Skip to main content

Full text of "NASA Technical Reports Server (NTRS) 19740019235: Scanner observations of selected cool stars"

See other formats



Scanner Observations of Selected Cool Stars* 


Theodore D. Fay, Jr. 

Department of Physics and Astronomy, University of Alabama 


William L. Stein and Wayne H. Warren, Jr. 
Department of Astronomy, Indiana University 


Scanner Observations of Cool Stars 


Send Proofs to: William L* Stein 

Wayne H. Warren, Jr* 

Swain Hall West 319 
Department of Astronomy 
Indiana University 
Bloomington, Indiana 47401 

Theodore D e Fay, Jr. 

Box 1921 

Department of Physics and Astronomy 
University of Alabama 
University, Alabama 35486 


Received : 



1 H-i , 






♦Publications of the Goethe Link Observatory, Indiana University, No. 


/"(N AS A -CR - 1387 77) SCANNER OBSERVATIONS OF ¥74-27348^ 

SELECTED COOL STARS- (Indiana Univ.) 

35 p HC $4.75 CSCL 03A 

Onclas 

G3/3Q 41915 


ABSTRACT 


Photoelectric spectral scans at 30-A resolution of 9 dwarfs, 10 giants 
and 6 supergiants with spectral types GO to M5 are presented. All stars were 
observed every 4 A from A3300 to A7000. Absorption features observed at this 
resolution coincide with? strong atomic lines of Fe I, II, Ca I, II. Mgl, and 
Na Ij vibrational bands of the electronic transitions of TiO, MgH, CaH, SiH, 
AlH, CN, CH, C 2> OH, and NH. The dependence of the j\3740 Fe I blend and the 
A3440 depression on temperature is discussed. 

Key Words: spectrophotometry - cool stars - spectral line identification 




3 


INTRODUCTION 

Much of our information on the nature of cool stars depends upon a 
comparison of observed fluxes with those from model atmospheres, Previous 
spectrophotometry in the region 3300-7000 X has been confined to studies of 
particular strong atomic and molecular features plus continuum points to 
determine temperature, gravity and abundance indicators (cf. van den Bergh 
and Sackman 1965; McClure and van den Bergh 1968; Spinrad and Taylor 1969). 
There are, however, no published continuous energy distributions of these 
stars from 3300 to 7000 X available for detailed comparison with atmospheric 
models. The scanner observations presented here should be useful for this 
purpose since the relative fluxes are observed every 4 X. It is also possible 
to use these scans to determine line blanketing, identify molecular features, 
or place narrow-band Interference filters for measuring strong absorption 
features and continuum points in the energy distributions of similar stars. 

Figures 1-6 display our scans of G0-M5 stars of different luminosities 
in the aforementioned wavelength range. Although the resolution is only about 
30 X, we overs ample the data at 4-X intervals both to allow more detailed 
comparison with models and to increase the accuracy of data reduction. Our 
resolution is sufficient to show strong atomic lines, molecular bands, and 
other continuum features. These scans should therefore indicate major 
sources of line opacity to be included in atmospheric models In this wave- 
length region. 



• 4 


OBSERVATIONS 

The observations were made during 1971. and 1972 at Goethe Link 
Observatory using equipment previously described by Honeycutt (1971). They 
were reduced to flux using a method described by Fa}?, Honeycutt and Warren 
(1973) and a detailed discussion of observational errors can be found there. 

Table I lists the observed . energy distributions of the program stars 
at Hayes (1970) standard wavelengths. All stars have been observed on more 
than one night, some on as many as five nights. The results presented are 
means which have been computed by weighting according to nightly errors. For 
known variables we present only the best individual observations and the 
corresponding dates are listed in the table. The solar scan shown for 
comparison in Figure 1 has a resolution of 20 A and is taken from Labs and 
Neckel (1968), In order to show the approximate extent of nightly variations 
for the bright stars, we display in Figures 3 and 6 two scans of ^ Cephei 
taken on different nights. 



DISCUSSION 


A# Strengths and Identifications of Atomic Line Features 

We consider It worthwhile to identify the spectral features found at 
scanner resolution and to tabulate the strengths of these features. 
Identification codes for the spectral features in Figures 1-6 are given in 
Tables II and III* Electronic transitions of molecular bands are indicated 
by small Greek symbols and strong atomic lines by small Roman symbols. 

Many of the atomic line identifications in Table II are Fe I lines of 
solar equivalent width greater than 1 A (Moore et al. 1966). Each spectral 
feature at 30-i resolution is composed of from 2-10 blended lines. Our 
atomic line codes are given in column 2 of the first part of Table II while 
the wavelengths of the lines contributing to each blend are listed in 
column 3. Solar equivalent widths and lower excitation potentials are given 
in columns 4 and 5 and are taken from Moore et al, (1966), Column 6 lists 
the solar identifications of the atomic line blends; there are 43 line 
blends of H, Fe I, Mg I, Ca I, Ca II, Mn I and Na I included in the table. 

In Table IV we tabulate the strengths of some of the line blends 
identified in Tables II and III. Column 2 lists the wavelengths of the 
blends and continuum points; the remaining columns tabula te^ the strengths of 
line blends in each of the program stars in flux differences measured in 
magnitudes. An example of the temperature dependence of the Fe I strengths 
from Table IV is shown in Figure 7; The peak strength of this blend 
(If p A3740) occurs at spectral type K 5. The decrease in strength of the 
\3740 feature for spectral types later than K5 must be due to some source 
of opacity which absorbs more at the reference wavelength (X3680) than at 
^3740. Line blanketing by OH and CH is a possible source for this 


absorption. 



6 


/ 


Tarafdar and Vardya (1972) show that line blanketing by CH and OH la 
the strongest opacity source between 3000-4000 A at temperatures cooler than 
5000 K, Vardya (1966) and Greene (1972) have computed partial pressures for 
OH and CH. For solar abundances, Greene's results show that the partial 
pressure of OH increases by a factor greater than 1000 as e varies from 1.0 
to 2,2 while the partial pressure of CH decreases by more than 10 B , The 
computations of Tarafdar and Vardya demonstrate that OH line blanketing 
decreases sharply between 3500-3800 A. Therefore we would expect that OH 
should absorb more at the reference wavelength than at A3 740. 

B. Identifications of Molecular Bands 

Table III lists the identifications of molecular line blends seen on 
our scans. The second part of the table defines the molecular codes used in 
the first part and in the figures. Each electronic transition Is given a 
different Greek letter and/or Arabic number. The first part of the table 
lists the title of each electronic transition In column 1, the molecular 
Identification code assigned in column 2 and the vibrational band and wave- 
length of the blend in columns 3 and 4. 

