
» Ul CO O' CO
UJ UJ UJ UJ
^ N O H
Pm K\ Ul U|
10 U| O O'
vj- O' O fM
>J- -H CO CM
ki co <r ui
•0 OlrtH
NO Ul 4> Ul
00(0 0
N N H
■J fM LC1 o -
<0 lA H N
H 4 H H K 1 N
(M O H H Ul Kl
MHHH
O Q O
odd
o o o o o
o o o o o
o o o
o o o
o o o o
oooo
o o o o
oooo
yO yQ CM
O O O'
O' O' fH
CM CM ui
O O Ul
rH O O O rH >J-
CM CM yf
Kl Kl fM
r4 *■4 yf
fM fM K
O' O' y-
OHOOHUl
O cm o O CM ^
OOOO
dodo
oooo
oooo
OOO-C OOOr-4
UJ UJ UJ
O O'
• -O Ul y?
■ CO CO -4
K N O
-o -o y
U1 ui Ul
UJ UJ UJ UJ UJ
CM O' O' yf yf
CM ui Kl O' CM
Ul co O Mil
Ul fM x> CO <0
Ul -0 <T O CM
H ui Kl Kl O
Kl CO -0-
fM ^ CM
O Ul Ul
CO Ul CM
vf O
UJ UJ UJ UJ
CO O' fM Ul
M 3 Kl O CO
«H O CM O
O' M 3 Ul -t
O' vT vt CM
CM Kl •O ^
UJ UJ UJ UJ
O' fM Ul CO
CM O Kl CM
fM CM Kl
fM Ul O Ul
<t y* yO CO
CO M> O fM
r-C O O O -
I
UJ UJ UJ UJ UJ UJ
Ul O' Ul Kl «M
Kl CM Kl CO CO
N (M ^ T -J H
Ul O O CM H ifl
M JM) H K ^
Ul o O Kl Kl Ul
Kl Ul v* O
Kl CO ^ (0 Kl
yf & CO Ul
Kl CM O' H Ul
Kl fi CM M yQ
CM O M Cl H Kl
CM Ul M 3 M 3
Kl rM rH M 3
CM CO CO fM
H If Ul O
«e -c o eg
V? rM O O'
O' 00 CM >H
fM Ul ^ Ul
CO Kl yf Ul
Kl M) .O y?
O rM
O M3
Nf'.r-J Kl PM sj- Kl r-* Kl CM *
CM -O’ M) *H Ul vO -0 CM O' fM M 3 CM CM r-C O CM CM Kl Kl Ul CM CM Ul CO CM CM rM
O Q
a <
00 o
a o
4 CL
o oo
o a
a 4
</l o
o a a o
to a. 4 »—
4 CO *
a a a ct O
a. 4 4 4 fr-
4 CO (0 CO *
a a o
a < >-
4 tO *
a. cc a o
a 4 4 i-
4 CD (0 *
a a: a o
a 4 4 >-
4 C 0 t 0 *
o a a a a o
i 0.4 4 4 1—
U. 4 CO 00 CO *
aOKKQIO
O. I 4 4 4K-
4 U. (D CO CO *
o. a tr o
a 4 4 K-
4 (0 CO *
a a a o
a 4 4 K
4 CO CO *
o o o
© o o
o o o
H (SJ Kl
o o
o o
© o
CM Kl
o o
o o
o o
Kl y
o o o
o o o
o o o
<t Ul o
o o o
o o o
o o o
Lfl MJ O
o o
o o
o o
yQ fM
o o
o o
© o
fs (0
o o o o o
o © o o o
CM CM CM CM CM
HrlH OOOO
o o o oooo
CM CM CM -----
Kl Kl y y y y
o o o o o o
o o o o o o
Ul Ul Ul Ul ui Ul
o o o o o o
o o o o o o
<J> O yQ -Q -Q yQ
oooo
oooo
N K |M S
oooo o o
oooo o o
<0 <0 (0 CO O' O'
FIGURE 2-20. MSC/NASTRAN GRID POINT FORCE BALANCE
HHNM'i'lfl'0S®0'OHNM4 , irXlKC00'O«
noooonoaooooooaoQOooa
ooaoooooooooooo-sooooo
NOOO'O'^OOOO'fOOOOOO-J-COOOOO
MOOOCOlOOOOK* OOOOOOf'-f'-OOOO
oomk>>ooooo<ooooooi^i-(oooo
UlO'OO'JOOOJUliOHOtOO'fflOoOO
HB'HNHMMMNrtMKIr
QQQQQCJOQOQOQOQQOQQQOQ
OOOOOOOOOOOOOOOOcgQOOO
>OOUUflNOOOtOO)COMff'NlSJ(00oOO
MOON>'HsOoooa>a i^jhnki-j-cooooo
QO'JM/ lOOONMSWJtOHMflOoOO
OO‘fl'0NM^0HOKI(M(Vli1O^'f >0QOO
000000000000000000000
OOOOOOOOOOOOOOO £00000
X\J’OC0f > --0f^'0<0<^OMOl0MC0U>OOOOO
HHtONNOCrtfl'^MHHHfflQHNOOOO
IflOM'O'-IMinONiflNUlNON^HHOOQ
HfflHHtfCOfflfflO'N'
000000000000000000000
- KKUOMOOOM<rMlflNO'0'OCOWlflHeOM
NOO'NlONfvJUlNMMNvfOM'ON^NNCO^
e-s<oiflONs^eo(MOio^^a'S>owHNs
HHOOOHONlflO'IOONUl-fl-Jff'HJ’IOM
M<S»{SJCJ<VJCNj<SJ<SiCSJ<SJrHCdfsjrsJf\JrHp-«0'cO(Njfg
ooooaaoo
NC-lftO'fiff'tflM
'OlflO'^'OCOfO^i
K%rs.M<0'HC0'Ofo
ajHONOHHfg
OOOOOOOOOO*Hr^MC0'»f^l/lK*OOO
OOOOOOOOOOr
N^lflNNUflrtOOO
000000000000000000000
- (>-nn4)OOOn^h DcsiaMOO'iProocsir'-
* -JNff'0'OOJ'OQvJN(Dff''JHNOc0NOW
Xff'ff'O'ff'OOffOQONOB'JOOHHNIM'
(OO‘ff'ff'OOMO'flNHNN^Hff'NNff'5'9'
HN^>O(0O'HHnH<0t0ff'HHNO'(0NNN
oaoooaaaaoaaooooooooo
OO<HO>0OOOOOOv0OOOOOOOOO
Ol/lC0‘«Ml/lN^OftJOI/ll/lOMOOOOOO
tOJKlONC5C'MQNNO(Ol/l'JOUlNtOOO
uiouimho-hO'nh ioNNW-JHirMOo
HaHHCgNO-tMAXTHinf
CMCMCJCMCMCSJCMCSJCMCSiNCg
oooooooooaoo
000000000000
OWMMNHS4>««(0(0S
Off'MMN'CrtO'BM'filO
MHN^^INrfvO
iH^OONOOO'HSff'^)
CO«OfflfflOMN^O-fiN^
HrlHHNNNNNHNH
JNNNNNNNNN
>000000000
joooooooao
>'0>0No®sflui0'o
)>fi^OHN^MOO
lNMfl«NrfiJ©0'
>FHrHr-iiHOOrHrHO
(WMNIfl^^NNIflO
(HHMlflNNMMino
: NNNNNtgMKINNNN
I 000000000000
1
OOOaOQOOOOOQ
- OHNNOMTIOrHfJO
I - O(0(0(01/1N^H^N®M
lXHBO'9'lfl>tlflO'fOMH
I 1/IM-OvSHMJHI/lff’Nff'
: NMOtOi-tO'HHMHHS
r>-' r~ 00 eo a> O' rH i-J r>-' n! a- fg
'EHHNMHHHNHNHiH
0
HHHHHHrtriHHNN 2
.-.>1
FIGURE 2-21. KRASH85 OUTPUT, INITIAL MASS/NODE POINT DEFLECTIONS (SHEET 1 OF 2)
VEHICLE TRANSLATIONAL VELOCITIES IN GROUND AXES I IN/SEC)
VEHICLE ROTATIONAL VELOCITIES IN VEHICLE AXES 1 RAD/SEC I
EULER ANGLES OF VEHICLE RELATIVE TO GROUND I RADIANS I
HHHrtHHHHHHWN
OOOOOOOO
— UlO-HNO-OHlfl
^ lOeOMOfflNNvO
** IflSHIOHMDN
VI
Q- ONco<rwNt/io
aoooooooooovOK\^><sio-Lnovoooo
ooooooooQoin<T'r-tLn-T»-<LnLnooo
M M frt M
O O O o
I I I I
M O O O o
— VI h CO o
a 'floifln
< CJ ^ -O CM
x o eo so o
^ (SJ H H
DNNOMC
ooooaaaa
MNlflCONff'MO
NOM'OO'COOCM
N^HWO'lflSO'
lOOOOOOOOO'OMNUINNin-OOOO
> 000000000 - 0 ,
NNHHN-OOOO
oaaoaaaaonaoc
^(SJNHlflONNCO(OHlfl<
•fiN«OUIOSNU|UU04JC
UI^J-ONO hO-JO-NJ-
a NN^ MOlflJOMf
INlNW'OO'tflMHO'jO' CO C
INItOrtN^N^HHi
nnhhhhwh
oooooooo
■ I I I I • * •
oooooooo
N^^St/ltONN
WOO-CKIO-J®
©KIVICON.COO'UI
OOOOOOOOOOCMrHOMKICOvJ-vOOOO
0000000000-O^KI-0^<MK1h~000
ooaaoaoaooooooc
NOMJ><fCO«COa5'3 - NHNO's
OUIN'ONO'N\(00(0>t4)0<
OOOMKIJrlOlflNNlfiCONlC
ff'J®(vrvNcOO-Off H ® M O' (
a o o a o o <
t S vO ^ ® S v
O ^ vf N NU
; >o S N CO Ifl N l
I M M H o H C
I vj Kl Kl N -0 ?■ I
OCMMSotf <
OOOOOOOO*
- OOOOOOOO!
