Skip to main content

Full text of "Dillon resource area resources inventory water quality surve"

See other formats


FSctbxli 
197 8 i 



Dillon Resource Area 

1 Resources Inventory: 

! 


Water Quality Survey 

Blacktail Unit 


1978 


STATE DOCUMENTS COLLECTION 

OCT 6 1982 

MONTANA STATE LIBRARY 
930 E Lyndale Ave. 

Helena, Montana 59601 


By 

Montana Forest and Conservation 
Experiment Station 

University of Montana 
For 

Bureau of Land Management 






viUL 2 9 t992 


DILLON RESOURCE AREA 
RESOURCES INVENTORY: 


WATER QUALITY SURVEY 
Blacktail Unit 


Prepared by: 

G. Thomas Foggin, III 
Thomas D. Reid 
Silas J. Gilbert 


Montana Forest and Conservation Experiment Station 
University of Montana 
Missoula, Montana 59812 


Prepared For: 


Department of the Interior 
Bureau of Land Management 
Dillon Resource Area 
Dillon, Montana 59725 


1 




0 





ACKNOWLEDGEMENTS 


The authors of this report wish to acknowledge the following 
individuals who either technically or inspirationally contributed to 
the execution and completion of this project: Randy Swanson for 
assisting in the channel stability surveys and establishing the stream 
sampling stations; Dr. Kenneth Bandelier of Western Montana College 
for providing laboratory facilities and occasional floor space; Michael 
Nair for performing the bacterial analyses; Dr. John Taylor of the Micr- 
biology Department, Dr. Richard Juday of the Chemistry Department, and 
Dr. Nellie Stark of the School of Forestry for the use of their equipment 
and technical assistance; Ailean Graeme Macuilean for writing the computer 
programs and making them work; Bonnie Manley for graciously creating this 
report from its humble illegible beginnings; Daniel Tippy and Darrell Brown 
for helping; Pete for understanding the Problem; Ruth at the Yesterday 
Calf-A in Dell for her hot coffee and our only good hot meal each week; 
Travis for knowing his "numbers” well enough to offer to help; the antelope 
herd up Basin Creek; and to Father Sky and Mother Earth for creating the 
beauty that is the Beaverhead County landscape. We thank you one and all. 




TABLE OF CONTENTS 


1 a 

INTRODUCTION p. 4 

METHOD 

Inventory Design p. 6 

Field Methods p. 7 

Laboratory Methods p. 8 

Analytical Methods p. 13 

STUDY AREA 

Beaverhead County p. 14 

Blacktail Creek Watershed p. 15 

Lower Blacktail Station p. 17 

Upper Blacktail Station p. 17 

Indian Station p. 19 

Clark Canyon Creek Watershed p, 19 

Lower Clark Canyon Station p. 20 

Upper Clark Canyon Station p. 20 

East Fork Clark Canyon Station p. 23 

Little Sage Creek Watershed p. 23 

Little Sage Creek Station p. 24 

Basin Creek Watershed p. 25 

Lower Basin Creek Station p. 26 

Upper Basin Creek Station p. 29 

Little Basin Creek Station p. 29 

RESULTS AND DISCUSSION 

Blacktail Creek Basin p. 30 


Digitized by the Internet Archive 
in 2017 with funding from 
Montana State Library 


https://archive.org/details/dillonresourcear1978fogg 


lb 


Channel Stability Ratings p. 30 

Precipitation p, 30 

Stream Discharge p. 35 

Suspended Sediment p. 45 

Hydrochemical Parameters p. 50 

Bacteria Levels p. 50 

Comments p. 55 

Clark Canyon Creek Basin p. 57 

Channel Stability Ratings p. 57 

Precipitation p. 57 

Stream Discharge p. 62 

Suspended Sediment p. 70 

Hydrochemical Parameters p. 72 

Bacteria Levels p. 76 

Comments p. 82 

Little Sage Creek Basin p. 82 

Channel Stability Rating p. 82 

Precipitation p. 84 

Stream Discharge p. 84 

Suspended Sediment p. 89 

Hydrochemical Parameters p. 11 

Bacteria Levels p. 91 

Comments p. 93 

Basin Creek Basin p. 93 

Channel Stability Ratings p. 96 

Precipitation p. 96 

Stream Discharge p. 96 


•m ‘-,1 • » 



fl€ .G v'’* • • ;* • '• .'“’V: ._ . "* ,: 

jPf;, ,,\.t,- ". ■ -‘IH ‘y" B - , • ' 

' ■» '‘''i * ■* t '^r* •, »aTftrfD«ia 'lllli 

' ^■■11 -» ^ rt • ■ v' "afl 


' V* 


.r '1 9 



•i»V»J \9l>t^'4:y I," J 


ej^a^NiaBOit) 



i’> '^,.\ . % f cS. ► aJtaftS >I«9 iD, 

3^- i» ij, 

,- .- . Br'AfiJr3<v9 ^tt’lf<*63i8--iannawfl^ ^ '“' 

. ' t. , 'm: , ,2, w ’ r' .^ _ '^ ■ 


- ."<*■ ,' n, . 