Pearee and Gaydon (1963) was used as a general reference for the wave- 
lengths of each mdlecule considered in Table III, We used the following 
references to identify the strong TiO features: . Gatterer, Junkes, Salpeter 
and Rosen (1957), Phillips (1969, 1971), Phillips and Davis (1971), Wentlnk 
and Spindler (1972). The MgH depressions (Mbore et al. 1966) are very strong 
on our spectra, as can be seen in Figures 1-6, Sptnrad and Taylor (1969) 
have made scanner studies of the strengths of these and the TiO bands in this 
spectral region. Webber (1971) has identified and studied CaH lines at high 
resolution in sunspot spectra from x6200-X6400. Vardya (1966) Indicates that 
ratios of partial pressures of MgH/CaH are equal to 20 at t * 2/3 for M4 V. 
Sptnrad and Taylor (1969) have made the most recent scanner studies of the 


7 


stellar CaH depression at ^6350. As seen in Figures 3-6, our observations are 
consistent with earlier work. 

Sauval (1969) has identified the SiH (0,0) band at A4140 in sunspot spectra. 
In the spectrum of 0 Peg, Davis (1947) finds that next to TtO and MgH, SiH 
produces the strongest molecular absorption. On our stellar scans in Figures 
1-3, these and other SiH bands have been identified. As expected these 
depressions are weak, since Vardya (1966) gives the partial pressure ratio 
of MgH/SiH - 30 at T ° 2/3 for M2 V. 

Sotirovski (1972) claims to have identified AlH lines from 5000-7000 A 
on high resolution sunspot spectra. However Wtfhl (1971) has questioned these 
identifications. According to Davis (1947), the (0,0) transition of AlH at 
A4241 is one of the strongest molecular absorption features in 0 Peg while 
other transitions are Par less conspicuous. Computations by Vardya (1966) 
indicate that the ratio of partial pressures of MgH to AlH in m 2 V stars is 
about 10 at T “ 2/3. As predicted, features coincident with AlH are at least 
a factor of three weaker than the MgH features on Figures 1 and 4. 

The identifications of the 4^ features have been suggested by Pesch (1972) 
as due to CaOH. These features are strong only in Barnard's star (BD + 4® 3561, 
M5 V). Trlatomic molecular formation would be likely only at the highest 
pressures and/or lowest temperatures found in stellar atmospheres. 

We now briefly review the known molecular compounds of H, C, N and 0 
which are strong in stellar spectra: CH, OH, NH, CN and C 3 . Table III 

indicates the wavelengths of the stronger bands of these light molecules, 
and some of their strengths measured from our scans are given in Table IV. 

Lambert and Beer (1972) have observed strong OH absorption features in 
a Orionis near 3 microns. These vibration-rotation bands of OH have f values ' 
which are a factor of 100 smaller than the electronic system. Tarafdar and 
Vardya (1972) have determined that OH is an important opacity source for cool 
stars in the wavelength range 3000-4000 A* The bands of the £v * -1 sequence 



8 


of the OH molecule degrade longward of *3400. The minimum flux In the 
\3400 depression seems to occur on our scans near A3440 for dwarfs. 

We have chosen \3540 as a reference wavelength to measure the K3440 

depression because the highest flux levels between 3300-3600 A occur at 

\3540. A referee has pointed out that the X354Q reference wavelength Is 

contaminated by the £v 88 +1 sequence of CN beginning at X3590. Because of 

this CN contamination, we have confined our analysis to the dwarf stars. For 

this luminosity class, the \3590 band is weakest and the dependence of CN 

absorption upon temperature is minimal as shown by Wing (1967), The range of 

OH depression strengths shown in Figure 8 exceeds the range in CN strengths 

given by Wing for the dwarfs. The OH strength Is defined by the [0,344] - 

[0.354]-^ color which is expressed by -2.5 log [F v (3440)/F v (3540], The 

solid line is the relative partial pressure ratio, P nu /P , for j = 2/3 as 

OH g 

calculated by Vardya (1966). This OH feature is probably blended with atomic 
lines given in Table II If the [0.344] - [0.354]-^ color Is less than 0.2 
magnitudes. 

C. Notes on Individual Stars 
Binaries 

The system Q Aur is a well known eclipsing binary (see e.g. Wilson 
1960). We observed this variable on January 1, 1972 during total eclipse so 
that only the spectrum of the K4 lb star Is visible. The K4 primary's spectral 
energy distribution appears normal for its spectral and luminosity class as 
can be seen from the scans shown in Figures 3 and 6. The a Her AB system is 
a visual pair. For this system we made an attempt to exclude the secondary 
from the entrance slot of the scanner by offsetting a Her A from the center of 
the slot. Since the secondary is a single line spectroscopic binary of type 
GO II- III (Deutsch 1960), some contamination of the spectrum is probable 



shortward of 4000 X, but the value at each wavelength is difficult to 
estimate. 

The a Sco AB visual system has a separation of only 3" and no attempt 
was made to exclude the B4 V companion from the entrance slot. Spectral 
classification of the B4 companion was made by Stone and Struve (1954); the 
visual magnitude difference of primary and secondary (a m v £ S = 4,25) is 
from Wierzbinski (1969), If we compare the observed energy distribution 
a Ort shown in Figure 3 to the energy distributions of the B stars studied 
by Fay et al, (1973) with the same scanner, we note that an M and B star 
which differ by 4.2 mag at 5500 X would differ by less than 0.5 mag at 
3800 X, The weakening of the spectral line features in a Sco at wavelengths 
shortward of 4000 X is consistent with the observed visual magnitude 
differences and derived energy distributions for normal M2 I and B4 V stars. 



10 


SUMMARY 

Line blanketing features observed at 30-X resolution for normal stars of 
spectral classes GO to MS can be identified with known atomic or molecular 
line blends observed in sunspot and stellar spectra of higher resolution. We 
conclude that many of the atomic line strengths (especially for types later 
than middle K) are strongly affected at scanner resolution by molecular line 
blanketing from the electronic transitions of TiO, MgH, CN, CH, OH, C a , NH, 

CaH, AlH, and SlH* Observed strengths of the A3440*OH feature vary approximately 
with spectral class as do the partial OH pressures computed by Vardya (1966). 



11 


ACKNOWLEDGEMENTS 

This work was supported by NASA Grant 15-003-002 to Hollis R. Johnson. 
The authors acknowledge helpful comments and encouragement from R. Kent 
Honeycutt, R, F, Wing and G. W. Lockwood. We also wish to thank an anonymous 
referee for his thoroughness and constructive criticism. 



FIGURE CAPTIONS 


Figure 1 

Figure 2 
Figure 3 
Figure 4 

Figure 5, 
Figure 6, 
Figure 7, 

Figure 8. 


Scans of G, K and M dwarfs in the range XA3300-53G0. Resolution 
is about 30 A and data spacing is 4 X, Identification codes are 
listed in Tables II and III* 

Same as Figure 1 for G, K and M giants. 

Same as Figure 1 for G, K and M supergiants. 