t fflOOMJJW-Cl
l NCOIOMOMflOl
I OCOOO'iUNNffli
■ ®NNNONNNl
OO'O’OtOO'NMNl
>«0'(00(ON9''flHMHOM>fff'0'(0®
O-OHHMNf
oooaooooc
iJNNOIfl(0'J®‘<
-JOOCOO-J-OMC
OHH^-OvOWWf
KInOsOO'Csj^iTIVIC
l C'JO'O'KlMinceO,
oo'csjcsi^-oui^foc
OrHHHWHNNCjr
♦H £HHNWHHr(Nr<NH
INM^lfl-OSOff'OHOjr
2-159
FIGURE 2-21. KRASH85 OUTPUT, INITIAL MASS/NODE POINT DEFLECTIONS (SHEET 2 OF 2)
■>56170 01 -1.665150 01 6.784160 05 2.252640 02 4.18585D 01 4.46840D 05
o o o
<T <T <0
in m ^
CO CD O
o o o -© -o m
QOOOOO oooooo
000000000000000000000000
“OinN'ilO'O JO' 1 J^OCO'CNHCO^MMNin.O(Otf
<tONONHto>rinoNci)-fl(ON>jMOoini‘j t m co m
— co to ff iflMMgwO'NUiHsCO-tn^oo^'OOH^-o
^IMNNfvJJNlONinOM-JinNininUUfl-TlM ^ N (SI o o
>-iNNsO>0Q)in(0^7 n c in m n a) -
IfJN^HNMQO
O O TO
O' O' <r
O O O O' O' fx
000000000000000000000000
J J N h H M N f J O' If)
O O O
H H ®
o O l/>
*-6 —< CO
NNff'
O O O -T O
oooooo oooooo oooooo
oooooo oooooo oooooo
oooooaoooooooooooooaaooo
“ c o cnj o- uiaDONHSXNinjO'j -o ® f j j n o « ifl
vj-cocoKicMinco-o^-csjcr #mnco •eoi/liror''^NiOKi
- H M m O N 9 .f fj N l«J N K 1 S M t> o w M o
Xinaino-WUOM^N^MM-C J)NUllfl«MNNHHOO
ff'MNN»nNtfK|NN»ir<HH9'HHHjU1^ ( nNNOO
O Q O O
—I O -O O'
N N
-« & -o *o
tsi <r co c
9 o o ui ffl e)
o O O o
>»• o m in
60 T* -« O
O' CO «SJ n
K ^ (M N
Kl O O I s *. TO
aoooaooooac
■ C taJ-OinMtrtNNNf
isinm-flo m o m m o •
■COOOf^COOKI^tflC
NNff'fl'rt(sN^O>C<
lOOOOOOOOOOOO
.CMC p-H CO O' O CO O' O' H W ^
O'COHONNCOOCOO'Om
INMJQNN’J'filONOOOl
OOOOOO
OOOOOO
cg^)inj9'W(0'O<OKl(
OOOOOOOOOOC
)“r<wooiflintfNin'-'<
I N S N JpC^fNinjO'
» n®h«bno»9'M
IQOQQQOOOOO
jO'KiO'C'coinoo'ro^
19hNN^JH iflDOOO
icOHNN^H<0in-t^oo
OOO O O O o o o o o
ki o x> O' -T -o s >-• <-• 0
in h u co c o <o O' -o-oo
C *1 f J 9 N ffl ^ ^ N in
r^f6.csj kfl O in O «*• O —< O'
0 0 0*10 <-* O O <s< o >0 N O O C -0 M
o o ^ ^ ^ O O -n M M HOON<N
OOOOOOOOOO
■yivtNtOOinr'rorNin
C|/l<TH(0^O'inHNN
■ HOfflmHNHHOin
infvjinO'^csicococMco
OOQOOOOOOOOOOOaO
NMflinpCtfOOCDOttNN^HH
oo'co-9»T'jininNj^HinN9'9'
inMcoMnomm^inHcoo^NN
I H^mincoHKNpnNioo'O'O'iflN'tvtHiniflMHcoinin
'ZOOOOOOOOO»-<OOOr>Cr-«r-lOOOOOOOOO<M
-/COOOOOOOOOO'
llNM-Tin-CNCO^OHl
< O O O O O O <V
FIGURE 2-22. KRASH85 OUTPUT, ADDITIONAL MISCELLANEOUS CALCULATED DATA (SHEET 1 OF 3)
QQQOaQQQOQQQaQDDOOQDOQQQ
— ^ Lfl O ® f> ilflNHlftlrtNO(0<0c0MlflMOOH
^(DOl'Uftf'f'lOHO'NNO'OlflONOOvtNlflHinO
• fjN^lTMNCOoOOMriHJO'O'i'OO'CCOlflfOO
^HOK»tfl(DNOSN'OU|C'CON(OOON<JS(0'JNt
<T
cj
~
<SJ
eg
H
eg
-
to
-
~
eg
(V
eg
~
-
-
r-i
•X)
s©
ro
3
■t
ro
O
O XS sO
3
it
in
•t
-t
it
•t
<r
it
st
11
11
it
vt
it
3
ex
eg
•t it
O
O
o
o
o
o
o
o
CD
o
o
o
o
o
o
O
o
o
O
o
O
o
o
o
o
o
CD
a
o
©
©
©
a
Q
o
©
a
n
a
©
a
a ©
ui
f)
in
m
ej
Ul
©
o
it
rg >—4
3
tv
o
■J
CJ
O'
0
eg
-X)
O
X>
a
O'
rv
CO
0
Ul
it
3
rg r—4
o
to
in
o
O'
tv
ro
3
o
eg
r-i
X)
X)
o
to
eg
© ©
a
X)
o
in
•0
tv
©
er»
to
Ul
CO
(-4
3
O'
©
it
Ul
rv rv
r-4
0
to
eg
to
•o
in
to
•t
rv
©
rg
to
eg
Ul
eg
eg
<-*
ro
eg
h
it
eg
' H
rg
H
H
O'
*
*
eg
eg
to
<r
to
rv
Ul
eg
cg
cg
O'
©
©
3
to
o o © ©
it
3
3
to
tO it
to
to
to
to
ro
to
ro
to
►O ro
o
o
o
O
a
o
©
o
o
O
o
o
o
o
o
o
o
O
o
O
O
o
O
O
a o
o
o
a
CD
o
a
a
a
CD
a
Q
a
Q
Q
a
Q
a
Q
Q
a
a
Q a
Ul
©
CJ
O
to
•X)
•©
r-i
to
to
in rv
•n
tv
in
iO
O'
-X>
CO
O'
eg
eg ©
ro to
o
rv
O'
tv
eg
to
o-
Ul
X>
X)
© it
o-
in
o
in
to
rv
Ul
r-i
3
eg
to
rv
O'
it
rv
o
©
© ©
X>
vT
to
rO
o
eg
o
•-»
»*<
»-<
•O
to
o
o
ro
M
eg
it
o
t
in
X>
it
to
vt
X)
fv
O'
-*
O'
r-i
•H
eg
eg
eg
>t
o
O eg eg
©
>t
in
•t
to
to
3
it
3
it ro
to
to
eg
eg
Cg cg
o
O
o
©
O
o
©
o
o
O
o
O
o
©
O
o
O
o
©
o
o
o
O
O
CD O
O
Q
Q
©
o
rv
a
O'
cr>
©
o
©
vD
<0
O'
vt
rv
© ©
tv
CJ
Ul
o
O'
eg
O'
x>
rv ©
rv
O
C
o
in
eg
x>
in
in
X>
©
rv
O'
3
© ©
to
©
X)
O'
Ul
to
to
eg
eg eg
a
©
X>
CM
tv
CO
a
3
x>
a-
O'
eg
©
©
©
Ul
it
<r
ro
<r
© O
•o
<Si
cu
tn
©
eg
eg
it
-o
O'
(—4
x>
Ul
U| Ul
ro
rO
©
O'
eg
rg
o
O eg CJ
©
3
m
t
to
to
it
ro
to
ro
eg
eg
r0 ro
o
O
o
o
O
o
©
o
o
o
o
o
o
o
o
o
Q
©
o
o
o
o
O
O
o
a
O
o
©
©
o
o
Q
©
o
a
o
O
a
©
a
a
Q
a
©
© a
in
O
tv
r-v
Cl
Ul
>0
XD
r—i
X)
it
c
m
to
-0
CJ
<0
eg
O'
«t
O'
O'
3
o
to
eg
rv
©
ro ©
M
eg
3
•t
-O
it
cg
C0
^ x>
o
to
to
a
to
O'
to
O'
to
c0
o
<1-
3
x>
o
©
rv
CJ
r-i r-i
o
it
CO
in
o
•o
■-<
X)
m
©
it
it
©
©
Ul
o
x>
©
it
©
O eg eg
a
to
M
in
■ J
a
eg
to
<0
tH
eg
Cg
to
it
Ul
Ul
ro
.-g
eg
eg
eg
rg
o
o © ©
3
3
it
it
it
to
to
it
it
it
to
ro 3
it it it
o
©
o
o
O
O
O
o
o
o
a
©
o
o
o
o
o
o
o
o
o
O
o
O
o
©
c
a
a
©
a
©
©
a
o
©
a
©
o
a
©
©
©
©
Q
O C) CD
m
in
Ul
0
o
to
o
it
o
to
Ul
tO
<T
co
to
ui
eg
O
©
fO
i©
l©
to
CJ
© eg
eg ro ro
to
0
to
> j
c
to
eg
©
eg
eg
O'
o
eg
3
to
© © ©
in
m
r-
O'
3
to
eg
o
to
Ul
r—i
O'
Ul
O
O it it
O
U'
©
£>
a>
eg
o
o
m
O
<0
o
©
CO
eg
Ul
Ul
H
©
o
•—4
Ul
1
fJ
eg
fJ
eg
fj
eg
eg
rg
eg
eg
ro
ro
eg
ro
3
3
CO to ro ro ro
o
O
o
O
o
o
o
o
o
-
©
o
o
rg
-
«
©
©
o
o
o
O
O
o
o
0
0
2
o
o
o
O
o
o
o
o
o
o
-
o
o
o
rH
-
eg
ro
-
©
o
o
o
o
o
eg © eg
ej
fO
in
n
fx.
cr,
a
r.
eg
to
it
m
X)
©
©
O'
eg
t
o
o
rg
X)
0
0
9
—<
• •*
f
r-i
•-*
rH
eg
r-i
©
o
tv.
o-
in
eg
to
eg
3
eg
i0
O'
eg
eg
eg
©
© © ©
t -1
rg
r—i
M
r-i
rg
H 'S H
cj
in
0
tv
O'
o
t j
to
it
©
3
rv
CO
O'
o
r-i
eg
to
■t
©
x> rv. ©
i-i
tH
<-*
r~*
'■g
r—i
r—i
eg
eg
eg
looQaoooooaooQoooooa
0'0'0'0'0'0''Jl/l«J0 , lfl0'K9'0'0'(0o'O
i©©©©©©egegrveg«trvrv(oco©i , V't©
IHHilHHHHOOHrlrlKlHHHHOt/lOO
iMMMMMMHNNNfJHlflrtMMHHHOO
►iMaooaacsaoooaaoooaooooo
< _ K 1 eg N xf ^OtOMflOMJNN^lilrOMONj
O'>'0Ot0MMiiiC'0'Ni/\r'JlK'^ i N N rrt ifl CT
O~>*0i0©©r0©rva'.tt''tr0rgit-tegcgcgrv.^i0
luOOlfl(0Lfll<)OOO'OOHlllHM>1NNNMO(
Hhrt^HN«uiHNHHr(HHH<(>a'NWNN «0(
eozooooooooo*-iooo--<«-i^«oooooooo
{/)JCOOOOO0OOOO»-«OOO*HMfJ»0i-iO0OOO
UJ
z HrtHHHHHHHHHHrl CJ eg
4
M«-4cgroit© i «rv©O'©rgegrOiteg > trgrgegia0'fgcgcg
QC HHHHHrlHH i-«
UJ
D t-i HHHH^HHHHrlNNNNN
Mr-1 O O
O O O O
I 1
a o o a
N K O O
m in <o co
o o o o
9'ff'NN
Mrtlfllfl
CO CO H M
O O
I I
o a
O'. 0*.
CJ (M
n© vfl
K Pv © ©
M M O O
I I
ONOO
O N O M
'•>0 0 0
r-, M
U\ U) U) tl)
sO PS <0
N N CJ N
<
a
o
<
o
UJ
>
a
D
U
u
<
O'
a
<
o
w _
Q (/)
< a
O <
-J O
z z
ujOQ
M Z
£ h IU
< U
Ui < “)
CO cn
o z
< <
ui:
CO
*2
3 ;
u
O'J’MMMOIOO'OMMMMMM
ooooooooooooooo
• III I I I I I I I I
aaooaaoooaoooaa
M^OW'tONOCOHIfl^HCO^
OOMOOOOOlflMOO'CO'OCO
ooi/unootfONooff'C'O'O'
ONMWOOO'OtOO^^^^CO
MHsOHl/lHHH'j’lflNNNNH
^MMrHiHlflM'OOiHMMM
OOOOOOOOOOOOO
6 a
M D 9
)- Z
KUUI
O Z
a. m m
o *
I I I
I
I I I I
QQoaaaaaooooo
NMOlfl'OO'CO^OO'lfl.flC'
ocoo'ff'a'mo'inocoff'OH
Nff'tf^C'NO'OOO'O'OO
COO'NNO'^O'NOO'tflftlfl
o o
I I
a a
oi >±
K> i
o o
U) *H
NO'MCO^CylO'NHtf NMNN(0
I/)
M M M M M M
2-162
A . V.
FIGURE 2-22. KRASH85 OUTPUT, ADDITIONAL MISCELLANEOUS CALCULATED DATA (SHEET 3 OF 3)
While these criteria are suggested as guidelines, their exceedance does not
necessarily mean that instability problems will automatically occur.
Beam structural damping coefficients are computed within the program
for each of the six beam degrees of freedom. The damping coefficients are
computed from equations (1-54), Section 1.3.5.3.6, Volume I.
These damping coefficients are printed only to provide a record of the
actual data used in the calculations. The interpretation of the proper damp¬
ing values should be based upon inspection of the damping ratios (actual
damping/critical damping) summarized in the section entitled "INTERNAL BEAM
DATA" (Section (2.3.3.2.2)). For typical aircraft constructions, dumping
ratios in the range of .01 to .10 are appropriate. Higher values should lie
used only to represent mechanical damping devices, such as hydraulic, or
friction dampers in landing gears or viscoelastic engine mounts. Values
greater than .05 are probably only justified as representative of the fric¬
tion damping associated with relative motions of riveted and bolted structure
under conditions of severe loading and deformation.
The Euler angles define the initial orientation of the beam axes relative
to the airplane, according to the convention shown in figure 2-5. These
angles should be interpreted in the following manner. Assume the beam axes
arc oriented such that x is forward, y to the right and z down. Then rotate
PS 11 JO radians about the z axis, positive nose right, forming a new set of
x' and y’ axes. Then rotate THEIJO radians about the new y' axis, positive
nose up. This final position defines the orientation of the beam axes with
respect to the airplane. For vertical beams, which are denoted by VBM=1 in
the beam data formatted output, the above procedure is followed with one
exception. The initial orientation is such that the x axis is pasitive up,
v axis positive right and z axis positive forward.
It should be noted that during the time history analysis, these angles
vary with time and are part of the print output. Any question regarding the
current beam orientations should be resolved by examining the current values
of the beam orientation Euler angles. These are interpreted the same as the
preceding discussion, except that the initial starting orientation is the
ground axes rather than the airplane axes. Since the initial attitude of the
vehicle may not be parallel to the ground axes (generally it is not), the
time zero value of the beam orientation Ruler angles mav differ from the
angles listed in the MODEL PARAMETERS section of the output. The latter is
provided as a definition of beam axes orientations that is independent of
vehicle initial conditions (and hence represents a true model parameter),
whereas the time varying values represent the actual beam orientation during
the analysis.
The load interaction curve load ratios tabulate what proportion of the
1 and .1 end beam loads are used to calculate the intermediate loads at the
location specified for each load interaction curve.
2.3.3.2 Time History Output
This section of the output prints the time varying response quantities
at each print time interval, including time zero. This output consists of
the following groups of data:
• Title cards
• Analysis time
• Mass and node point displacements, velocities and accelerations in
six directions for all NM lumped masses and NNP node points, in mass
axes and ground axes
• Mass impulses (G-sec) based on filtered accelerations
• internal beam strain forces, total forces (strain + damping) in both
beam and mass axes and displacements in six directions for all NB
internal beams
• External spring compressions, ground deflections, axial loads, and
ground contact loads (3 directions) in ground axes and mass axes for
all NSI’ external springs
• l)RT number for all DR1 beam elements
• Overall vehicle c.g. translational velocity (3 directions)
• Volume change data, including current volume, current volume/initial
volume, and the changes in length of the three lengths of the volume
(optional)
2-164
• Energy distribution by type
• Energy distribution by mass (kinetic and potential), beam (strain,
damping) and spring (crushing, friction)
• Mass energy deviation
• Stress output for internal beam elements, including ratios of current
stress/failure stress for two failure theories
• At t=0 only, the differences between actual initial mass accelerations
and the theoretically exact values, for all NM masses.
• Mass location plot (time=0 and at specified intervals)
Figure 2-23 illustrates a portion of this output for the sample case,
for one typical cut in time. It should be noted that all this output is in
inch, pound, second and radian units except XACCEL, YACCEL and ZACCEL. These
are in g's. A more detailed description of the specific items printed out
at each time follows.