• ; 

m. 




,ij 


■ I A ,.q *' , 4 , »: ■ . . . . ^ '. . . jl' V'^w^.'\ «$'JJ6ii<i«8 id a»*ii’iZ 

'Mf-ftr „ , »i' <il.' 

l.ti6T^‘"'...^;^:-^- "^Tisr-r -w 

4. , -.i*; t <r .;, .B5'5«',' ., V ^ ■.:\,* 




•'■ ■? > 3i4'»ffliferd8 b^bn^uBfjB 


v./.f 2i. . 





* lit 'J i«HE. / J 

If r- 


y • j t 


. #y\i'‘/. . . ., al'^ivaj. aiidJ'ii&fi 

i\ ■ ■ H »j ■ ■ '' ' ’ 

m. f. >.:■'! ’’ 


r?:,^. ^ " s' i DL' 

W v V“1". ^ . . .'" . . k'^ . ftJnswMfioD 




U. '! Vo ,'» • <!' ;<■' ".-- y ™ 

yt’.. ..I'L ■ ''7'' . 


., ;. ^4, „,1» ■-■. " *♦; .Siv aiBJ^a JldblO . 9l9llJ 

jsv, ijisin^ii*, - '■:^ i’^ 


kS 






'•'HB 

f '■% % * • k 


V!\A 


V i' V-y* . 

^r- : ■ -Vi ' ' ■•■'■■■ 




.jfi 




. »^3f>ftt>«J:a nisei :J8 




i’^V' 






[?fei ■', ^ •' « i> » • •■.^ • • V • 9' • • 

'"7‘[ . a ^ ^ ^ 

CjvflraHJ# *%\t* '■‘•^^'fc ’"•■jp:** '■ ' * y ■ ^ *■ • ■ • • * ‘ ^ 0 ft J f|i^<0WW>i) 


5-’' » 


niGof ndoftfi 

'■“ rtk'n 1 •,! 


W'S^. . <*iM’Xla8" YitiisdoJ'S Ittljnil^.iil'''’' ■' , 

4JOl JO 3 !•<? t ^ 



nik'. '.. ~i' ....si 



Ic 


Suspended Sediment p.llO 

Hydrochemical Parameters p.ll2 

Bacteria Levels p. 119 

Comments p.l22 

LITERATURE CITED p.l23 

APPENDIX - DATA 

Lower Blacktail p. 125 

Upper Blacktail p. 129 

Indian p. 133 

Lower Clark Canyon p. 137 

Upper Clark Canyon p. 141 

East Fork Clark Canyon p, 145 

Little Sage p. 149 

Lower Basin p. 153 

Upper BAsin p. 157 

Little Basin p. 161 



e:r .<? . 




.■■' ' ‘ui 


. ^ . « 

* 

»,.f ‘ 

r * ,• •/ ■'*■ 

'■■■-V‘f '■ '.t,A ■' 

* " ■,!" ^ 

1 n 

♦ «» , 

i 'rt 


>' ' ■ • » 

<■ •" '.jk',; ' • • ^. • 

7U"' 

<:Ai 

• ^ » 


• «■ 

T 


■ • ft . ♦, ft, " . 


. ■* . 

• f 

• . 


*'' M: ^ * €• ■• ■ ' 

' •^'■•" ' • , • 'ft 






' U 'tT-nr 

/A ■', ■ 



«> . • 


*.' ) . ..a’ 

#1 • * t ft 

ft r ft '• ■ ft 

''%l 


•? ■ * 

« • 

* • ^ 

:.C^ 

« ft ft ’ . • 

^A,_ , ',■ 

• « ft ' ft! , h ft 

' ' A ■■ 

*" Id I 


" • *• , 

f' '■■ 


« . • " 

..^1 ,f,.. > 

« « • ft ft 


.^tnXD iTo’? !&,»$ 


. . nX»t^. ijawoJ 

-:U .' 