Scans of G, K and M dwarfs in the range AA5000-7000. Other 
comments same as Figure 1. 

Same as Figure 4 for G, K and M giants. 

Same as Figure 4 for G, K and M supergiants. 

Strength of the Fe I depression (in mag) against spectral type. 
Filled circles are dwarfs, open circles giants, and open 
triangles supergiants. 

Dependence of the OH band depression (13440) on temperature for 
dwarf stars only. The solid line represents calculations by 
Vardya. 



REFERENCES 


Bergh, S. van dan, and Sackmann. X, J. 1965, A.J, 70, 353. 

Davis, D. N. 1947, Ap.J. 106, 28. 

Deutsch, A, J. 1960, in Stellar Atmospheres . J. Greens tein, ed. (Chicago: 
University of Chicago press), p. 543. 

Fa?, T. , Honeycutt, R. K. and Warren, W, H. Jr. 1973, A.J. 78, 246. 
Getterer, A., Junkes, J. , Salpeter, E. W. and Rosen, B. 1957, Molecular 
Spectra of Metallic Oxides (Vatican City: Vatican Observatory). 

Greene, A. E, 1972, Contr. Perkins Obs. Ser. 11, No. 31. 

Hayes, D. S. 1970, Afc.J. 159,' 165. 

Honeycutt, R. K. 1971, Applied Optics 10, 1125. 

Labs, D. and Neckel, H. 1968, Zs., f. Aj>, 69, 1. 

Lambert, D. L. and Beer, R. 1972, Ap. J. 177, 541. 

McClure, R. D. and Bergh, S. van den 1968, A.J, 73, 313. 

Moore, C. E., Minnaert, M. G. J. and Houtgast, J. 1966, National Bureau of 
Standards Monograph 61 . 

Pearse, R. W. B. and Gaydon, A. G. 1963, The Identification of Molecular 
Spectra (New York: John Wiley and Sons). 

Pesch, P. 1972, Ap.J. (Letters ) 174, L155. 

Phillips, J. G. 1969, Ap.J. 157, 449. 

• 1971, Ap.J. 169, 185. 

Phillips, J. G. and Davis, S. P. 1971, Ap.J. 167 , 209. 

Sauval, A. J. 1969, Solar Physics 10, 319. 

Sotirovski, P. 1972, Astr . and Ap . Suppl . 6, 85. 

Spinrad, H. and Taylor, B. J. 1969, Ap.J. 15^7, 1279. 

Stone, S. N. and Struve, O. 1954 Pub . A. S.P. 66, 191. 



14 


Tarafdar,! S. P. and Vardya, M. S. 1972, A£.J. 171, 185. 

Vardya, M, S. 1966, M.N.R.A.S. 134, 347. 

Webber, J, C. 1971 Solar Physics 1 £, 340. 

Wentlnk, T. Jr, and Sptndler, R. j, jr. 1972, Journ. Quant . Spectrosc , 
Radiat . Transfer 12, 1569. 

Wierzbinski, S. 1969, Contr. Wroclaw Astir . Obs . No . 16 . 

Wilson, 0. C. 1960, in Stellar Atmospheres . J. Greens tein, ed, (Chicago? 
University of Chicago Press), p, 436. 

Wing, R. F. 1967, Doctoral Dissertation, University of California, Berkeley. 
Wflhl, H. 1971, Solar Physics 16, 362. 



TABLE I 


Relative Magnitudes at Hayes Points Normalized at 5263 A 


Stars* 

34001. 

3450A 

3500 1 

35711 

36361 

37051 

38621 

40371 

41681 

$ Com 

1^506 

l^s 

1 I ?440 

l“410 

1?258 

1?150 

lT078 

0”431 

0”433 

T Cet 



1.695 

1.775 

1.476 

1.429 

1.547 

0.777 

0.642 

c Eri 



2.000 

2.270 

1.715 

1.810 

2.110 

1.020 

0.843 

61 Cyg A 



2.811 

3.027 

2.754 

2.621 

2.857 

1.660 

1.337 

61 Cyg B 



3.114 

3.212 

2.966 

2.851 

2.983 

1.931 

1.511 

GRM 1618 





2.895 

2.821 

2.657 

1.879 

1.539 

LA 21185 








1.815 

1.621 

+15° 2620 








1.870 

1.626 

+4° 3561 










31 Com 

1.797 

1.779 

1.710 

1.681 

1.599 

1.336 

1.225 

0.665 

0.563 

e Vir 

2.174 

2.205 

2.090 

2.306 

1.792 

1.665 

2.268 

0.950 

1.043 

a UMa 

2.647 

2.758 

2.579 

2.785 

2.255 

2.119 

2.421 

1.187 

1.238 

a Boo 

3.171 

3.206 

3.004 

3.258 

2.691 

2.568 

2.931 

1.506 

1.445 

a Hya 



3.915 

3.990 

3.523 

3.429 

3.779 

2.152 

2.065 

0 t Tau 



3.730 

3.938 

3.502 

3.451 

3.594 

2.238 

1.968 

a Cet 



4.071 

4.266 

3.796 

3.587 

3.571 

2.379 

2.081 

6 vir 



4.151 

4.129 

3.709 

3.610 

3.480 

2.303 

1.905 

(JO Vir 



3.982 

4.036 

3.515 

3.461 

3.317 

2.163 

1.717 

a Her A (6/23/71) 





3.195 

3.068 

2.926 

1.759 

1.402 

e Gem 



3.574 

3.670 

2.923 

2.882 

3.243 

1.880 

1.938 

£ Aur (1/1/72) 




4.080 

3.552 

3.390 

3.615 

2.320 

2.165 

a CMa 







3.598 

2.385 

2.181 

0 t Sco AB 




4.088 

3.898 

3.753 

3.495 

2.608 

2.317 

a Ori (2/5/72) 





3.996 

3.903 

3.648 

2.594 

2.245 

IX Cep (10/31/71) 







4.056 

3.373 

2.809 


*Date indicated if star is variable 




42551 44641 4566 A 47871 5000 A 


0™422 

0.676 

0.829 

1.433 

1.595 

1.602 

1.796 

1.855 

2.993 


0 I ?243 

0.334 

0.357 

0.685 

0.781 

0.781 

0.894 

0.820 

1.718 


0?165 

0.229 

0.155 

0.364 

0.425 

0.422 

0.579 

0.620 

1.198 


0^066 

0.107 

0.034 

0.340 

0.461 

0.461 

0.482 

0.561 

1.402 


0^047 

0.065 

0.079 

0.215 

0.296 

0.345 

0.479 

0.429 

0.715 


0.518 

0.782 

0.920 

1.229 

1.690 

1.716 

1.895 

1.789 

1.670 

1.419 


0.344 

0.450 

0.552 

0.707 

0.945 

0.945 

1.095 

1.048 

1.170 

1.296 


0.254 

0.336 

0.386 

0.493 

0.658 

0.611 

0.735 

0.700 

0.823 

0.858 


0.102 

0.126 

0.137 

0.241 

0.290 

0.431 

0.540 

0.671 

0.898 

0.984 


0.070 

0.103 

0.080 

0.169 

0.133 

0.272 

0.349 

0.528 

0.770 

0.889 


1.411 

1.804 

1.787 

2.074 

2.008 

2.602 


0.938 

1.065 

1.150 

1.471 

1.394 

1.960 


0.673 

0.747 

0.715 

1.059 

0.952 

1.457 


0.191 

0.366 

0.318 

0.611 

0.556 

0.902 


0.146 

0.178 

0.181 

0.396 

0.376 

0.554 



1 ( continued ) 