2.3.3.2.1 Mass and Node Point Data . - X, Y and Z are the ground coordinates
of mass I or node point I, M. The data for each node point are printed below
the data for the mass to which they are attached. XDOT, YDOT and ZDOT are the
ground axes components of the translational velocity of mass I or node point
I, M. U, V and W are the corresponding components in mass fixed axes. UDOT,
VDOT and WOOT (not printed for the node points) are the time derivatives of
U, V and W. Note that these are not the translational acceleration compo¬
nents, but are used in Euler's equations of motion. XACCEL, YACCEL and
ZACCEL are the body-fixed-axes components of the translational accelerations
of mass I or node point 1 , M, in g units. XACF1L, YACFIL and ZACi' T L are the
same accelerations after passing through a first order filter with an input
cutoff frequency. All the above quantities are positive forward, right and
down.
I’l( I , THETA and PS f arc the Euler angles defining the orientations of
mass I with respect to the ground. These are positive right-wing-down, nose-
up and nose-right, respectively. PHIDOT, THETADOT and PS I DOT are the time
derivatives of the same angles. P, Q and R are the body axes components of
2-165
TIME = 0.050000 NUF®ER OF INTEGRATION INTERVALS = 200
HQ O U-
cn ►-* tr a o
a. to cl <
O -J
< O >- M
K < O LA-
WhOQU
x uj a <x
N N N O
o o o a
i i i
a a o q
^ N N N
(M cm r>.
N1 H H flD
O' CM <SJ lA
O' CM <M (M O
o o o a
NOO «
LA -O' 'O’ >-<
<v< CO eo rs.
O' O' O' O'
O' O O O' O
Q Q a Q
-O CM CJ Co
O f-» F/i
<--l O O •£>
ifl ^ <g
O' i—♦ *—« N. o
Q □ Q Q
-C O' O' O'
NT N N O'
O' (SJ (si o
N M O
(0 l/l HI i O
□ Q a n
O- C0 (O O'
O N N Ifl
O' cm cm f^-
OKUAO
O' -O sO ■£> O
Q a a a
Ifl H H M
^ O' -0 r-l
0 - 0-0 0
O O O CO
Ul H H o o
MO O La.
x m a o o
ax a <
O O o
N a 2 a u
N z 3
o a o o a
(SI CSJ -O LA
CM r-4 O' lA
sT-VO'<y^-
h*. cs» vj- ^
J'JOOvT
o a o o o
O'O'NOMJ.J-
(SI O N. vf O
HNllflSO-
N O' -O O'
<f ^ OHO
O Q O O
cm m> no O'
(SI J O H
•OHIilO
Kl -O (0 M
K1 O O N
a a a o o
LO W O Hi H
>0 <SJ N K -t
O' M M U O
O N- CO O CM
M LA H o H
o o a q a
ST Sf o v 0 KT
O S H> H) CO
(SI CM O CO O'
I/I H O >f ^
(S» nO CM NO NO
O O O Q Q
O O' 4 (O
cJ-CsIfs.^^
O O' vO O (O
LA sr C0 la
H Ifl H (0 ■C
o a a a
•o co >-i <sj
o H -Cl
o H (O -o
NO >0 LA NO
NU1HN
a a o a o
N O M H N
H M I/) H lf|
fSvDCO-O-O-
>» o co oo o
CM M> K1 rH CO
O O O
V Q > Q O
> > <
O O u
X a D a u
* 3 5
o a o a o
M N H O' M
NO CM CO O' CO
NH H O- J
O CM CM CM
© — <-* © O
o o a o o
CO CO M <M rH
N -T O' M O
N S H M ^
O' CM (M O' O
O' H H (S O
o a o o
CM O' •£>
O' O LA LA
H H l/l N
o a o a a
HOOl/lN
O H >J rt H
O O' NO O' o
O <M <SJ vj- CM
O H H ^ ^
O Q O Q a
M> O N O H)
vO -O -c O O'
O O LA O vj
O NO CM N NO
CO H H -O nO
o o o o o
fM no NO -f
O' LA •-« LA
H i*J S (0
O M N H <J
a o a o
CM co cm o
LA O M) CM
vj H l/l ^
LA NO CM NO
N H H O
o o a a a
O' O H C0 H
(0 O Ifl 1/1 N
O' NO O' O'
O' ro cm r-. -*
FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET
TIME = 0.050000 NUMBER Of INTEGRATION INTERVALS = 200
m Q o ll_
1,1 h a q g
a. in oc 4
O O o
X Q D Q a
X z> 4
O o O O CO
OOOON
o o o o k
o o o o in
O O O O rH
O O O O K
OOOOJ-
O O O O rH
C3 O O Q Q
^ o m co co
M W N W f<J
in co cm m i-i
O' H N ^ S'
J N l/l O U1
m »
i co in
4 a Km
K 4 O u.
W h O Q U
ZUJ O’ 4
I
o o o o
o a a o
-»i/uno
H M K1 ij
00 CO CO K*
to O' O' in
>0 0 0 0-0
o o o o
a> cv (m to
M (fl M Wl
o o o o
O O Q O
O' M N1 O'
0 - co co m
O' vfi >C H (
CO O O «H
hi O’ O' CM
>0 in in <m
O' rH m X O
a o o a a
o ■? h o o
hi O O CM M
CO CO K o
fj O O M >t
O CO to N O
CM m m O' C3
N lO K1 N O
N O ^ N M
I
o o o o o
O O O O rH
O O O O rH
O O O O rH
o o o o
O O O O rH
O O o O CO
o o o o hi
Q O Q C3 a
fM CM vj- O' rH
N O' N ^
■J rt N N ffl
n» <m cm w m
hi O O M
S. -O >o H r
o o u
M o I a u
rsi X 4
a a a a a
o- >j- o in m
m O' n o O'
h MO ^ H
co co cm in m
a a a a a
rH H v© rH N
rH O tO M
co in o o' m
o o' o k m
ki co co hj in
o a a o a
N M O O' rl
hi O rH O' O'
0- ^ 0- k m
O hi M) CM K
>0 CM rH rH M)
O O O O O
O' m rH vj- CO
M N to K 1 O
O' rH rH CM O
'O 'D co co in
C-lONlOO
O Q O O O
M M H O N
rH O' O W K
CO vj M M o
O J M -J O'
r; ir_ vrj w-
hi .o
m cm
in co
in o
o o
o a
CO CO
O' O'
co m
o c
CO O'
m ki
o o o o
CM M3 CM hi
O' >0 K N.
K >D O' O'
cm o cm m
o m in m
o o o o
k rH <r
o co o m
K hi O
M O' N O'
VO O' O' M
O O Q Q
OtOOIfl
N >J Kl O
m O' k O'
M3 O' O' hi
>0 co
K1 O
O P-
CM O'
I CM hi O' hi
rH CM hi rH I/!
« hi 0" <M K HMjHr
rH CM CM U1
I rH O'
o o o o o
O O O
V Q > Q O
> >4
o o o o o
o o o o a
o o o o o
o o o o o
o o o o o
O O o o o
o o o o o
a o a o o
o o a o o
o C0 CM K O
in o co mo¬
rn o m o m
co n o >o cm
rH O M3 M in
o q o a
O CM CM O'
in rH O' o
MOCO'J
tO O O' o
rH K O O
a a a a
O' O' in rH
in cm m >0
K hi M) co
rH M3 CM O'
hi r-* o w
a a a a
o- o- in rH
Ul CM hi M3
K hi M) to
rH M3 CM O'
hi N o in
a o
K M3
r*» co
k o-
I rH O' rH rH P
rH rH CM hi
( rH CM M
O Q O O Q
o (0 h Ml CM
O' CM O' CM rH
a a a o o
in k o- h >o
H H M S co
CM O’ O' in M3
o CM rH o O
O rH rH O O'
o o q o a
O CO K rH in
CM M3 m M3 O'
O CM rH m CO
rH CM H «f H
-fl
a Q Q o o
O O O' I-H O'
k m mi hi k
w o n O' m
CM rH O' vO rH
N- rH O O' O'
a o o o o
Ul O' M) CO hi
hi hi in CM CM
o o o co o
O' hi hi CM CM
O' rH rH CM o
o a a □
O' <m o co
hi O’ M> O'
>0 O' O- hi
>0 CM CM O'
CM r
o a o a
P" © O' hi
hi in M3 CM
hi M3 M) rH
hi CM CM rH
i—t i-i <0
o o o a
K O O' hi
hi in M) cm
hi s0 M3 rH
hi CM CM rH
a o
m o
h> O'
o hi
CO hi
O' rH
cm hi m <j- co
l hi co
in hi hi rH hi m hi hi rH CM
rH hi hi r
I hi
FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 2 OF 11)
eg eg eg o
o o o o
O Q Q Q
M M (0 O
O vO U1 N
\t O' H O
S O' CO O'
H N O' \0
N O O H
o o o o
I
Q Q Q O
NIOOH
N CO O O'
in <0 ^ 'O
H D3 O' N
N ^ ifl CO
eg k> ro o
FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 3 OF 11)
TIME = 0.050000 NUMBER OF INTEGRATION INTERVALS = 200
l-H o O u.
H w a o u
a. to a <
«t a »- w
►- < O u.
uj u o a u
H O O u.
i i-4 a o o
a. x a <
O O U
N O 2 Q O
N Z <
O O U
> o > a u
> > <
o o a
X a D O u
X D <
a a a a a
o w ui
eo h m ifl h
^ ff s
N M <0
o o o o o
if Ifl o cm un
H M C 1 Mfl
K o S N ^
M (T O' J) O
H Lfl 4> N CO
a o a a a
O' O CSJ 'O
S O' iO to o
U1 Ifl O M M
O O O O O
H J S J rt
in Q f -O if
pH Nl O O pH
if .f m eg %o
sj- o- cd
N H H O O
o o o o o
I I I
o o o o o
O (0 M H J
rO O' CO J O
c 0 m eo eg in
o o <r o
^ K1 ^ ^ ^
a o a o a
g) in o -o ~o
■j> O' o m tn
commo-o-
eg if to eg O'
m m m m O'
a a a a a
HlTNff J
o ki n"> eg <0
«-* r ■* o ,f
to co © <g m
tn s. o m g>
o o o o Q
J) m n a -o
pH co if eg cO
a a a o o
>o n- o o rs.
eg so eo »n fn
eo O' eg >o
M l/> H J H
J W S M O'
o a □ a o
vf -* -f f eo
ki in m o o
O- co co eg in
eg o <r <-* -o
co eg s o eg
o a o o
NHOO
N O il N1
O O O O
m o- eg m
»o ^ to <r
>r to Mn
pH M -O M
in if h h
a o a o a
m co .}• so co
O' co cj in O'
m i0 Ki h h
eg co 10 ,© ph
iO in « f 4
DQQDD
NNf ON
N- CO N f O'
fO CO M O' O
vf eg co in co
to CO n n gi
o a o o a
«f eg co to -o
to to eg eg if
m '0 o h co
N iO O N (0
N co O' eg to
eg eg eg eg pH
O O O o o
o a o o o
■f <0 f if
O' n m o eo
n- in .o <j- co
Ntn N H N
N M 1© eg eg
□ a O a o
-o c- j3 .o eg
fg rv ^ o pH
•-* O' ~4 .f CO
O tO O' to O'
if f i eg o
o o o a
eo in h o
H 4) eo -o
in to to to
tO C0 O -O
co eg n» co
o Q o o
>o o *x> rH
eg f o (0
o o a a
•* <o -o if
O' tn co
N in 4) to
N m n eg
fg eg «o eg
a o a a
vD c 0 eg
NNif H
H O' n co
DtOC-O
f J -fiO
O D O Q Q
O M f O M
eg in n m o
id O' CO N o
O N M Kl 4)
if m co -h if
o o a o o
41 if N H o
N C4 ^ C4 f
pH iO O' pH pH
a O J to 41
4)41(000'
Q O Q O Q
-o en m m o
O O' o -0 O'
H (O 4) H to
N O M in H
in a co O' eg
a o o a a
N 4) O' 43 M
S s fg in co
n eg 4i eg
in o' in it
f a eg h eg
o o o a a
eg m in co n
fg O' O' pH CO
co eg O' n o
HtOOSJH
eg f o n m
Q O Q Q
o m h O'
f H o 41
h to m 4i
co eo o h
H O' to co
eg O' to eg
in in eg to
H to to (M
eg n o to
■n ej a cO in
eo to eg o m
-O pH pH pH O'
co f O' co h
to eg h n f
in ^ ^ en
eg if if o
n n- eg O'
h eg cm h
pH pH pH in
DQ D O □
rt rl H N to
co in «0 'O
if 4) 41 H
pH PH pH Ln lO
pH pH rH O i0
O O O O
O 4) Kl O
i 0 o m m
O' 41 H f
0 0 0 3 0
in c- to o f
f m n co 4 >
eo f N 41 H
eg m if in
fg pH 0 in
if to o to
y.'