, ‘ fti&AS isqqJ 


. plea^ wliaXa 

■"*. _ ' 'B 


ii^vl 'r ' > 


•: -v: ::::;,>^ ^'v 



, , /’ '" ’.. , ■' ,• \\.: ,,:; ■■ i'; *'.'i;#': ' 




I,.' A"'. ’ '■ ■■ ■i'a 




'.,. ':r^: 

''ft''-'" ^.'W'<^:f 


•a-': MU 




FIGURES 


2 a 


Figure 

1 

Blacktail Creek Watershed Location 

• P- 

16 

Figure 

2 

Blacktail Station Locations 

• i’- 

18 

Figure 

3 

Clark Canyon Watershed Location 

. p. 

21 

Figure 

4 

Clark Canyon Station Locations 

, . p. 

22 

Figure 

5 

Little Sage Watershed Location 

^ . P- 

23a 

Figure 

6 

Little Sage Station Locations 

. . P- 

25 

Figure 

7 

Basin Creek Watershed Location 

. . P- 

27 

Figure 

8 

Basin Creek Station Locations 

. . P- 

28 

Figure 

9 

Upper Blacktail Precipitation Data 

. P- 

34 

Figure 

10 

Lower Blacktail Staff-discharge Rating Curve . , . 

, . p. 

36 

Figure 

11 

Upper Blacktail Staff-discharge Rating Curve . , . 

, . p. 

37 

Figure 

12 

Indian Staff-discharge Rating Curve 

. . p. 

38 

Figure 

13 

Lower Blacktail Hydrograph - 1977 

, . p. 

39 

Figure 

14 

Lower Blacktail Hydrograph - 1978 

, . p. 

40 

Figure 

15 

Upper Blacktail Hydrograph - 1977 

, . p. 

41 

Figure 

16 

Upper Blacktail Hydrograph - 1978 

, . p. 

42 

Figure 

17 

Indian Hydrograph - 1977 

. p. 

43 

Figure 

18 

Indian Hydrograph - 1978 

. . P- 

44 

Figure 

19 

Lower Blacktail Sediment vs Discharge 

■ . P- 

47 

Figure 

20 

Upper Blacktail Sediment vs Discharge 

, . P- 

48 

Figure 

21 

Indian Sediment vs Discharge 

■ . P- 

49 

Figure 

22 

Lower Blacktail Conductivity vs Discharge . . . . 

■ . P- 

51 

Figure 

23 

Upper Blacktail Conductivity vs. Discharge, . , . 

. P- 

52 

Figure 

24 

Indian Conductivity vs Discharge 

, . p. 

53 

Figure 

25 

East Fork Clark Canyon Precipitation Data . . , . 

, . p. 

61 

Figure 

26 

Lower Clark Canyon Staff-discharge Rating Curve . 

. p. 

63 



at 


. '., . nol SsmI b^1liiT*’j'iBW 

,'H-. ’<i_yij>r ^ > 


M 


u 

8$ 

AC 

dC 

Tt 

8f 

■91 


U 


q , i 

' ■<r < 


.^] V. 

U'<- r > 


♦ *' ■^, ■> 

'V 





ti e-q . . . . . . * .• . . nolift'»oJ ao\tts3 

. BffiK!! M .- ®' i\3,; , ■■= •» 

Si «a,i . gnoil: CTo|i»38«novft»^ iTglSag .A- 

ftCt ♦q , . < , . V. - # /sOiSfiOQkl b9rflqi4i3«U 3jgcS '«ll3iJ ?. »-|«S-tT 

ji*i '•.„/' ^ 

22^ .'q . > . ji, . . f > . «rtoi:3*-ioJ nGl3»3^ »«a2 

% ?11EHl»->i 

5^fc ’4« 

'■•*»■■■- ^ ■■■<■' I- ., ■‘»- ,, 


. . . *•?Jl^1^o^3aGodP jiGlJ&Jia.rfauTfO alflaH 

i'> ' a IT ' ■ 

k; V* . " 




09 


fq . . 4^.av7o3 arrl i*fi^»8i&rl3«ii>-“k3fRi2 Ltalsiurtra 


♦ • r ^ 


. 9vju3 gni^rsJSl »:6hTRif:ia>b-l^aja na>br»l 


,q i . - rfqaiaarfetlH XiR:^J^^AJ8 itwovl 

fq^^i > , *, , . vif. . B\9i - dqiiTgorib^ H'R^iaarw nasi^iij 


» «' -4 




* . . n^I - iXqjsigonrbxtf /iRi>f'JBlfl ji^qqU 

^ s, 

, . , , . * i' . - ({qaiaonbv^ taqqU 


Of 

J 

M aVtqjlH 
tl 


'tr»7 1/8X5 


J, W aniiaJfc!? 