5263 A 55591 584 ll 6057 i 


- 0?149 

- 0.170 

- 0.203 

- 0.190 

- 0.495 

- 0.514 

- 0.337 

- 0.605 

- 0.083 

- 0.194 

- 0.232 

- 0.304 

- 0.363 

- 0.448 

- 0.474 

- 0.497 

- 0.362 

- 0.259 

- 0.443 

- 0.429 

- 0.600 

- 0.524 

- 0.543 

- 0.589 

- 0.581 


- 0?187 

- 0.243 

- 0.369 

- 0.279 

- 0.741 

- 0.728 

- 0.523 

- 1.005 

- 0.651 

- 0.263 

- 0.368 

- 0.451 

- 0.562 

- 0.675 

- 0.717 

- 0.769 

- 0.487 

- 0.349 

- 0.638 

- 0.622 

- 0.885 

- 0.755 

- 0.813 

- 0.843 

- 0.970 


- 0 I ! l 220 

- 0.292 

- 0.427 

- 0,338 

- 0.817 

- 0.794 

- 0.604 

- 1.175 

- 0.700 

- 0.300 

- 0.425 

- 0.518 

- 0.676 

- 0.818 

- 0.882 

- 0.985 

- 0.739 

- 0.678 

- 0.968 

- 0.703 

- 1.052 

- 0.974 

- 1.023 

- 1.127 

- 1.267 


- 0™260 

- 0.378 

- 0.527 

- 0.463 

- 0.985 

- 1.038 

- 0.884 

- 1.621 

- 1.314 

- 0.341 

- 0.530 

- 0.595 

- 0.788 

- 0.954 

- 1.082 

- 1.282 

- 1.141 

- 1.239 

- 1.564 

- 0.727 

- 1.219 

- 1.210 

- 1.388 

- 1.443 

- 1.624 



TABLE II 


n 


\ Atomic Line Blends at 30 Jl Resolution 

! » 




I 


Wave- 

Solar 

LOW 




Wave- 

Solar 

• Low 


ttxena Atomic 

length 

Weq 

EP 

Solar 

Blend 

Atomic 

length 

Weq 

EP 

Solar 

i no. 

Code 

Jl 

k 

eV 

Ident. 

i 

No. 

Code 

r 

Jt 

eV 

Ident 

1 

7a 

3361.2 

0.9 

0.9 

Til, Till 

12 

ig 

3797.9 

3.5 

10.2 

H 10 








or 

3795.0 

0.5 

1.0 

Fe I 

i i 2 

6a 

3380.9 

0.8 

0.4 

Ni I 


2g 

3799.6 

0.6 

1.0 

Fe I 



3384.0 

0.4 

3.0 

Fe I 



3815.9 

1.3 

1.5 

Fe I 



3394.0 

0.6 

0.0 

Ni I 



3820.4 

1.7 

0.9 

Fe I 

; 








3825.9 

1.5 

0.9 

Fe I 

3 

6b 

3414.8 

0.8 

0.0 

Ni I 



3824.4 

0.5 

0.0 

Fe I 



3433 .6 

0.5 

0.0 

Ni I 



3827.8 

0.9 

1.6 

Fe I 



3446.2 

0.5 

0.1 

Ni I 



3834.2 

0.6 

1.0 

Fe I 


la 

3440.6 

1.2 

0.0 

Fe I 


3a 

3829.3 

0.9 

2.7 

Mg I 









3832.0 

1.7 

2.7 

Mg I 

4 

6c 

3458.5 

0.7 

0.2 

Ni I 



3838.3 

1.9 

2.7 

Mg I 



3461.7 

0.8 

0.0 

Ni I 



3835.4 

2.4 

10.2 

H 9 



3465.9 

0.5 

0.1 

Fe I 



3840.4 

0.6 

1.0 

Fe I 

5. 

lb 

3475.4 

0.6 

0.1 

Fe I 

13 

Ih 

3856.4 

0.7 

0.0 

Fe I 



3476.7 

0.5 

0.1 

Fe I 


or 

3859.9 

1.6 

0.0 

Fe I 



3490.6 

0.8 

0.0 

Fe I 


2h 

3872.5 

0.6 

1.0 

Fe I 



3497.8 

0.7 

0.1 

Fe I 



3878.0 

0.6 

1.0 

Fe I. 


6d 

3493.0 

0.8 

0.1 

Ni I 



3878.6 

0.7 

0.0 

Fe I 









3886.3 

0.9 

0.0 

Fe I 

6 

6e 

3510.3 

0.5 

0.2 

Ni I 



3889.0 

2.3 

10.2 

H 8 



3515.1 

0.7 

0.1 

Ni I 



4 






3524.5 

1.3 

0.0 

Ni I 

14 

8a - 

3905.5 . 

0.9 

1.9 

Si I 

7 

lc 

3565.4 

1.0 

1.0 

Fe I 

15 

4a 

3933.7 

20 

0.0 

ca II K 



3570.1 

1.4 

0.9 

Fe I 


4b 

3968.5 

15 

0.0 

Ca II H 



3581.2 

2.1 

0.9 

Fe I 

* 







, 

3585.3 

0.8 

1.0 

Fe I 

16 

li 

4045.8 

1.2 

1.5 

Fe i 



3587.0 

0.5 

1.0 

Fe I 



4063.6 

0.8 

1.6 

Fe I 









4071.7 

0.7 

1.6 

Fe I 

8 

Id 

3608.9 

1.0 

1.0 

Fe I 









3618.8 

1.4 

1.0 

Fe I 

1? - 

2d 

4101.7 

3,1 

10.2 

H 6 



3631.5 

1.4 

1.0 

Fe I 









3647.9 

1.0 

0.9 

Fe I 

18 

13 

4132.0 

0.4 

1.6 

Fe I 









4143.9 

0.5 

1.6 

Fe I 

9 ’ 

le 

3679.6 

0.5 

0.0 

Fe I 









3687.5 

0.6 

0.0 

Fe I 

19 

5a 

4226.7 

1.5 

0.0 

Ca I 



3705.6 

0.6 

0.0 

Fe I 



. 