n n .v ,
FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 4 OF 11)
FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 6 OF 11)
Sol3D O'* 0.0 -S.7t>JID 04 0.0 -J.70...D Oo
ooooqqooo q oq
i/I i h « X> coo y cm cj
nui w o a co n tj w o t y
y (0 m O' -o .» t- cr c ^ in 1/1
OOOOOOCOhlM—«ifit0CjyyOOOOOOOOOO
aoooc;of''>cj-<yMrMinrHrHoooinooooinui
ooooaaooa a a a a
0 6 U Mu'! H M J J rH <f CJ CJ
in o m o i/i j f j o c k o >f ^
o^fjNHtnnHH in c- m i/i
OOOOOOiHjrc 0 >HtAM« 0 OOO noooooooo
lOHomooooinm
kOOOOO n □ O O OO
- ? c* tA ul o c- o o in >© -o
■ O cr o- 0 r-< in -o in cO oo
i m n m in c hi y y y -oo
IN^NNNOIANHIAOOOIO
o tc m m
O M CJ m
lOff-JCOfflOOMN
QoooooQoaoooaooQoa o a
ooi'KiinfflinHo joookwiomio ~d o
U1 f J 0 CJ 0 HONNflHHfH(J.S4N O O
ntJAUllON4l0lA/IMN1««NO CnI 4/1 0-0
IflUlOOOHNHO'^MKlNlflOMOHOOlOlfl
oooooooao oo
HinO'Nlf-lHNNS ^ N
Nrt/ia NriHMKl hi ®
ONOOHJ>M.1KI -or^
OOOOOOOma-DOOCMCMOCMOOOOOOOO
IOOOOOQOOOQOOOO OO
ii/iroooN(Oj<oinm^MH in cm
inNO«ON^O-aNN>J(0(0 C" r-i
lllWHHMffin^ONN'OMlfl pH CM
lrtNNON*ilflHH^tfJMHOO^OOOO
ooooooooo o
-©h1hl®OOrH»HrH -0
^inN-ir^mmui in
c-. c n /o c a w m m o
OOOOOOOyycjyhlOOO-OOOOOOOOO
ooooo-Ho-Hcj-jinocjcJOinoooooooo
ooocoooaaooooaoooooo o
JO'.J O fMH« OhJCCMOh^ONH -0
h- ® M O >-l fJ —« CJ 0 OHffNOO^HU'CS in
® , 'i , 'inMOiO'-'c-unnHfjO'WNSNON -<
n rj to (j y o o m hi y f'-.-Myyinc^hiyr'-.Hoooy
oooooorMooOrHrHrMooooooooocjco
OOOOOOOrHOOOrMrMCMhlrHoOOOOOCJOCM
y a> oN®a innMM ju^HHN/ia'fjfjMinininin
-o -o m o -o
y
y
y
o o o o o
o
o
o
O
o
o
o
o o o o a
a
o
o
a
N
o CO o y -<
0
CO
t
rH
hi
o
h> hi a n o
•r
y
CO
0
0
O
o
0
0
o
O ^ 11 H l/l
o
o
y
y
o o
O
hi
o
o
o
o
O'
y
o o
o
o
o o
o
o
o
fh. CM rH J- hi
III 1
CM
iH
o o
o
y
i
o
o
o
o
y
y
N o o ai -o
hi
y
m
in
■o
in
m
O O O o o
O
o
o
o
o
o
o
o
o o o o o
a
a
a
Q
a
o
a
N
as </ in m n
i/i
-0
—«
O'
2.
O N /-• H J
CJ
hi
o
o
M
■O ^ CJ N CM
i/i
CM
y
c-
hi
o o
o
o
0
0
o
o
o
h m co m in
y
O'
®
co
o n
o
hi
o
o
o
o
y
y
o o
o
o
o o
o
o
o
CM hi CM hi y
y
-0
7
7
o —I
o
y
o
o
o
o
y
y
hi O
0
o
c* h-.
n
in
-0
c-- y .© in m
in
in
m
m
m
o o
o
o
O O
o
o
o
o o o o o
o
o
o
O
f
o
o
o
o
o
o
O O
o
a
o o
o
o
o
o o o o a
o
a
a
>
® fh-
i/1
CO
-J 0
o
y
y
■-< C0 O CO -D
CJ
o
O'
O'
-o hi
sT
hi
hi <—1 M O' CO
—i
n
in
in
O'
N.
o
y
O
o
CO o
m m
in N h CM H
r>.
O'
O'
y
hi y
m
a
-o m
in
o
CO
h ^ ^ o m
y
-o
r-N
N.
hi o
m
m
CM
CM
o
o
O'
y
r-- m
hi
r>.
i
hi cm
r-.
r-»
CM
H ff rl ij CJ
1 t I
y
m
ui
•H o
O'
1
hi
m
y
o
o
CM
CM
y y
M5
-0
c. rv.
h.
-o
in
h -O -O -O l/|
m
in
•£>
M>
m -o
-0
m
hi
m
m
o o
o
o
o O o o o
o
o
o
o
o o
o
o
o
o
o
o
n
o a
o
a
O O
O
o
o
o o o o o
a
o
o
o
o o
o
a
a
o
o
V
o
O r-i
ni
o
CJ
m
-o
rH hi
hi
o
y cm y in m
in
IM
o
cj
O'
n.
O'
y
K1 O
in
o m
in
■o y y cm m
o
hi
a
O'
h*
O'
y
o
N1
CO
rH ®
in
M>
1-4
O CJ H N O'
O'
m
CJ
CJ
y ih
r»
ui
hi
O
o
o
O'
y
O CM
y
1
hi
-0 hi
CJ
m
HUlHrjy
O'
1
CM
in
in
n. -i
i
hi
m
y
o
o
CM
CM
r-- -o -o -r in
y
hi
o o o o o
o
o
o
o
o
o
o o o o o
o
o
o
o
a
a
MX
hi O 0 H CM
CO
CJ
o
hi
o
m h j) hi hi
m
o
y
sO
o o
o
o
o o
o
o
o o m o in
i/i
o
y
y
O hi
I- 4
o
o
o
o
o
o
o
o o
o
o
o o
o
o
o
hi hi H H CM
1 1 1
m
CM
CJ
CM
O r-4
o
o
o
o
o
o
o
CJ y
hi
in in
in
4*
y
in y m y hi
hi
hi
CJ
o o
o
o o o
o
o
o
o o o o o
o
O
o
o
O O
o
o
o
o
o o
o
o
Q
N hi O
CM
r-'.
Mno
n-
m
O h N CM -O
MJ
o-
O'
C'
O'
U-
C' CO
-o
-o
-O f-M -O ® O'
o
O'
O'
O'
® C-.
CM
-< o
i/l
s0
hi co co y O'
CJ
CJ
hi
cb O'
CM in
m
o
hi
CM
hONrlhl
r-i
m
y
y
O' hi
r-i
o
CM
o
o
o
o
® cm
m
m
i
^ *
r-i
hi
V ^ H V H
h.
1
m
in
m
O' m
i i
y
i
o in y
o
o
o
o
in hi y y y
CM
CM
hi
o o o o o
O
o
o
o
o
o o o o a
o
o
in O' CM O N
r-
r-
m
O'
O'
CJ
h hi /i y O'
CM
0
0
o
o
o o
o
o
o
o y y y cj
CM
Ih.
co
co
O r-
o
o
o
o
o
o
o
o
0
0
o
o
o o
o
o
o
H /) H CM y
1 1 1 I
hi
r-.
H
o m
o
o
o
o
o
o
o
o
K1 y
-f in in
in
in
y
y ki hi hi y
hi
m
CM
M
y
o o
o
o
o o
o
o
o o o o o
o
o
o
o
o o
o
o
o
o
o
o o
o
o
a o
o
o
o
o a a o o
o
n
o
o
o
a
hi hi
y
CO
-0
CO
•o <y in M o
CJ
-o
r-
CM
n
CM CJ
m
hi
■o in
o
®
h h CO hi O'
CM
<r n»
m
o o
CO
-D
CO hi
m
CO
in hi h h y
hv
i/i
•n
O'
® CM
i/i
O'
O'
m
rH
CJ y
-o
hi
hi
HUINHy
O
1-4
y
O'
vO co
y
hi
hi
M
o
o
o
y
hi r-i
hi
y
rH r-i
i
i
CM
m o y cj i/i
i i
y
r-i
CJ
CM
1
hi r-i
O'
hi
1
O'
1
rH
o
o
o
i
Z
0
0
o
o
0
0
o
o
O
1
0
0
0
1
—i
f-i
o
o
0
0
o
o
o
o
o
CM
o
o
£
0
0
o
o
0
0
o
0
0
O-IOOO
-
r-i
CM
hi
rH O
o
o
o
o
o
CM
o
CM
“>
CM hi
y
m
■o r>.
CO
y
o
—i cj hi y in
-O
N.
CO
a CM
o
o
-o
>0
o
O
HHHHH
rH
—< rH
CM
I'M
M
rH CM
hi
y
m -o
r-
<0
y
in h cj hi y
CJ
y
CM -O
O'
CJ
CM
CJ
in
m
m
m
rH r-l rH r-1
r-i
—i
"H
rH
rH
r-i
rH
rH
A'.'- ---
FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET
LOADS ARE THOSE ACTING ON THE HASS, IN MASS AXES, ♦FWD.RT.DN
FOR EACH BEAM, FIRST LINE IS MASS I, SECOND LINE IS MASS J
FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 8 OF 11)
1510 04 -1.4974D 04 -4.8560D 03 1.9138D 06 -6.19J9D 05 1.71820 06
o o
o o
o o
o o
o o
o o
o o
o o
O Q
CO O'
O' fO
rv eO
o o
o a
K>
CM -H
N1 CM
O O
o d
o o
o o
a a
CM CO
XI o
O C"
O' a
O' o o o
o o
o o
o o
o o
o o
o o
o o
o o
O' a
• Z
CM UJ
O
o <n
O'* O'
O o o o
o o
o o
o o
o o
o o
o o
o o
d d
o o
o o
o o
CM CO
cm r*»
m -o
'7* '•* 7 * IT'. FI ' 1
OOOOOOOOOC^r-4 0 0 O OMUIlflOM OOOO#
<J'NHNNMfl-fiS(OCOU100'OCOUllflHO'rtoO O CM
ajrM^-fMCMKi^'^oo'ininincO'OooM^odddd^io'
>COZQOOOOOOC)OOOOOOOOrMr
•-* O O O r-l r-1 o
I
oaaaaaonQ
< HOKHOMMO o
I <fHB'«.0(0(MUUn
'J-O'Ocomocoo-o-
000000000-0 0' CM O to CO 03 H H
o o
Q O
oooo
ooooooooor^^iHpMroO'ino'O'ocMCJooocM
r-li-«W»-| I -l»HOOOCMOOOO<H^HOOO
OOOOOOOOOOOOOOOOOOO
. I II
*<OQOOOOOOOOQOQOOOOOO
f-CMJaKHO'OOO'lflHIflOJJHXlON
uiweHUixtfitMHX-o^O'O'-f-fifl-oxeM
I-JO'tflHNMHO HMOJO-JCO-O-flCMNO
KCOlflff'NNNNM-tO'f-OMWJO'CMtMM
CO CO
O CM
•o m o
H M o
O' CO vj-
co a in
Nt'IHrlUlO'HrlHl/I^IHNCMff'KI^^rtNHOHNH
OQOOOOOOO ooo
x> in cm co -omcM-ox) m m o'
lO f n N O HI -J ff- O' -0 10(0
OOOOOOOOOO'CMCMO- O N1 H S S O O- I
tOQOOOOOOOOQOOOOOaaOQQO
■tOl'I-OI/ll/IJ'fflON-OWl/l^-ONCOOOI/l^O-O
;lOO'OCO-ON(OOM»^j-rtft/-ONa3<9>OrtHN
IWNOWCONHlO-ONNtOCO-feO'O'f-JCOO'^j)
•OWHSMOM-DOCOHO-JMCOa-HHt/lCO-J^
ooo
O' in m
1—1 CO -C
so m o
't o m
WN-fHMrtHtfCMHNNIOMMNN<MHiri(ONO'HN
OQOOOOOOO Q a o
-oHsmsuiNo-o' no- in
. -fiiAo- -DHtoMHH ocn to
OCONNHia-NHH >0K O'
OQOOOOOOOCMO.-iCO^'tOO'O'Oi-I^OOOCM
oaaooooaor
Itf lflWNW-« JOrtrtOOOM
^NKIHNHNNHrtHHHHNOOOOOONNO
OQOOOOOOOOOOOOOOOOOOOOOOO
QQOOOOOOOOOOOOOOOOOQOOOOO
OIC||flO-NMH(MNlfllflO'Xlfl-fOI/linCOHCM{OCO®U3
NO-oinoKKONN-e-rwo'rtNOHNNS^tOHM-jH
SKIvtr'O-WtOMtM-O-CO'O'HSi'' - - * • - • * -
mcMo-r - • — — —
-O-t OHCON-CMlflNN
SHNS-ONNJMHI/I
O'OHHONff'UllflMffl
WNlflN^CONCONH-JOtt'ON-fNNHNa'MMflH
OQOOOOOOO
IflUlNo-JHOMN
•Hoo'incor^ooo
N-tHIMrt-OHinifl
o a
in cm
o m ^
m co so
ooooooooocMin-o-nO'Ominmocgininooo'
OQoooooooMvtino''j-r-ir-isr^ocMrMinoor^
i
> o o o
OQOOOQOOOOQOOOOOOOOQOO
Hi -0 H OUlMO'XKlKIKMOJfO C HI H H N O' CM CM
x-flNtofflNHrto-jNffl^fMHco-jx-oeo^-co
H^S^HI^OMOOCONO'OO'HOOUINn®
O-fX-CNN-OlflON^tfO-CMO-t-fNNIflUl
OOO
N O M
r- cm ^
co CM CO
m n- st
H -O rl H I
tflfllMHNHrtlfllfll
SSHHri^KHN
ZOOOOOOOOO>HOoO>-4fHiHOOOOOOOOO
ZOOoOOOOOOO«^OOOfHrHCMK\MOOoOOO
IC-IKI-tlfliNlOf'lflHNl
liHCMXJ-NPjNifl
FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 9 OF 11)
kinetic poiential strain damping crushing friction
MASS ENERGY PCT ENERGY* PCT IJ I J M N ENERGY PCT ENERGY PCT I K M ENERGY PCT ENERGY
ooooooooooooooooooo
OOOOOOOOOOOOOOOOON-M
00000000000000000*3-^
OOOOOOOOOOOOOOOOOr-«*3-
OOOOOOOOOOOOOOOOOOO
do000000000000000£0-
OOOOOOOOOOOOOOOOOCvlrH
OOOOOOOOOOOOOOOOOCOCO
OOOOOOOOOOOOOOOOOOO
ooooooooor-<M^oaoorvrj<NiOoooooooo
oooooooooooooo ooooooooo OO
£30000000000000000000000 op
rjScOr'.oaDMOKTo3'3-«0<rin'^r <c ^2^£f^J^p^;___.55*5
^ m to h ^ j 0 'c-jou^cs)co*j--Hr^r^cMOf^i^Nr^<'Jooocoa)
<\lM(0®-0(ClHH*0HUlHNlf|N'CN-3Nff'H(M\JOOOHH
OOi-trHOO'-J-f^O»-«00^'tf'f'JMO'Of s -f**f^'Or^OOOO«J-ND
OOOO0"r-»p-<OO'-*«-**-«i-4«'*OOOOOC'JK>OOOO©O»H
OOOOOOOOOOOOOOOOOOOOOOO
oooooooooooooooopoopoop
M Li o- SOfflO(0^<0C0N.JMor'l9'0'‘fl^WON
SooMHN«SfjfjMMr-N^<0»0ON0;oift(0
O-ff-MniAHKIOOff OCOf'JONN'JCOHCOONHl
I^COHCOON-
OOOOOOOOO^OOOM^i^OOOOOOOOOtsJOO
OOOOOOOOOOi-hOOO*-*«-»C'J*">»-«OOOOOOC'JOCyJ
HHrlHHrtrtHHHHrtH CNi fsj r-*
rHCJrOsrm«0N.C00'kflrHCgK1st<M*3-rHrH(M*OO'CJ<Si<NJU>l/*lflin
HHHHHrlHH iH H H rl H
HMrfl>3in'ON(O^OHNK1<3lfl>ON»<rOHNM-3lfl'C^®
hhhhhhhhhhnnnnnnnnn
O' N1 H a £)H10 fANH0'N-0!TJ-S1/1NONO
o l/l (O /)0331flMIOO'NM/|NW30000
r-* iH
OOOOOOOOOOOOOOOOOOOO
oaoooooooooooaoooooq
rj OvOCOOr^Or^^HOji/1C'rj r ^0-*3 - -O'O ; £>rH
UlHMi-MflNWr((0lfl<0N^C0OWMff-O>r
FO r*1 O N ^OHFrtNvCJ-Hff'vjO'NHOCO'/lO
fJHW-tNHHHO-NNMHi-HJIITHlflNHO
SJfflNONf'JO-MHM^COf'O-Caj-COHl/lO
O *3- ® ^ H3<fi/iRlM001fl3Hl/imNOQo
OOOOOOOOOOOOOOOOOOOO
0-0 0 f(JOiHOO ON3ffl^ f 'K' H 3'J
pjWU1i'-®HNr*.(OUlNlsiOON<OW(0^0
J'0^0'MM3M03HO'MO^NOU1(0>-'
HNOMflNaJONT-MNUlMlflrtMOWrt
( -4»-«f“4OOOOrHi-*r-1©O«-lP**-«O*-«C0 , HO
OOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOoOOOOOOOO
OOOOOOOOOOOOOOOOOOOOO
FIGURE 2-23. KRASH85 TIME HISTORY OUTPUT (SHEET 11 OF 11)
the angular velocity of mass I, using the same sign convention as for the
Euler angles. PDOT, QDOT and RDOT are the body axes components of the angular
accelerations of mass I. None of these orientation quantities is output for
the node points, since these are the same as for the mass to which a given
node point is attached.