20 

G 

4250.8 

0.4 

1.6 

Fe I 

10 

2e 

3646.0 



B aimer Limit 



4260.5 

0.6 

2.4 

Fe I 









4271.8 

0.8 

1.5 

Fe I 

11 

If 

3721.9 

0.5 

10.2 

H 14 



4254.3 

0.4 

0,0 

Cr I 


or 

3719.9 . 

1.6 

0.0 

Fe I 



4271.1 

0.2 

3.1 

Cr I 


2f 

3722.6 

0.7 

0.0 

Til + Fel 



4274.8 

0.2 

0.0 

Cr I 



3727.6 

0.6 

1.0 

Fe I 



4283.0 

0.1 

1.9 

Ca I 



3734.4 

1.0 

10.2 

H 13 



4302.5 

0.2 

• 1.9 

Ca I 



3734.9 

3.0 

0.9 

Fe I 



4307.9 

0.7 

1.6 

Fe 1 



3737.1 

1.1 

0.0 

Fe I 



4325.8 

0.8 

1.6 

Fe I 

• 


3743.4 

0.6 

1.0 

Fe I 









3745.6 

1.2 

0.1 

Fe I 

21 

2c 

4340.5 

2.9 

10.2 

H v 



3749.5 

1.9 

0.9 

Fe I 









3750.1 

1.4 

10.2 

H 12 

22 

lk 

4383.6 

1.0 

1.5 

Fe I 



3758.2 

1.6 

1.0 

Fe I 



4404.8 

0.9 

1.6 

Fe I 



3763.8 

0,8 

1.0 

Fe I 



4415.0 

0.4 

1.6 

Fe I 



3767.2 

0.8 

1.0 

Fe I 









3770.6 

1.9 

10.2 

H 11 








i 

i 




TABLE II (continued) 


Blend Atomic 
1 No. Code 

Wave- 

length 

k 

Solar 

Weq 

k 

LOW 

EP 

eV 

Solar 

Ident. 

Blend Atomic 
No. Code 

Wave- 

length 

r 

Solar 

Weq 

k 

Low 

EP 

eV 

• 

* 

Solar 

^dent. 

23 

5b 

4423.3 

0.1 

2.1 

Na I 

32 

iq 

4978.6 

* 

0.1 

4.0 

Fe I 

i 


4425.4 

0.1 

1.9 

Ca I 



4980.2 

0.1 

3.6 

Ni I 

I 


4427.3 

o.l 

0.0 

Fe I 



4981.7 

0.1 

0.9 

Ti I 



4435 . 0 

0.2 

1.9 

Ca I 



4982.5 

0.1 

4.1 

Fe I 

! 


4435.7 

0.1 

1.9 

Ca I 



4983.2 

0.1 

4.2 

Fe I 

i 


4444.5 

0.4 

2.0 

Fe I 



4983.8 

0.1 

4.1 

Fe I 

j 

i 


4454.8 

0.2 

1.9 

Ca I 



4985.2 

0.1 

3.9 

Fe I 









4985.5 

0.1 

2.9 

Fe I 

i 24 

IX 

4522.5 

0.1 

2.8 

Fe II 



4991.0 

0.1 

0.8 

Ti I 



4525.1 

0.1 

3.6 

Fe I 



4994.1 

0.1 

0.9 

Fe I 



4526.4 

0.1 

3.9 

Fe l 



4999.5 

0.1 

0.8 

Ti I 



4528.6 

0.3 

2.2 

Fe I 



5001.9 

0.2 

3.9 

Fe I 



4529.5 

0.1 

1.6 

Ti II 



5005.7 

0.1 

3.9 

Fe I 



4531.2 

0.1 

1.5 

Fe I 



5006.1 

0.2 

2.8 

Fe I 



4534.0 

0.1 

1.2 

Ti II 



5007.3 

0.2 

0.8 

Ti I 



4549.5 

0.2 

2,0 

Fell+Till 



5012.0 

0.2 

0.8 

Fe I 









5014.2 

0.2 

0.0 

Ti I 

25 

5c 

4581.4 

0.2 

2.5 

Cal + Fel 



5015.0 

0.1 

3.9 

Fe I 



4585.9 

0.1 

2,5 

Ca I 



5018.4 

0.2 

2.9 

Fe II 



4578.6 

0.1 

2.5 

Ca I 









4583.9 

0.1 

3.1 

Fel + Fe II 

33 

lr 

5035.4 

0.1 

3.6 

Ni I 









5035.9 

0.1 

1.5 

Ti I- 

26 

lm 

4637.5 

0.1 

3.2 

Fe I 



5040.9 

0.1 

4.3 

Fe I 



4654.6 

0.2 

2.0 

Fe I 



5041.0 

0.1 

1.0 

Fe I 



4668. 1 

0.1 

3.4 

Fe I 



5041.8 

0.2 

1.5 

Fe I 









5049.8 

0.1 

2.2 

Fe I 

27 

3a 

4703.0 

0.3 

4.3 

Mg I 



5051.6 

0.1 

0.9 

Fe I 



4707.3 

0.1 

3.2 

Fe I 



5065.0 

n i 

A *1 

T 



4709.0 

0.1 

2.0 

Ti I 



5068.8 

C.l 

2*3 

Fe I 



4710.3 

0.1 

3.0 

Fe I 



5074.7 

0.1 

4. 2 

Fe I 



4714.4 

0.1 

3.4 

Ni I 









4727.4 

0.1 

3.6 

Fe + Mn 

34 

3b 

5167.3 

1.0 

2.7 

Mgl + Fel 



4736.8 

0.1 

3.2 

Fe 



5172.7 

1.3 

2.7 

Mg I 









5183.6 

1.6 

2.7 

Mg I 

28 

9a 

4754.0 

0.1 

2.0 

Mn I 








4762.4 

0.1 

2.9 

Mn I 

35 : 

Is 

5188.7 

0.2 

1.6 

Till+Cal 



4768.4 

0.1 

3.7 

Fe I 



5191.5 

0.2 

3.0 

Fe I 



4783.4 

0.2 

2.3 

Mn I 



5192.4 

0.2 

3.0 

Fe I 



4786.5 

0.1 

3.4 

Ni I 



5193.0 

0.1 

0.0 

Ti I 









5194.9 

0.2 

1.6 

Fe I 

29 

2b 

4861.3 

3.7 

10.2 

H 0 



5202.3 

0.2 

2.2 

Fe I 


In 

4871.3 

0.2 

2.9 

Fe I 



5204.5 

0.2 

0.9 

CrI+Fel 



4872.1 

0.2 

2.9 

Fe I 



5206.0 

0.2 

0.9 

Cr I 



4878.2 

0.2 

2.9 

Cal + Fe I 



5208.4 

0.2 

0.9 

cr I 



4890.8 

0.2 

2.9 

Fe I 









4891.5 

0.3 

2.9 

Fe I 

36 

It 

5227.2 

0.3 

1.6 

Fe I ! 








or 

5233.0 

0.3 

2.9 

Fe I 

30 

lo 

4919.0 

0.3 

2.9 

Fe I 


5d 

5264.0 

0.2 

2.5 

Ca I 



4920.5 

0.5 

2.9 

Fe I 



5265.6 

0.1 

2.5 

Ca I 1 



4923.9 

0.2 

2.9 

Fe II 



5266.5 

0.3 

0.8 

Ti I 



4924.8 

0.1 

2.2 

Fe I 



52*69.5 

0.5 

0.9 

Fe I . 









5270.3 

0.3 

1.6 

Cal -f Pel 

31 

lp 

4957.6 

0.7 

2.8 

Fe I 



5273.2 

0.1 

3.3 

Fe I 









5273.4 

0.1 

2.5 

Fe I i 









5276.1 

0.1 

2.9 

Cr I 









5281.7 

0.2 

3.0 

Fe I 









5283.6 

0.2 

3.2 

Fe I 


i 

i 


7*7 


TABLE II (continued) 


Blend Atomic 
i No. Code 

Wave- 

length 

l 

Solar 

Weq 

r 

Low 

EP 

eV 

Solar 

Ident. 

Blend Atomic 
No . Code 

Wave- 

length 

r 

Solar 

Weq 

r 

• 

LOW 
EP 
« eV 

«6olar 

Ident. 

! 37 lu 

5324.0 

0.3 

3.2 

Fe 

I 

39 

5e 

5582.0 

0.1 

2.5 

Ca I 

i 

5328.0 

0.4 

0.9 

Fe 

I 



5588.8 

0.1 

2.5 

Ca I 


5328.5 

0.2 

1.6 

Fe 

I 



5590.1 

0.1 

2.5 

Ca I 


5332.9 

0.1 

1.6 

Fe 

I 



5594.5 

0.1 

2.5 

Ca I 

- 

5339.9 

0.2 

3.2 

Fe 

I 



5598.4 

0.1 

2.5 

Ca I 

' 

5341.1 

0.2 

1.6 

Fe 

I 



5601.3 

0.1 

2.5 

Ca I 









5602.9 

0.1 

2.5 

Ca I 

38 lv 

5371.5 

0.3 

1.0 

Fe 

I 



5615.6 

0.3 

2.5 

Ca I 


5384.4 

0.2 

4.3 

Fe 

I 








5393.2 

0.2 

3.2 

Fe 

I 

40 

D 

5890.0 

0.8 

0.0 

Na I 


5397.1 

0.2 

0.9 

Fe 

I 



5896.0 

0.6 

0.0 

Na I 


5400.5 

0.1 

4.4 

Fe 

I 








5404.1 

0.2 

4.3 

Fe 

I 

41 

5f 

6102.7 

0.1 

1.9 

Ca I 


5405.8 

0.3 

1.0 

Fe 

I 



6122.2 

0.2 

1.9 

Ca I 


5415.2 

0.2 

4.4 

Fe 

I 



6136.6 

0.1 

2.4 

Fe I 


5424.0 

0.2 

4.3 

Fe 

I 

* 


6137.7 

0.1 

2.6 

Fe I. 


5429.8 

0.3 

1.0 

Fe 

I 



6141.7 

0.1 

3.6 

Fe I 


5434.5 

0.2 

1.0 

Fe 

I 



6162.2 

0.2 

1.9 

ca I 


5446.9 

0.2 

1.0 

Fe 

I 


• 

6169.5 

0.1 

2.5 

Ca I 


5455.6 

0.2 

1.0 

Fe 

I 













42 

5g 

6439.0 

0.2 

2.5 

Ca I. 









6462.6 

0.2 

2.5 

Cal + Fel 







43 

2a 

6562.8 

4.0 

10.2 

H a 


Atomic Line code .Identification 

Code Atom 

1 Fe I 

2 H(Balmer) 

3 Mg I 

4 Ca II 

5 Ca I 

6 Ni I 

7 Ti I 

8 Si I 

9 Mn I 


TABLE III 


MOLECULAR BANDS AT 30-X RESOLUTION 


ELECTRONIC 

SYSTEM 

MOLECULAR 

CODE 

VIBRATION 

BAND 

WAVELENGTH 

X 

EIEC TRONIC 
SYSTEM 

MOLECULAR 

CODE 

VIBRATION 

BAND 

WAVELENGTH 

X 

c 3 a-x 3 a 

Lx a 

3,0 

4584 


l Yl 

1,0 Rg 

6651 

(TiO) 


4,1 

4626 



1,0 R, 

6680 



5,2 

4668 



1,0 Rj 

6713 







2,1 Rg 

6746 


la a 

2,0 

4761 



3,2 Rg 

6814 



3,1 

4804 



4,3 R, 

6852 



4,2 

4848 











0,0 R a 

7053 


la t 

1,0 

4954 



0,0 Rg 

7087 



2,1 

4999 



0,0 Rj 

7124 







1,1 Rj 

7197 



0,0 

5167 



2,2 Rg 

7270 



? 

5307 







? 

5356 

b 3 u-x 3 a 

H 

1,0 R, 

5847 





(TiO) 


2,1 R a 

5951 


la_ j 

0,1 

5448 



3,2 Rg 

6003 



1,2 

5497 



4,3 Rg 

6058 


la_ fl 

0,2 

5760 



0,0 R 4 

6158 



2,3 

5810 



0,0 Rg 

6186 







0,0 Rg 

6214 

a 1 A- C l $ 

ip c 

0,0 

5600 



1,1 R a 

6240 

(TiO) 


1,1 

5631 



1,1 Rg 

6276 



2,2 

5663 







3,3 

5697 


Vi 

0,1 Rj 

6569 



4,4 

5727 



0,1 Ra 

6596 







0,1 R 3 

6629 

A a $-X® A 

1 Y a 

2,0 Rg 

6322 



1,2 Rg 

6649 

(TiO) 


3,1 Xj 

6358 







4,2 Rg 

6448 

e 1 I'd 1 Z 


0,0 

4114 


5,3 K x 


6512 


Crio) 


o 



TABLE III (continued) 


ELECTRONIC 

SYSTEM 

MOLECULAR 

CODE 

VIBRATION 

BAND 

WAVELENGTH 

X 

electronic: 

SYSTEM 

MOLECULAR 

CODE 

VIBRATION 

BAND 

WAVELENGTH 

X 

d^-x 3 * 

IT] 

0,0 

3286- 


3a. a 

0,2 R 

4886 

(TiO) 



3650 



0,2 Q 

4929 







1,3 

5031 

A a n-X a L 

2a 4 

1*0 

4845 





CMgH) 