XIM^ULSE, YIMPULSE, ZIMPULSE are the accumulated area under the filtered
acceleration response curve (G-SEC). Normally the user should plot these
data to evaluate its meaning.
2.3.3.2.2 Internal Beam Data . - The STRAIN FORCES and TOTAL FORCES (STRAIN
+ DAMPING) are both output in the same format. FX, FY and FZ are the forces
in beam axes acting upon the beam at the j end of the beam. Equal and
opposite forces act upon the beam at the i end. MX is the torsion acting at
the j end; again an equal and opposite torsion acts at the i end. MYI and
MYJ are the bending moments at each end of the beam, acting about the beam
y axis. MZI and MZJ are the moments acting about the beam z axis. In general,
the moments acting at the i and j ends of the beam are not equal. The i and
j ends of the beam are at masses i and j, unless the beam connects to a node
point. In this case the i end of the beam is actually located at node point
I, M, and the j end at node point J, N. M or N equal to zero means there is
no node point; direct mass connection is used. The sign convention for these
loads is shown in figure 2-18.
The total beam forces can also be output in a format which shows, for
each beam, the loads acting at the I and J masses. This output is titled
COMPONENTS OF TOTAL BEAM FORCES ACTING ON MASSES I AND J. For each beam
the first line of output shows the forces on mass I, the second line shows
ma. . J. These loads are positive forward, right and down, in mass axes,
with moments using right-hand-rule about those axes. The loads are those
acting on the masses, not the loads acting on the beams.
The beam X, Y and Z deflection data are presented in relative form, i.e.,
the values represent deflections at the j end minus those at the i end. The
beam rotation data are given in both (J-I) and (J+I) terms. This is done
2-177
because the strain forces arc- calculated using both sum and difference terms.
Note that these angles are all in degrees, rather t ban radians. If the
actual rotations at the j and i beam ends are desired, they can be calculated
from the output data as
THETA(J)
THETA (.1+1) + THETA (J-I)
2
THE!" (i)
THETA(d+i) - THETA(d-I)
2
Similar equations apply to PS1.
The beam lateral deflections Y and Z which are printed out are not
simply the (.1-1) values. The and i rotations of mass I cause Z and Y
deflections at end .1, which in themselves cause no beam loads. These deflec¬
tion components are removed from the output deflections. The output deflec¬
tions are the following
Y
output
(Yj - Yi)
Z
output
(Zj - Zi) + 1*0i
The Euler angles defining the current orientation of the beam axes are
also output in degrees. The column of integers titled VBM define which
beams, if any, are treated as vertical beams. For vertical beams, VBM=1;
for normal beams, VBM=0. For normal beams, the following procedure is used
to determine the current beam axes orientation.
• Start with the ground fixed axis system, with X positive forward,
Y positive right and Z positive downward.
• Rotate PS1 degrees about the Z axis, using right-hand-rule for
positive rotations.
• Rotate THETA degrees about the new rotated Y axis, using right-hand-
rule for positive rotations.
2-178
the init ia1
For vertical beams (VBM=1), the same procedure is used, i
orientation of the X, Y, Z axis is different. in this case, the initial
orientation is X positive up, Y positive right and Z positive forward.
For either axis orientation system, there is actually a final rotation
of PHI about the X axis. PHI is not shown primarily due to output format
line width limitations. However, PHI is normally rather small and will not
affect the user's interpretation of the orientation of the beam axes.
2.3.3.2.3 External Spring Data . - For each external spring, the spring com¬
pression in inches and compression load in pounds is output. These are
along the spring axis, which is oriented parallel to one of the mass axes.
The ground deflection is also shown; this deflection will be zero if the
ground flexibility is input as zero. The ground contact point loads are
given in two coordinate systems, ground axes and mass axes. If the spring
in question is on a slope, then slope axes are used instead of ground axes.
The output titles for these quantities are self-explanatory.
2.3.3.2.4 DRI and e.g. Velocity Data . - For each beam element which has been
defined as a Dynamic Response Index (DRI) type element, the .J mass and DRI
number are shown. Volume I, Section 1.3.12 explains the theory and usage of
DRI elements.
The overall vehicle c.g. velocities, in ground axes, are always output.
These velocities are calculated such that the total vehicle weight, with
these velocity components, would yield the same linear momentum as that
existing in the total system of NM masses. Section 1.3.9 of Volume 1
explains how these values are derived. This output, particularly the time-
history plot of same, is a very useful indicator of the overall vertical
motion of the system. Since the system kinetic energy is a scalar quantity,
there is no way to separate the kinetic energy due to horizontal motion from
that due to vertical motion. Therefore, for analyses in which the horizontal
velocity is much larger than the vertical, system kinetic energy is not very
useful in determining when the vertical impact velocity has been absorbed.
The vertical component of the overal c.g. velocity can be used for this purpose.
2.3.3.2.5 Energy Distribution Data. - The first output in this section of
data shows the current total system energy, kinetic energy, potential energy,
strain energy, damping energy, crushing energy and friction energy. The next
section of output shows the contributions of the individual masses, internal
beams and external springs to these system totals. The system kinetic energy
should reduce to zero at the conclusion of the analytical run. From a prac¬
tical standpoint, however, one can expect individual elements to oscillate
slightly after the vehicle comes to rest, leaving some residual kinetic
energy in the system long after the responses of interest have occurred. In
general, it is anticipated that if the analysis shows a 75 percent reduction
in kinetic energy, the most significant events will have been adequately
described.
If the vehicle is impacting on a flat surface (no slope) and a substan¬
tial portion of the initial kinetic energy is due to forward velocity (parallel
to the ground), then a much larger percentage of the initial kinetic energy may
remain after the significant damage phase of the crash. The remaining energy
is accounted for by the vehicle sliding along the ground with a substantial
forward velocity. In this case, the vehicle eg translational velocities,
printed earlier, provide a better indication of whether the major response
phase has been adequately covered. In general, the ZDOT or vertical vehicle
translational velocity should be reduced to zero, indicating that the vehicle
has ceased its downward motion. This situation can also be seen when the
system potential energy reaches a minimum.
The potential energies include the effects of user-defined input time
histories of either loads or accelerations, applied to specified masses.
That is the significance of the (+) at the end of the POTENTIAL ENERGY head¬
ings. Earlier versions of KRASH did not include the effects on the energy
balance of the loads or acceleration input. These versions do not have the
(+) in the potential energy heading.
The individual internal beam strain energies provide the user with
valuable insight into the temporal and spatial flow of energy in the vehicle.
2-180
Generally speaking, the strain energy concentrates initially near the point of
impact, and as the strain energy grows it also becomes diffused throughout the
vehicle. After the peak responses in the system occur, the overall system
strain energy will decrease from its peak value as the internal beam elements
unload.
Certain individual nonlinear beam elements may indicate negative strain
energy. This circumstance may occur when large deflection loading and unload¬
ing occurs in the coupled bending degrees of freedom (z-0 or y-y), with non¬
linear KR curves applied to these directions. This phenomenon is discussed
in Section 1.3.16 of Volume I, and is due to the approximate nature of the
nonlinear element analytical model. In practice, these negative strain
energies are of such small magnitude relative to the overall system strain
energy (usually less than 1 percent) that they do not invalidate the overall
analysis. Furthermore, these negative energies tend to occur toward the end
of the analysis, during the unloading phase, after the primary responses and
damage of interest have been determined. The plastic hinge option should be
used in lieu of KR tables in the coupled bending directions; negative strain
energy will not occur with the plastic hinge option. It should also be noted
that negative strain energy does not occur for linear beam elements, or for
those that are nonlinear only in the uncoupled degrees of freedom (axial and
torsion).
The damping energy of the internal beams is usually small in relation
to tiie strain energy, typically being less the- 20 percent of the strain
energy, until late In the run when the strain energy has decreased substan¬
tially from its peak value. Note that damping energy always increases with
time, since it is a dissipative energy that is not stored and released as
with strain energy.
Crushing and friction energies result from the deformation of the
external springs and flexible ground for the former, and from sliding fric¬
tion along the ground for the latter. The friction energy is also dissipative
2-181
ami hence mount on i ca 11 y ini-rras i hk, whereas the crushing energy peaks ami
decreases similar to the strain energy. fa general, a rather large percentage
of the total svstem energy may he represented by Lite crushing, energv. Ihts
situation is only natural since the external springs represent the structure
in immediate contact wit'll the ground that undergoes substantial deformation.
In a typical vehicle crash analysis, the system crushing energy may be
larger than the internal beam strain energy. However, they both represent
actual airplane structure, the only distinction being location on tile vehicle.
The final energy information printed is a summary of the’ deviation of
file total energy of each mass in the system from 100 percent. Ideally these
variations should all be zero, but in actual practice errors associated with
the numerical integration process result in deviations from the ideal. This
information can be helpful for pinpointing areas of the mathematical model
that may be causing numerical accuracy problems, and alerting the program
user to the possible need for a finer integration time step.
In typical applications, a few individual mass total energies may
deviate 2 to 5 percent from the 100 percent ideal, while the total energy
of the entire system remains within 0.5 percent or less. This accuracy
is generally considered acceptable for the numerical integration process.
However, the program user is free to adjust the integration time step to
suit his men personal criterion For the accuracy of the individual mass
i ntegra t ions.
Internal Beam Stress Data. - The stress data output are shown in fig¬
ure 2-2'*, which is taken from the t = 0 output of the sample ease. (Stress
data output was not selected for the sample case, so none was output at
I l).b used for figure 2-23. At time zero, ail output is printed regardless
el what the user requests).
ibis output consists of ratios of current stress to failure Level stress
(corresponding to initial yielding), for four locations on each beam, using
two lailure theories. These theories are the maximum shear stress theory and
the theory of constant energy of distortion. Section 1.3.17 of Volume 1 pre¬
sents tlu' method of calculating those ratios. Also shown in the output are the
2-182
ratios of current compressive/tensile stress to the corresponding yield stress
and the ratio of current axial compressive load (when it is compressive) to
the critical buckling load.
The stress data can be used as a guide for estimating the time at which
the element begins to yield. When such a state is reached, a stillness reduc¬
tion (actor (KR) may be developed for the affected member which then can be
used to approximate the nonlinear response characteristics of that member.
I he user is cautioned to exercise extreme care in the interpretation of data
l>resi ntlal in the summary since they do not include the effect of stress con¬
cent ru t i ons, geometric shape factors, and detail attachment practices at
joints. In addition, limitations of the program require that gross regions
of the vehicle structure be modeled using relatively simple structural ele¬
ments. thus, the more gross the structural region the less accurate the
stress values. Also monitoring the response of a structural element which
may exhibit a buckling mode of failure will require special consideration.
In this case the critical buckling load becomes significant and a stiffness
reduction factor should be developed which will approximate the buckling
character ist ii’s of the element.
Furthermore, the user should realize that once an element has yielded or
buckled, the failure theories followed become invalid and, consequently, the
most meaningful use of the stress data is to identify which element may fail
and at what point in time se h failures are apt to occur.
J.3. i.2.7 initial Mass Acceleration Krror Output . - Figure 2-24 shows this
output for the sample case. This information is only output at time zero, and
has signiiicanco only if balanced initial conditions are used (KRASHIC and
MSC IRAN arc used to calculate balanced internal beam loads). lor each mass
in tho svstem, t he difference between the ..ctual time zero acceleration cal-
.ulatid in KKASIIHI and the theoretically correct value, based on airplane
ri.-iil hod\ aeve 1 oral ions at time zero, is printed. A summary at the bottom
shows t !t> largest value and cor respond i i.g mass number for each of the six
.ireeI oral ions.
2-183
RD-A161 8(1 KRASH 85 USER'S GUIDE - INPUT/OUTPUT FORHAT(U) 3/3
LOCKHEED-CALIFORNIA CO BURBANK N A GAHON ET AL. JUL 85
LR-38777 DOT/FBA/CT-85-18 DTFB83-83-C-888B4
UNCLASSIFIED
F/G 1/3
microcopy resolution test chart
NATIONAL BUREAU OF STANDARDS - 1963 - A
DEVIATION* PERCENT'*
• 6 T -T) T 1 -*1
>300000
>000030
> ui f o n
*-* -f t>. t*. 4 T
' ^ O CO H CJ ^
o o o o o o
vX O -H O -O O
k/i m ro o m a
n o ff c\j j
X lO H rg O x
a \
—i • v»
«* a a
>-« a _i
ooooooooooooooooooooo
ooooooooooooooooooooo
' M tg (g M ^ ifl
i a o o o
I C' N S O
> O O rv
> -l O' o -*
i o a o o
i ao c j f~- co
Or-iOt'-
I M r H
i o o o a
O 3
itg )<> 9 3
o in a r-t
2 000000000 '-» 000<-«"-*>-<00
2 ©OOOOOOOOOrMOOO*-"*-*^* - '
HNM^in^SOO'OHNMX^
FIGURE 2-24. KRASH85 INTERNAL BEAM STRESS DATA AND INITIAL MASS ACCELERATION
ERROR OUTPUT (SHEET 1 OF 2)
The reason that the time zero aece1erations are not "exactly" equal to
the t heoret ical 1 v correct values is because the accuracy of’ the KRASH IC/MSCTRA!
iterations is I imited bv the number of signil Scant I igures used in the input
and output data sets used with XASTRAN. The accuracy shown in figure 2-24 is
representative of a typical large transport airplane model, using ten itera¬
tions of KRASH1C/NASTRAN. In general the results are quite good, with most
translational aece I era t ions accurate to within K-"> g's. Errors of this
order should have no appreciable influence on the subsequent time history
results, particu1ar1v for crash impacts which typicalIv involve mass accelera-
t ions of t ive p's or more.
DR I masses are excluded from the largest value summary because the DR I
beam elements always start with zero internal load and deflection in the axial,
direction. In subroutine NETFOR, where the theoretically exact initial
acee1erations are computed, it is assumed that the DR1 mass is rigidly
attached to the vehicle.
2.3. 1. '3 Summary Output
At the conclusion of the time history printout several summaries are pre¬
sented, which include:
• Summary of internal beam yielding and rupture
• Summary of mass penetration into a control volume
• Summary of external spring loading and unloading
• Summary of plastic hinge moment formations
• Summary ol energy distribution
• lime histories of interaction Loads/summary of maximum load ratios
• lime histories of vehicle c.g. motions
I he summaries are illustrated in figure 2-25.
Internal beam element yielding and rupture are summarized at the end of
the run. For each occurrence of yielding or rupture, the time, beam identifi¬
cation and beam direction of yielding or rupture is output. Directions 1-6
2-186
correspond to beam axis directions x, y, z, I, 0 and 'i, the latter three being
rotations about Liie beam x, y and z axes. In addition the beam tension and
compression rupture is noted. if a beam has a special KR curve that starts at
a nonzero value, then this summary will indicate yielding at time zero. This
output provides the user with a concise summary of the onset of beam non-
linearities and beam ruptures.
Also included in the internal beam yielding summary are occurrences of
interaction loads exceeding the user defined load envelopes. In figure 2-25,
SUMMARY OF 1 ETERNAL BEAM YIELDING AND RUPTURE, the first item for beam 18 is a
conventional beam vieiding in the 1, or axial direction. The second item, for
beam 19, is a conventional beam rupture due to exceeding input maximum load
levels, again in the axial direction. The third line, for beam 9, is an
example of load interaction curve data showing up in this summary. The 15
under YIELD signifies that for load interaction curve number 15, an exceedance
of the defined load envelope has occured. The 3 in the right hand column
means that load line number 3, for interaction curve 15, was the specific
interaction line that was exceeded. if the input load envelope is exceeded
by the factor RITRAT (See Section 2.2, figure 2-3, card 2800), then the load
interaction curve number will be printed under the heading RUPTURE. It should
he noted that load interaction curve outputs in the YIELD column have caused
nothing to happen in the time history solution; outputs in the RUPTURE column
would have triggered an actual beam rupture during the time history solution.
Any mass penetrations into the mass penetration control volume are also
summarized. Both the mass penetrating the control volume and time of
occurrence are noted. Since MVP = 0 in the sample case, this output is not
illustrated in figure 2-25.
Che summar\ of external spring loading and unloading provides the time of
occurrence, the spring designations (mass, node, direction), type of event,
initial del lection, maximum force and unloaded deflection and force.
ihe summary of plastic hinge format ions identifies the time, beam number
and mass number at the end where a plastie hinge formation takes place. In
figure 2-25, beam 1 and mass 2 goes through cyclic plastic hinge motion. At
2-187
SUMMARY OF INTERNAL BEAM YIELDING AND RUPTURE
BEAM BEAM DIRECTION FOR TENSION!♦1 OR
TIME IJ I J M N YIELD RUPTURE COMPRESSION!-
2-188
' * * C ‘ ’ O-/
*/ v s'
FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 1 OF 10)
PERCENT PERCENT PERCENT PERCENT PERCENT PERCENT PERCENT PERCENT
MAXIMUM TOTAL OF OF OF OF OF OF
ENERGY SYSTEM KINETIC CURRENT POTENTIAL CURRENT STRAIN CURRENT DAMPING CURRENT CRUSHING CURRENT FRICTION CURRENT
TIME DEVIATION ENERGY ENERGY TOTAL ENERGY* TOTAL ENERGY TOTAL ENERGY TOTAL ENERGY TOTAL ENERGY TOTAL
OOOOOOOOy
N f j N O O x> uT ni j eg
couaioi/ijcao n o
OO'K^NHHHNMrA^
OOOOOOOOOOO
8 )MJff)NUlCaONM
> lUlNOONHNNlH
1 eg CO »-* CJ <g eg «SJ
OOOOOOOOOOO
1.1 HI 111 HI 111 laj laj hi tu LAJ laJ
M/1 N ffl -Zl ® N -r O N
OJJHNS^OOfflN
I N (M M Ul >0
OOOOOOOOOOC
O'OfslO N l/l a H cr S H
*oe0fsirt)O'<t)(0ui<M<NjpA
... in i.. i.i 11* i j J 111 l) i uj UJ UJ
eomo'O'OOOOOOr-*
NNNNNNNNNNN
in in t* i m hi 111 1.1 LI/ UJ UJ UJ
IflMOl/lOl/'Ort'Off'FO
OOOfffffflflJf'JU'ifl
(SJCSJtSJCxJCSJCSJfvJMESJCNJrj
HO^Ol/lUJM-Jl/llfl
O' DMMOfflUrtrtH
OO’LTlO'tCO^sCOOO
HOOHHOmJCsJCJCJ
OOOOOOOOOOO
OOOOOOOOOOO
OOOOOOOOOO
OOOOOOOOOO
OOOOOOOOOO
I/I i N 10 O' O
OOOOOOOOOO^-*
OOOOOOOOOOO
CVJf»/KI'>FYTKlM 01 N/<VJCVFO
OOOOOOOOOOO
U1UJUJUJUJLUUJUJUJUJUJ
O-NO'.OONNH^l/IO
<rO-r^C3COOONON^
MMMlflff rvOM>o
OOU>Nl>00'KHA-/>C0C
III HI 111 111 III III III 111 1.1 111 111
UlDCOCD-JiJ'OMl/lOi-*
NOM'JfJMHIO^NM
i/i'ifflfji/iNi/iio-j^ij
^JU-iificOMOlMOtOCO
eg i/)
CO ■*
to
O' CO
eg in
M O
>3- m
LU L^J III 111 UJ III III III LI J
O'MIOrtlONON®
' 0 \NNU 10 NNH
O M O H (O Mfllfl
NiHlONNNO'OO
eg O'
<t in
o <
s 8
) Nin (0 H N N (0
OOOOOOO'COf'-N©
OOOOOOO'O'ff'O-
OOXDOOOO'O'O'O'
ooooooo'iyo'fj'
OOOOOOO'O'C'O'
OOOOOOO'C'ff'O'
S(0 0'
OOOOOOOOOOO
OOOOOOOOOOO
o •
x!
s *
UJ o
> o
CL O
So
o
5"
M If
k in
O u.
o <
38
O' m st> m
O CO CO N-
N 1/1 M N
m in vj- eg
UJ UJ UJ UJ
<0 O' CO CJ
>o ^ O' r*.
O' 'O O' m
O N
H H ^ 3
m r» g> o
eg CO ki O'
co co ^ cO
O O O CM
H H N K1
o o o
O O o
o o o
o o o
o o o
o o o
H N
o o o o
o o o o
FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 3 OF 10)
UJ UJ UJ W U u UJ
a o a a o r- co
to O <0 O <M <0 N-
N H o hi M O 111
a m oo a eg & r-»
U 1 l /1 »-1 o 3 M Nl
Kin f O J J N
•J M 8) (0 f J W ifl
M ^ ro hi S ^ N
N O th tj U1 Li M
MONO t) N M
o o O ^ hi tr m
QO lH £ lO iO O th
O O O O CO ^ o
o o o a o 9 a
c o o a a a a
o o o a a a a
c o o a a a a
coot? 3 a a
^ ai o o^oc-
o o o o o o o
o o o o o o o
I L I 11 I 111 III I 11 III 11 I III U m III
OiOMO'i^HOO-NO
HC'NlON'f OOtfH^
B 3 M>JNO'JO^rtOH
®ff''OHff'NN( 0 C 0 WN
UlUJUiUitUUUJUIUJIUU
OfflrlMff N |/1 a N
tfNin^ajNMC'\o
K» K 1 *H aNtOfOWO-hlff
NNHOO-JHO'JJWI^
rtrtHIflWN^N L3 M ^
y yj yj yj yj yj yj yj y j yj
ItlNJONONMUIUlhl
CS> 00 K 1 a M CO N O N K 1
aoao<rcooo^<rKiaho
oooMomitntflo^
HHrtOtOlfllOlflNMH
©oocooaco^-o
ooooooa a a a
ooooooaaaa
ooooooaaaa
aoooooaa c a
ooooooaaaa
h im h^ a tfi -o -o o c
coooooooooo
ooooooooooo
-h»rOM^i-«r^Ol'
Iff'UlOSHJHf
/oavrsawi^af
1 N IO O ifl <M0 N t
co ^ a -a Lfi r
csj-^moaoor
M M CO hi CO N CO t
NNrlHH^SHi
rtO-Ntfl^NinaN^H
oi/iH^N^eouiuiK-o
aNitOHSHOhicoMo
tOWlONSMN-fl/ltOH
CMNNHHI/|rtl/lK1Mlfl
ooooooaeo^vo
ooooooaaaa
ooooooaaaa
ooooooaaaa
ooooooaaaa
ooooooaaaa
HNNItMfl-CONCOC'
ooooooooooo
ooooooooooo
TIME LIME tflJMBE R ( NO. 1 l (NO. 5 I RATIO
o n ^ ifl a ^ ffl
so-'N'jfyHiflco^ff
J^N^J-hhNO-hiO
r- -( -< O- O ,
OOOOOOOOOOO
eo m m e- to k ^ m ^ o fj
JjMJNJMtlflO- -O (O
a- aojo^oui^tON
NNr-MLfta-^OUINO
K1 M W H N r
l-Htf-C-Jlft fi M Kl O C~i ~f r-t
o I/I h ^ n * (!) uun K •<)
<T MfflHNHOMfflNM
K'MONNMN^llllOH
I 1(1 iH U 1 M W U 1
ooooooo-eor-^so
oooooocro a a
ooooooo'o-a a
ooooooo-cro-o-
o o o o o o <r o- O' o-
ooooooo-o o-o
h f j 'I ^ in j c k o 9 -
OOOOOOOOOOO
OOOOOOOOOl
b
ao o
» o
8 -
HJ o
> o
a o
o <
38
JOOOOOOOOC
X a:
<
r
CO <o
ni f<
ts\ bf\
hiUJ JJUMuwujww
o-mNNHiiiai^ff-
o- o ^ r-' t o a)NN
M 3 in<o>C'Jo-tO'
*~<sOUlr^MOMN*-<
lli Hi Hi Hi Hi Hi HJ UJ HI HJ Hj
H >J N S ff cnf'f-'lOCO'H
O'fi'OMNOMOWCOKI
lAU 1 >*C‘J.©Kt>OCH<\ilflfH f-t H>
UiHlUiHJUiUiUJUiUJHJHJ
Ha fiifl^NiflO csj^-h
oiflH^n^ioinmN^
0 'M« 0 «-*^WOM< 0 n^M
MMONNM!M 3 U 1 (OH
M M CM r
i in h m m ^ i^ mo
CJMCJCMHMfJKIO'CMO
0000000-60^^
OOOOOOOO 0-0
000000 0 0-00
0000000-0-00
00000000-00
00000000-00
— <-J O Hi .0 .0 f-» CO o
OOOOOOOOOOO
OOOOOOOOOOO
’-1 (>2
co a
- O
5.
o <t
< u
o o
OOOOOOOOOOO
UiHJHiHiUJHIHlUiUJUiUi
-o ^ O' O' O in H if) ^ (M Kl
f^c^m-ouisj-f'-co^c-JCN.