0,3 

5314 


2% 

0,0 R 

5211 



1*4 

5430 



0,0 Q 

5186 







1*1 

5182 

c 1 i-A 1 n 

3p c 

0,0 

4723 



2,2 

5155 

(A1H) 





2a. j 

0,1 

5621 

E 1 n-A l n 

3 V 0 

0,0 

3382 



1*2 

5559 

(AlH) 






2*3 

5516 









b a n-a 3 n 

36 0 

0,0 

3810 



0,2 

6083 

(AlH) 




A*n*x a i 

20 o 

0,0 Q a 

6920 

A 3 i-X a i 

2 H 

1*0 

3870 

(CaH) 


0*0 P a 

7035 

(SIS) 









H 

0,0 Qj 

4128 

B*£-X 8 £ 

23-1 

0,1 

7567 



0,0 Q a 

4142 

(CaH) 






1*1 

4190 


2 Vo 

0,0 

6346 



2,2 

4270 

a 1 n-x 1 L 

3°4 

1,0 

4066 


4 Y 


5550 

(A1H) 




(CaOH) 



5730 


3a c 

0,0 

4241 




6038 



1,1 

4357 




6230 



2,2 

4450 




6415 


3a-j 

0,1 R 

4546 

A a A-X*n 

5% 

0,0 

4320 



0, lQ 

4576 

(CB) 









5a n 

0,1 

4890 




TABIE III (continued) 


ELECTRONIC 

SYSTEM 


B a L-X a Il 

(CH) 


A a n-x 3 i 

(CN) 


B a 5>X a L 

(CN) 


MOLECULAR VIBRATION WAVELENGTH ELECTRONIC MOLECULAR VIBRATION WAVELENGTH 

COE® BAND A SYSTEM CODE BAND A 


50 e 

0,0 

3880 


1,1 

4030 

5$., 

1,2 

4496 

6 a, 

8,1 

4832 


9,2 

4936 


10,3 

5043 

ta e 

6,0 

5129 

7,1 

5239 


8,2 

5354 


9,3 

5473 


10,4 

5598 


5,0 

5606 


6,1 

5730 


7,2 

5858 


8,3 

5993 


9,4 

6132 

6 a 4 

4,0 

6192 


5,1 

6332 


6,2 

6478 


7,3 

6631 


8,4 

6791 

63, 

1,0 

3590 


0,0 

3883 

63-, 

0,1 

4216 

63-a 

0,2 

4606 


1,3 

4578 


A a ng-x ,3 nu 

(C B SWAN) 


A*E + -x a n 

(OH) 


7a 

0,0 

5165 


0,1 

5635 

80 ^ 

1,1 Q 

3370 


0,0 Q 

3360 


0,0 R 

3302 

8a_ 4 

0,1 P 

3676 


0,1 Q 

3638 

8a_ # 

0,2 

4320 


0,1 R 

3430 


0,1 Q 

3465 


0,2 R 

3890 


0,2 Q 

3933 

Vs 

0,3 R 

4450 


0,3 q 

4506 


Vj 

V 



TABLE III (continued) 
MOLECULAR CODE IDENTIFICATION 


CODE 

MOLECULE 

la- 71 

TiO 

2a 

MgH 

2 0*V 

CaH 

3a- 6 

AlH 

3e 

SiH 

4 V 

CaOH 


CODE 

MOLECULE 

5a, 0 

CH 

6a, 0 

CN 

7a 

C a SWAN 

8a 

NH 

9a 

OH 



TABLE IV 


LINE BLEND DEPRESSIONS IN MAGNITUDES 

Stars (G and K Dwarfs) 


Figure 

Color 

3 Com 

Sun* 

t Cet 

c Erl 

61 Cyg 

61 Cyg B 

Groom. 1618 

Code 

MICRONS 

GOV 

G2V 

G8V 

K 2 v 

K5V 

K7V 

MOV 

6a + 8a Q 

[0.336] - 

[0.340] 

0.13 

0.15 

0.35 

0.50 

0.34 

0.30 

--- 

6b, d + ^ 

+ laj> 

[0.344] - 

[0.354] 

0.20 

0.28 

0.36 

0.50 

0. 50 

0.60 

0.7? 

lc,d + 6pj 

[0.358] - 

[0.368] 

0.30 

0.40 

0.38 

0.50 

0.72 

0.50 

0.4 

If + 2f 

i — i 

o 

w 

•« 

■ p * 

« — l 
t 

[0.368] 

0.14 

0.29 

0.29 

0.57 

0. 70 

0.50 

0.4 

4a, b + 9a_ 0 

[0.393] - 

[0.402] 

0.70 

1.00 

0.75 

0.85 

1.05 

0.80 

0.79 

5a + 63_^ 

[0.42 3] - 

[0.426] 

0.01 

0.1 

0.01 

0.03 

0.10 

0,28 

0.25 

G 

[0.430] - 

[0.436] 

0.22 

0.40 

0.29 

0.43 

0. 50 

0.50 

0.54 

lk + 3a 0 

[0.439] - 

[0.436] 

0.00 

0,20 

0.03 

0.08 

0.08 

0.05 

0.10 

la s + 2a j 

[0.479] - 

[0.472] 

-0.03 

0.10 

-0,03 

-0.07 

0.10 

0.08 

0.17 

2a 0 + 3b 

[0.518] - 

[0.524] 

0.09 

0,18 

0.19 

0.30 

0.46 

0.49 

0.50 

D + la_ 0 

[0.589] - 

[0.582] 

0.06 

0.06 

0.06 

0.08 

0.28 ' 

0. 33 

0.45 

+ i Y ; 

[0.602] - 

[0.608] 

0.02 

0.00 

0,02 

0.03 

0.05 

0.05 

0.02 


[0.618] - 

[0.613] 

- 0.01 

0.00 

-0.02 

-0,02 

-0.02 

0.03 

0.03 

2 yo 

[0.638] - 

[0.634] 

- 0.01 

0.00 

- 0.02 

0.00 

- 0.01 

0.01 

0.03 


♦Solar scans by Labs and Neckel are at 20-X resolution and narrow features show deeper 
depressions than our scans* 




TABLE IV (continued) 


pf 


Stars (M dwarfs and giants) 


Figure 

Code 

Color 

MICRONS 

La 21185 
M2V 

15* 2620 
M2V 

4° 3561 
M5V 

a Cet 
M1.5III 

6 Vtr 
M3III 

a) Vir 
M5IXI 

a Her A 
M5Ib-II 

6a + 8a 0 

[0.336] - [0.340] 

— 

— 

— 

0.2? 