-tmoHNin^c-ff-MN
mm^NNCMCOtOO-MO
i n m m m vf
’ H CJ J Ifl ^ O' c- I
I O N. O -X) o I s * r
’ CO CM (O H H CJ H I
I M M J- CO M M MJ •
inin^fMinMMMM-omH r-« ^
hi uj iii ui m iii iii iii in in iii
-OCOOCO-ONOC-i-D-Om
inc-tOHMff-^to^H .0
O'MHinff'inO'CO-in -o
HNflfl^COOOOHN
•H O
•H O
, Kl O- O- H CM
ooooooo-cor-M>
0000000 - 0 - 0 - 0 -
oooooo o-o-o-o-
0000000-0-0-0-
OOOOOOO-O-O'O-
0000000-0-0-0-
HCMNiom-fl- 6 N(Oo-
OOOOOOOOOOO
OOOOOOOOOOO
wi. ,t, - . VW ... ~ 1~ » HHUA
V *.* \« 1
FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 5 OF 10)
LOAD INTERACTION CURVE NO. 8 , BEAM NO.
LOCATION: rz~- AoO.OOD , BL= 0.0 , HL =
OOOOOOOOOOO
UJlUUUiUJUJUJUJUiUlUi
C 4) O
NMNOVIN.MMl.fir -O
o«* oHNHajHowfl'
in >j
OOOOOOOOOOO
I I I I I I I I I I I
UJLUUJLliUJUJUIUIUjLJJUJ
O'OMXO'Nito^m^rg
CJUlHrjLOUlMN^O' O'
Off'ff'NWO^HNOOO
Of'COCSjOMOOO'-OCNjO'
JUJLJUJLUUJLUUJ
■ ^
I O' K1 Ifl ^ O U1
I U1 N J O N
O(0N(0-0W(0
OOOOOOC-CO^ O
ooooooo o o O'
OOOOOOO - O' O' O'
ooooooo'o-c-a-
ooooooo o- a o-
oooo i o O' a o o
w rj wT 1^ a ^ n o ^
~:ooc ooooooo
OOOOOOOOOOO
IUILUUJUJU1UIUJUJUJ
IN^lfllflJNCOON
INHMHONM0 1 O
H H M N S (NJ OJ N H .
ooooooctcon.^
□ 000000000
OOOOOOOOO '
OOOOOOOOO C
OOOOOOOOO O
O O O O O O O' o o o
H ^ to V* If) ^ .p N O C
OOOOOOOOOOO
OOOOOOOOOOO
OOOOOOOO
LULUUiOJUJUJUJUJ
n hi >r h o n
l^NNfUCO^JN
IHHKINMKvON
COff'JlflOJ'HN
HHN^^^COS
Lii in in Li I in |.i ill |n
COO-nJMNvJO'H
JJinNOHO-MN
nnhj-j-h^h
hi Hi lii in 111 III ui Ml
Nieccj'Ti/tiO'i'M
OrtOJHMHON
M M i 4 ) O' O Q CO
O O O O O O O'
O O O O O O O'
OOOOOOO'
O O O C O O O'
OOOOOOO'
O O O O O O O'
w m m ^ m i .o
OOOOOOOO
OOOOOOOO
FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 6 OF 10)
OOOOOOOOOOO
n? in CO Ifl Ifl O- a s rt f\l M
SNiHONM? fOCNjr^
in in id (>i hi hi lli m m lu in
O' ^ T'OONa)H01C'U\
N O C' i in K (\l J M -J o
ooo-^or-co^o-ofo
oooi^^o^a--«v>cr
rtHff COHNNI
lu uj uj i*j uj uj u ui u uj uj
M ul l O h o ( j ifl O W i/l
coe o a ui a « j «■ w .j
0 Ol/l^fJOSiNMN
WMiflinooooHoo
INNNNNNMMM
OOCOOO^CO^-C
ooooouo-crao-
OOCOOO^O'O-O'
OOOOOOCO'C o'
©oooootf'C^ a O'
OOOOOOOO'C c
M ^ O l/l 0 .O <0 C
OOOOOOOOOOO
OOOOOOOOOOO
o
z *■ o
<r or
lli O O uJ
> O -J CO
a. o Z
OOOOOOOOOOO
iii m ui m m ul u m m lu ui
WHM/lNMUIOff ©si
rt/)9-®l/|NNH .© O K>
MH(\J(TN(0Ni-i®^K1
aCNNitKltflflO-KlUl
bJUJUJUJIiiUJUIUJIliUJUJ
CO -o h n ^ c- o i/) o !?•
O'MCOfl'HNII/lOl/'S'N
(rN<rNK0'HO'C0U1O
OOO!01t)HMON/)H
l.l 111 111 III II ) HI Lll III 111 111 111
Min^ OHONinoi/ii/i
CO <r o (Mfl O'# i* 0- nw
O ff-ifir-*(SiO'fvsorsJP\i(SJ
MMiflinff'OOo^o-a
NNWtftOHrlHrlCOO'
iMMNHNNMfrtMM
ooooooawr*.^
ooooooa'a-a'ir
ooooooo-ao'o'
OOOOOOO'O'O'C'
ooooooa-a-a o-
OOOOOOO'C'C-O'
h n m <r i/i /> j> s. ffl a-
OOOOOOOOOOO
OOOOOOOOOOO
WHHHHHHHHHrlHHHO
OOOOOOOOOOOOOOO
I I I I I I I I I I t I I I
ILIUILUUiUiUlUiUiiiiUiUiCUUJUJUJ
vOO'ONCDO'NONNHOlOMO'
Off'O'OO'SNOff'O'NOKIlflO'
OOOOOOOOOOOOOOO
FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 9 OF 10)
TIME HISTORIES OF VEHICLE CG MOTIONS
FIGURE 2-25. KRASH85 SUMMARY OUTPUT DATA (SHEET 10 OF 10)
t ~ .0616, NEWPIN = 1 signifies that the coding has changed from fixed at the
j end to pinned at the j end (j = 2). This is the technique for forming a
plastic hinge. At t = .0643, NLWPIN = 0 signit ies that unloading has occurred,
sc that a fixed end condition is appropriate. Subsequent changes in NEW I’ IN
define transition points on a hysteresis curve. NKUTiN = 0 always means a
transition to fixed coding has taken place, due to unloading from a plastic
hinge moment. NKKTIN = 1 always means that a transition to pinned coding, has
taken place, due to exceeding the input plastic hinge moment. DIREC'IIOX = 5
in figure .1-2 i refers to moments about the v beam axis (6 would be moment
about the z beam axis). DIRECTION = -5 means that Lite sign of the plastic
hinge moment at that time is negative.
The energv summary showing the time variation of the different types of
energy is presented. This summary facilitates visualizing the energy flow
time variation; Lite one or two page summary is much easier to read than
skimming through the basic time history print, which can run to hundreds of
pages. Figure 2-25 shows an example of this output for the sample case. A
quick glance at the "PERCENT TOTAL SYSTEM ENERGY" column tells the user how
stable the solution is. The percent energy should stay within 99 - 101 per¬
cent , preferably within a +0.2 percent band. Any significant system insta¬
bilities will quickly manifest themselves in this output.
The column entitled "PERCENT MAXIMUM ENERGY DEVIATION" shows the maximum
deviation from 100 percent of the total energy for each mass individually,
i.e., at each time the worst deviation of all the masses is shown. These
numbers will always indicate a greater departure from 100 percent than the
"PERCENT TOTAL SYSTEM ENERGY" column, wherein all the masses constituting the
s'.-stem are included. The reason for this situation is that some of the masses
have positive and some negative deviations from 100 percent, and when these
are summed over the totaL system cancellations occur. Individual mass total
energy deviations in the order of 10 percent may be tolerable, as long as the
total system energy is acceptable. In the example shown in figure 2-25, the
total system energy remains constant within .01 percent, while the maximum
energy deviation is .02 percent at the conclusion of the analysis. The (+)
in the heading for POTENTIAL ENERGY signifies that energy changes due to
applied farce or a reeleration input time histories are included in the numbers
sir vn ( ref or to Section 3 .3. '.2.')').
1 in:e iiistories ot interaction loads follow the energy summary. in tlie
sample case, there are 15 of these time histories, requiring about 5‘j pages of
output. For each load interaction curve number, the following information is
presented versus time:
• X load value, pounds or inch-pounds
• V load value, pounds or inch-pounds
• Critical load line number. Of a LI the straight line segments making
up the load envelope, the one which is most critical relative to the
current X,Y combined loads is indicated. In general, the critical
Load line number will change with time as the X and Y loads change.
• Maximum load ratio. This is the ratio by which the current Load
vector length (pt. 0,0 to point X,Y) exceeds a Line along this vector
but terminating at the intersection of the vector and the critical
load line (input). A ratio greater than 1.0 signifies an excursion
outside the load envelope defined in the input data.
Each time history data block also includes the identification of the load
interaction curve number, beam number and location (FS, BL and WL). Also,
the directions of the X and Y loads are defined. In the sample case, the X
load is always 3 (vertical shear, Fz) and the Y load is always 5 (bending
moment about 7 axis). At the end of each time history data block, the
maximum and minimum values of X load and Y load are shown, as well as the
peak value of MAX.LOAD RATIO.
After the individual load interaction time histories, a summary of the
peak values of ihe maximum load ratio is shown for all the input curves. This
is followed bv the overall maximum load ratio and the corresponding inter¬
action curve number. For example, in figure 2-25, the overall maximum load
r. i! io is 1.1999, which occurs for interaction curve number 15. This output
1 ives a very quick indication of the severity of the impact being analyzed,
however, maximum load ratios greater than 1.0 do not necessarily imply that
tii. corresponding structural section would have completely failed. Refer to
Section 1.1 for a discussion of the theory and usage of the 1oad-interaction
data.
2-199
If the interaction curves are used to obtain an overall section shear and
moment (summation of all loads acting at a particular station) then the afore¬
mentioned printed summary is applicable to the sum of the forces acting and
not an individual beam.
The final summary print output is a time history of the overall vehicle
c.g. motions. The quantities included are
• c.g. translational accelerations, g's
• c.g. translational velocities, in/sec
• c.g. translational displacements, in (= 0 at time = 0)
• Net forces acting at the c.g., pounds
All these data are calculated in the same manner as the c.g. translational velo¬
cities, described in Section 1.3.9 of Volume 1. Weighted averages of all the
mass motions are used to arrive at a value for the entire system. The final
results completely define the translational motions of an uncoupled 1-mass,
3 degree-of-freedom system. Rotational loads and motions are not presented.
These data have been used to determine vertical load-deflection character¬
istics for a large transport frame structure. Cross plots of DZI vs FZI from
the KKASH analysis of a frame stri ■‘'"*'0 form a load-deflection curve that can
he used to determine the external spring characteristics of a stick model of
an entire airplane.
2.3. 3.A Time History Plots
I he final section of output data consists of time history plots of
selected response quantities. Figure 2-26 illustrates typical output data,
fhe sequential time history print of the three responses is shown on the left,
while Lhe plots are generated using three separate printer symbols. The scale
I actor for all three plots is shown in the upper right corner of the page.
The plot summary is printed on a separate output page as are the various sets
*
*
♦
tT* t' . ■ V" I" e_- *- t- n
*
II
z
#»
N
u.
OOOOOOOOOOO
UiUUJUlUIUJUiUlUJUJUJ
^rHO'in<SICSI<r<M fs J^<0
HWO'O'^OlOlflNUIlO
NHHHHfOWH'O^N
OOOOOOOOOOO
liiUJUiUJUIUIUIUlUIUIIil
(DNvOMff'r^SUlHHj
^inU)JflC0'J9'C0NtfMfl
§
UI
£0
X *
V
Ui
c/>
£
M
PJMHNlfl'OHSHvJM
111 «
OOOOOOOOOOO
UJUJUJUlUiUJUJUiUJUiUJ
cocgfou^sOco^co^O'!^-
i-«©»-4r-«i/llA*-IO'3 , ©''0
• OOOOOOOOOO
. r-icsjrns*'in'X>r^oo'0
• oooooooooo«-i
• OOOOOOOOOOO
2-201
■tetehailNMl
FIGURE 2-26. KRASH85 SAMPLE OUTPUT TIME HISTORY PLOTS
SECTION 3
ADDITIONAL KRASH85 DATA REQUIREMENTS
This sections contains a description of those KRASH data requirements
that are needed for KRASH85. These requirements are in addition to those
items provided in Section 4 of reference 2.
3.1 LOAD-INTERACT ION CURVES
KRASH85 has provisions to include load interaction curve data for failure
prediction. Figure 3-1 shows a typical set of interaction curves for fuselage
bending and shear at a particular airplane fuselage station. Figure 3-2
identifies the stringers at a representative frame location. The input
requirements for load-interaction curves are as follows:
• The user can specify interaction curves at a maximum of 40 locations,
which can be anywhere. For each curve, either a Fuselage Station,
Butt Line, or Water Line (only one) is input, as well as the corres¬
ponding beam number in a KRASH model. The location of the inter¬
action curve can be anywhere along a given beam; the user is not
restricted to using the end points of the beam. For essentially
fore-aft beams, only F.S. is input, while for lateral and vertical
beams B.L. and W.L., respectively, are input to define the location
of a load interaction curve. For each load interaction curve, the
user inputs the following additional information:
• The two load directions for the interaction curve. In figure 3-1,
the abscissa represents vertical shear (direction 3) and the
ordinate represents vertical bending moment (direction 5). Any
2 of the 6 loads can be specified.
• A user-specified load sign convention.
• Horizontal and vertical load interaction lines (4 total).
Vj tbs * 10 '
FIGURE 3-1. MAXIMUM ALLOWABLE MOMENT AND SHEAR
ENVELOPE - NEGATIVE BENDING
FIGURE 3-2. TYPICAL CROSS SECTION WITH STIFFENER
LOCATIONS - REAR VIEW
ami v
• I'p to 20 straight, sloping load interaction lines. i he x
axis intercepts are input for each line.
• A quantity called RL'PRAT (rupture ratio), which is explained below.
Tiu 1 program is coded so that for the sloping interaction lines, data arc-
input for any one quadrant (:< and y axis intercepts). In addition, "mirror
flags" are input to tell the program whether or not to generate mirror image
lines about the x and/or y axes. For example, in figure 3-2 the data arc-
input for line 1 (x and y intercepts), and both the x and v axis mirror
t lags are input as 1. The program then automatica11v generates lines 2, 1,
and 4. If only a mirror about the y axis had been specified, then the
program would generate only line 2.
At each location the program calculates the following:
• The internal beam loads, in KRASH sign convention, at the load
interaction point.
• These loads are transformed to correspond to the standard
structural load sign convention employed by the I.ockheed-CaLifornia
Company (Calac), shown in figure 3-4.
• The Calac:-convent ion loads are then transformed to a user-
specified sign convention. One of ten such sign conventions may
be selected by the user. If no convention is specified, the
loads are left in the Calac sign convention.
• The two interaction loads are selected from the 6 loads calculated.
• A load ratio for each load interaction line. A ratio greater than
one indicates that a load interaction curve has been exceeded,
signifying that at least one element has failed in some manner.
KRASH is coded to allow complete rupture of a beam element if an
input maximum load ratio (RVVRAT) is exceeded.
1. A left handed coordinate svstem is used; moments employ left
hand rule.
2. Internal loads and moments are positive if the loads or moments
applied by the part with the greater algebraic coordinate are
positive in accordance with body axes conventions shown as x, y,
Loads shown are those applied to the cutplane by the parts with the
greater algebraic coordinate (station).
At the conclusion of the computer run the following is printed:
• Time histories of the following quantities for each load interaction
curve.
• X Load (fuselage vertical shear in figure 3-1).
• V Load (fuselage vertical bending in figure 3-1).
• Maximum load ratio at each time.
• Input load interaction line number corresponding to the maximum
load ratio at that time.
• A summary which shows the peak maximum load ratio for each inter¬
action curve and the overall maximum load ratio.
The user has the option of saving the load-interaction curve time history
data in an output file, which can be used for subsequent post-processing.
These data can be plotted to show the time-varying path of the calculated x-v
loads, superimposed on the load-interaction curve (as illustrated by the
dashed lines in figure 3-1).
While the load interaction data output provides a great deal of useful
information not previously available, considerable caution must be exercised
hv the user in its interpretation. A maximum load ratio greater than one
does not, by itself, indicate complete failure of the corresponding fuselage
section. The output data have been used in conjunction with the actual
manufacturer-furnished interaction diagrams to assess the extent of damage at
each location. For example, suppose that the computed combined .loads were as
shown by points A or B in figure 3-1. For point A stringers S27 through S30
could fail. For point B several additional stringer elements could fail
(S-9 through S-15 and S-21 through S-30). Usually the input data to KRASH
is the minimum necessary to define the inner boundary in figure 3-1. The
current KRASH85 coding does not define which stringers fail; it only defines
the critical load line at each time out.
3-5
j.2 A KM 1 IK ARY MASS Nl'MBKR INi.
I'ro^ram KKASH has been modified to accept user supplied mass point
i d> lit i ! i eat ion numbers. 1 he modi i'ii.aL ion can be thought of concept ua I I v as
a tias.s point number pre-processor and a mass point number post-processor,
ihe pre-processor converts external mass point numbers to internal mass
point numbers. The external mass point numbers are supplied bv the user as
«. cl o' » lie input while the internal mass point numbers are defined bv tile
program. ] he internal mass numbers are consistent with the numberin'; svsleni
previous!' used in earlier versions of program KKASH. After conversion pro-
r iri KKAS11H3 is executed usiin; the internal mass point numbers. After oxecu-
1 ion is completed the post-processor converts the internal mass point numbers
to external mass point rumbers for output. In the modification, two new
.aibrout i lies (I NPT and INPTPL) wore added. In these subroutines, two arrays
iMASS and I MASS) are defined which cross reference the external mass noint
numbers to internal mass point numbers and vice versa.
The external mass point identification numbers are input in column 71
and 72 c ■' Card 200 (MASS POINT DATA). The identification numbers can not be
less than zero or greater than 99. Lf they are, program execution will be
halted. lf any of the numbers are left blank or set equal to zero, the pro¬
claim will automatically assign sequential identification numbers to all mass
points in the order of input. This option accommodates previously developed
i up'il data set s .
..is h t he Ri:NM0l)=2 option is used, the program automatically assigns an
■ 1 1 mal mass point identification number to the image mass point generated
cider this option. The identification number assigned is 100 greater than the
ideiit i : icat ion number ot the mass point used in defining the image mass point,
ir example, it the input mass point identification number is 96 then the image
mass point ideiit i f icat ion number will he 196.
SECTION 4
COMMON BLOCK REGIONS
KRASH85 is designed such that data storage and transfer is accomplished
using the many common block regions defined within the program. A cross
reference of the common block names and using subroutines is given in
Table 4-1. Included in the cross reference summary are size requirements
defined by the FORTRAN H/EXTENDED (OPT = 3) compiler.
SUBROUTINE
TABLE 4-1. KRASH85 SUBROUT INK/COMMON REGION REFERENCE (CONTINUED)
« « •
« » » * * *
• » »»•••»»»»
* # # * * *
«■ » * » * *
* * • •
* * * *
• a » c*oa«a<rtactl»:tt*
i m • m cn *r qd o a as tv
» h i #niL (s c u cn
« tO I H <
I •
cD^ccc^c»^u»oea«t>^o^ccccco«s^
o « 9 as o u r- •£ O' o ♦ n AU.rt«iBnir^u
u m c u a. r* o* ♦ ® » - ^ «r c> r- ^ ec u.
^ ^ r** ^ O* (N
Z Z I u b. u U & a h X «) HZ*W«*M*CN®
OO I J J ft *t < U ft. H «0 *“» ^ U] HHUHMfltHfltHK H 10
* n |Jb.Kh:UikkUCiDZSItth)<iJ H II k hi ft OC 10 h ft s O O O ^ « W □ ^ h
* 19 • <QQ*<UUQ H HHQft l Ha2DUUUUQQillil , JKl»iHH00000001ilttiJ
oh) i ttoozzzzzzzzzaa^o:HH<<<<<«4tkxaaaabaa.JhiL
U QC f HHHHHMHMHMHHHMHMkJJIIIXIZXIIZZZZZZZZOOQ,
KRASliS') SI 1 BUOUT INE/COMMON KEG TON REFERENCE (CONTI.NT ED)
REFERENCES
1. Gamon, M. A., "KRASH User's Manual; Theory Volume I," FAA-RD-77-189I,
Lockheed-California Company, Sept. 1979
2. Gamon, M. A., Wittlin, G., "KRASH User's Manual, Input-Output, Techniques
and Applications,” Lockheed-California Company, FAA-RD-77-189II (Revised),
Sept. 1979
APPENDIX A
SHOCK STRUT ELEMENT DESCRIPTION
A.J GENERAL
The use of a shock strut element in KRASH is available for, but not
limited to, lending gear oleo struts. The following discussion will be
oriented to landing gear oleo strut usage. The axial strut motion is
assumed to be uncoupled from the transverse displacements. Axial forces are
produced by an air spring force, F^., a hydraulic damping force, F C) ^, a
friction force, Fp^, and forces produced by elastic stops which limit the
travel of the piston within the cylinder at full extension and full
compression. Each of these forces is discussed separately.
A.2 AIR SPRING FORCE
The expression for the air spring force is
where
effective total strut cylinder length (Figure A-l)
strut air preload at y. = 0
F a> = cylinder load due to ambient air
A A
ii| = polytropic exponent
E. =
'•A,.
A-l
[CLEARANCE
STROKE
= shock strut closure displacement, varying with time F^
is given by
(A.2)
where p u . is the absolute air pressure in the upper chamber of the shock
strut at full extension (y. = 0) and d . is the effective pneumatic diameter
1 oi
as shown in Figure A.l.
If 1 ’a s . is *-h e strut bottoming load at y^ = si, the value of Ep can be
obtained from equation (A.l) as
E.
l
(A.3)
where is the stroke. For high velocity impact conditions, a polytropic
exponent of 1,4, representing adiabatic conditions, is appropriate.
In the
EGLEO, FAO,
program the values of E T , F A , F A ,
1 °i A i
FAA, YMAX and EXPOLE, respectively.
and n^ are input as
A. 3
HYDRAULIC DAMPING
The hydraulic dampinc force F is given by
O;
F
o .
l
(A. 4)
shock strut closure velocity, varying with time
where
is a damping constant which is a
' v, I is tlie absolute value of v. and
function of the strut orifice characteristics and of the characteristics
15,. of a strut rebound valve. C is defined as
1 i / i
C
z
B. if v. 0
l l -
C
z .
i
B -t- B if v. " 0
i r. - i
i
(A. 3)
K is tie fined bv
i
B.
l
2B (A C,) 2
(A. 6)
where
A f
C , =
J d
i / 8
V
2 2
77 /4 (d,. - d ) net orifice area
f. p.
l l
orifice discharge coefficient (typical value = 0.85)
2
1b— sec
oil density (typical value = 0.992 E-4-——)
= 74
(v)
. 4
in
= effective hydraulic area
d.-., d n . and d u . are the orifice, metering pin and effective hvd rau.lie. diam-
1 l f J l n l
cters, respective (see Figure A.l).
B. and B r . are input into the program as BOI.EO and BROLEO. A metering
pin can he modeled hv inputting a table of BOI.EO versus Y0LE0. Y0I.E0 is the
oloo compression, v, measured from the fully extended position.
Another feature of KRASH is the ability to solve for the metering pin
shape that yields a desired oleo load-deflection characteristic curve. If
this option is employed, the metering pin input table (P0LE0 versus YOLEO) is
interpretted as a table of total axial oleo load (!'| in equation A.LO) versus
oleo compression. This option is termed the inverse metering pin option, and
is employed by specifying a negative number for MPTAB on card 1400. The
inverse metering pin coding is useful for two situations.
• handing gear drop data are available, but the basic gear data (meter¬
ing pin shape) is not. KRASH can be used to calculate the variation
of BOLEO versus Y0LE0 that will duplicate the observed test data,
which is used as input data with the inverse metering pin coding.
Once the BOLEO vs Y0LE0 data is calculated and output bv KRASH, it
can be used as input data for subsequent runs to analyze different
conditions involving that gear.
• Metering pin design studies can be conducted using KRASH with the
inverse metering pin option. In this situation, a metering pin
characteristic can be determined that will yield a specified
ideal oleo load-deflection curve.
When the inverse metering pin option is employed, the KRASH output data
includes a table of Y0LE0 vs. BOLEO for each oleo specified. The data point
spacing for the table is determined by the output point times specified by
DP/DT on card 110. The data will be output in uniform time steps, which
means that the YOLEO increments will not be uniform.
A.4 FRICTION FORCE
Coulomb friction is modeled, so that the magnitude of the friction
force is independent of velocity, while the direction of the force is opposite
to the direction of the strut velocity.
The friction forces, Fp^, are given by
F r = C f(y.) (A.7)
F. l i
l
where f(v;) is a function whose sign is always equal to that of and whose
magnitude is 1.
Strictly speaking, f(y^) should be equal to 1.0 for all positive values
• •
of y. and equal to -1.0 for all negative values of y^. However, since the
A-5
friction force is a passive force and is only present as a reaction to an
applied force, the friction force will be able to attain its lull value on 1v
if the applied force is greater than C-. If this situation is not the case,
stops will occur in the motion. A rigorous treatment of this problem would
introduce unwarranted complications into the program. A very good approximate
solution which avoids the difficulty can be obtained by letting the friction
force varv sufficiently slowly from to { at small values of v j, so Licit
at each step in the integration process equilibrium of the forces is obtained
without introducing large discontinuities. The following form is therefor*.'
assumed for f ( v .) :
f(V.) = tanh (v./a ) (A.8)
- 1 • 1 o
This function is plotted in Figure A-2 for various values of , The
value, of a should be small enough to simulate the friction force with
o
sufficient accuracy, but not so small as to introduce discontinuities. The
minimum value will depend on the integration interval. Generally a value of
. = 1 is found to be suitable. The expression for the friction force
t 1
becomes
F_ = C. tanh (v./ci ) (A.9)
r . l • l o
l
The values of nt and Ch are input as ALPHAP and FCOUL in the program.
A.5 ELASTIC STOPS
Two elastic stops of stiffness K F and K,. are present which limit the
^ i e l
travel of the piston at full extension and full compression, respectively.
1 he forces generated by these stops are, therefore, equal to Kp Yj when
v. 0 and K,. (v. - S.) when y. • S..
l 1 i ' i t l t
FIGURE A-2. FRICTION FORCE COEFFICIENT AS FUNCTION OF STRUT CLOSURE VELOC
Collecting all the above terms the total axial force F. can be
written as
F = F + F + F + F + F
i A. o. F. EXT. COMP.
ill i 1
(A.10)
The terms K r , K , and S. are input into the program as XKEXT, XKCOMP, and
i i 1
VM\X, respectively.
U.S. GOVERNMENT PRINTING OFFICE: I 9 8 5-505 08 0/2 0 1 3 5
END
FILMED
1-86
DTIC