0.06 

-0.1 

-0,1 

6b,d + 9a. x 
+ la ,b 

[0.344] - [0.354] 

1.1 


— 

0.40 

0.51 

0.55 

0.45 

lc,d + 6p^ 

[0.356] - [0.366] 

0,3 

— 

— 

0.68 

0.69 

0.7 

0.8 

If + 2f 

[0.374] - [0.368] 

0,3 

— 

— 

0.40 

0.37 

0.27 

0.25 

4a ,b + 9a 

[0.393] - [0.402] 

0.77 

1.0 

— 

1.29 

1.25 

1.15 

1.34 

5a + 60-j 

[0.423] - [0.426] 

0.5 

0.3 

— 

0.25 

0.31 

0,30 

0. 35 

G 

[0.430] - [0.436] 

0.27 

0.33 

— 

0.54 

0.43 

0.35 

0.32 

lk + 3a 0 

[0.439] - [0.436] 

0.0 

0.01 

— 

0.07 

0.06 

0.00 

0.03 

la s + 2a x 

[0.479] - [0.472] 

0.16 

0.25 

0.2 

0.05 

0.15 

0.28 

0.22 


[0.497] - [0.494] 

0.16 

0.19 

0.25 

0.16 

0.37 

0.66 

1.05 

20^ + 3b 

[0.518] - [0.524] 

0.45 

0.54 

0.65 

0.31 

0.46 

0.46 

0.49 

D + lo. s 

[0.589] - [0.582] 

0.57 

0.57 

0.95 

0.26 

0.43 

0.53 

0.56 

6a s + 43 
+ 1 yl 

[0.602] - [0.608] 

0.1 

0.13 

0.22 

0.14 

0.21 

0.25 

0.25 


[0.620] - [0,613] 

0.42 

0.45 

0.90 

0.30 

0.55 

0.70 

0.68 

2 V 0 

[0.638] - [0.634] 

0.08 

0.07 

0.10 

-0.08 

-0.12 

-0.19 

0.15 


TABLE IV (continued) 


2b 


Stars (G and K giants) 


Figure 

Code 

Color 

MICRONS 

31 Com 
GOIII 

c Vir 
G8lllab 

a UMa 
K0"llla 

a Boo 
K2UIp 

a Hya 
K3II-III 

a Tau 
K5III 

6a + 8a 0 

[0.336] - 

[0.340] 

0.1 

0.15 

0.21 

0.17 

0.1 

0.2 

6b, d + 9a_ t 
+ la,b 

[0.344] - 

[0.354] 

0.2 

0.12 

0.21 

0.30 

0. 30 

0.32 

lc,d + 6(3^ 

[0.358] - 

[0.368] 

0.30 

0.68 

0.74 

0.75 

0.80 

0.74 

If + 2f 

[0.374] - 

[0.368] 

0. 17 

0,28 

0.35 

0.44 

0.55 

0.58 

4a, b + 9a_ 0 

[0.393] - 

[0.400] 

0.69 

0.94 

0. 99 

®. 28 

1.30 

1.35 

5a + 60. j 

[0.423] - 

[0.426] 

0.02 

0.03 

0.06 

0.07 

0.21 

0.25 

G 

[0.430] - 

[0.436] 

0.23 

0.32 

0.38 

0.43 

0.52 

0. 55 

Ik + 3a 0 

[0.439] * 

[0.436] 

0.03 

0.05 

0.06 

0.05 

0.06 

0. 1 

la s + 2a^ 

[0,479] - 

[0.472] 

-0.05 

-0.1 

-0.1 

-0.07 

-0.1 

0.06 

la^ 

[0.497] - 

[0.494] 

0.00 

0.00 

0.00 

0.00 

-0.01 

0.06 

2a 0 + 3b 

[0.518] - 

[0.524] 

0.07 

0.11 

0.14 

0.20 

0.26 

0.30 

D + la_ 3 

[0.589] - 

[0.582] 

0.06 

0.06 

0.1 

0.04 

0.1 

0.21 

6a 8 + 40 o 
+ 

[0.602] - 

[0.608] 

0.02 

0.03 

0.04 

0.03 

0.07 

0.1 

ImJ 

[0.618] - 

[0.613] 

-0.01 

-0.04 

**0003 

0.02 

-0.05 

0.13 

2 \o 

[0.638] - 

[0.634] 

-0.03 

-0.04 

-0.03 

-0.03 

-0.04 

0.06 


57 


TABLE XV (continued) 


Stars (supergiants) 


Figure 

Code 

Color 

MICRONS 

e Gem 
G8lb 

£ Aur A 
K4lb 

0 CMa 
K7lb 

a Sco 
Ml. Slab Ml 

a Ori 
-M2 Ia-Ib 

H Cep 
M2la 

6 a + 80 ^ 

[0.396] - 

[0.340] 

0.3 

0.0 

_ . 

_ _ . 

„ 

_ _ 

6b, d + Sbt.j 

+ la,b 

[0.344] - 

[0.354] 

0.1 

0.0 

— 

— 

0.1 

— 

lc,d + 60^ 

[0.358] - 

[0.368] 

0.70 

0.85 

— 

e.43 

0.50 

— 

If + 2f 

[0.374] - 

[0.368] 

0.27 

0.45 

— 

0.05 

0.18 

— 

4a, b + 9&_ a 

[0.393] - 

[0.402] 

1.15 

1.25 

1.27 

0.7 

1.17 

1.3 

5a + 

[0.423] - 

[0.426] 

0.09 

0.2 

0.29 

0.21 

0.21 

0.3 

G 

[0.430] - 

[0.436] 

0.41 

0.56 

0.63 

0.49 

0.55 

0.66 

lk + 3a 0 

[0.438] - 

[0.432] 

0.09 

0.08 

0.09 

0.07 

0.09 

0.07 

la 8 + 2a^ 

[0.479] - 

[0.472] 

-0.17 

-0.09 

-0.05 

-0.06 

-0.03 

-0.07 

la t 

[0.497] - 

[0.494] 

-0.02 

-0.04 

0.07 

0.14 

0. 16 

0.19 

2a 0 + 3b 

[0.518] - 

[0.524] 

0.12 

0.31 

0.31 

0.25 

0.27 

0.31 

D + la.g 

[0.589] - 

[0.582] 

0.06 

0.06 

0.27 

e .26 

0. 33 

0.33 

6 a g + 48 0 
+ 1 Y { 

[0.602] - 

[0] 608] 

0.04 

0.08 

0.12 

0.16 

0.16 

0.18 

H 

[0.618] - 

[0.613] 

0.00 

0.02 

0.12 

0.22 

0.28 

0.26 

2 Vo 

[0.638] - 

[0.634] 

-0.05 

-0.05 

-0.12 

-0.13 

-0.13 

-0. 10 


Angstroms 



Angstroms 




Angstroms 


3400 ^ 3800 ^ 4200 ^ 4600 ^ 5000 ^ 5400 



-1 1 1 — L 1 _ f L —I J - I 

3^00 3800 4200 4600 5000 5400 


iN6StR0MS 
















3/ 


Angstroms 





Angstroms 






Ingstroms 



Angstroms