r siuai*^ 


dt" STOSlf 




liA , q 
t*> .q 



f , * k , . VKtfi r flqirtgolb'VH nftlbrtl t Sj 9Tt», 

Bt' a ^ 

* 6?^4 “ riq/'taotbrH nflthffJ . 8t anogXS 

ii' •"< 


kV ''i 


f!\ 


j, t,* . 94iarf9«ia «V iqyjuifewia ,£i*J>l»«ifl lawoJ 


m,''''' ^' ^T 9gTni+*»* lAlL<j'^ 'Jn-ftWif/aika t'fBiiS'viU'fi tjjqtqU 

. ■•.■q 


la ' "" - 

\ X. »v''‘in9iirlb*a nBlbnl ^ fC atugit 




ta . . . . «tTftd:k«4Q bv iGitbiToD ffaj/luBld i-Hioikvr 

iZ « .ev VJ^vi ilft.l;;49aia >®qq0 ^ 

V ' . 'Skaiiwf-&»'i0'»v JqMfamO .noJ bnl 

ii 

Ci *5 , 


^ .q -^ ^■.'^ . noi J«3tqf3^ri<l fiovrt^ 5l*i«J alio^ JasS 


tit:: 

Tl 


svq^O gItX JaXI i>oyft»0^;|qaf0 lowoj 





Vi' * 

Oil 


S& anu.qil 

’9qtiisi5 

■0 

d’xugM 
€2 9:tv8l5 


2b 

Figure 27 Upper Clark Canyon Staf f-d ischarge Rating Curve . . . p. 64 

Figure 28 Lower Clark Canyon Hydrograph - 1977 P- 65 

Figure 29 Lower Clark Canyon Hydrograph - 1978 1’ • 6b 

Figure 30 Upper Clark Canyon Hydrograph - 1977 P- 67 

Figure 31 Upper Clark Canyon Hydrograph - 1978 p. 68 

Figure 32 East Fork Clark Canyon Hydrograph 1978 P- 69 

Figure 33 Lower Clark Canyon Sediments vs Discharge P* ^3 

Figure 34 Upper Clark Canyon Sediment vs. Discharge P- 

Figure 35 East Fork Clark Canyon Sediment vs Discharge . . . . p. 75 

Figure 36 Lower Clark Canyon Conductivity vs. Discharge . . . . p. 77 

Figure 37 Upper Clark Canyon Conductivity vs. Discharge . . . . p. 78 

Figure 38 East Fork Clark Canyon Conductivity vs. Discharge . . p. 79 

Figure 39 Little Sage Precipitation Data p- 85 

Figure 40 Little Sage Staff-discharge Rating Curve P- 86 

Figure 41 Little Sage Hydrograph - 1977 P- 87 

Figure 42 Little Sage Hydrograph - 1978 P* 88 

Figure 43 Little Sage Sediment vs Discharge p. 90 

Figure 44 Little Sage Conductivity vs. Discharge P- 92 

Figure 45 Upper Basin Precipitation Data P- ^00 

Figure 46 Lower Basin Staff-discharge Rating Curve P- 101 

Figure 47 Upper Basin Staff-discharge Rating Curve P- 102 

Figure 48 Little Basin Staff-discharge Rating Curve P- 103 

Figure 49 Lower Basin Hydrograph - 1977 P- 104 

Figure 50 Lower Basin Hydrograph - 1978 P* 105 

Figure 51 Upper Basin Hydrograph - 1977 P- 106 

Figure 52 Upper Basin Hydrograph - 1978 P* 107 


I" ?. 




f*V .q . . \ i^woi .. ' '■ AtuiiV, 

<k. ■ " . .m.„.*' ^iW' T-.W'^' 


' BSPHBHn ' '"' '' ^ tS*. ^ «' " * ' -"4, 


•ft 


$( 


eq 


42 ■1li:jiralf .72) ' 

<4 - 


up)? 


"fl 


43. 




.. ,^5?; V . . ■■ ^ ^ 

... ii:a -^™* ' ■ ft. WH'!*.^!^. .& ' 


.n 


i\ 






‘" ■■■■ -v ■■■ I|/' ^ »" i _ -'■ . ;t: 

.::«J „.tf. "..''4„'i' i-. uA-nwJaqld " .7 ;^ '■ . 

' ' ■ » . : . ^.- .#Tfci .. 7f^ 


i^t .({\ .A /»v 

tCp .1 '-'v .«v 

' ' ' '®' ^ ^ .. »' . ■^ ' ■ ^ 

'•^. •“■ - „- ^ I... *. r#-i 


j*' 'ffr 
f).,?|'^; 

U .q 


8f ftxugjr^ 






-^iT - 

sIt'lfcl'S af^oT^ ^ 

'~ « ■ ’ '''^- " ' ' '• - „4 ' » ' ■'“ 


} »fl '4 r ■’*^' "“Ti:. ■ »yw3.7Siili^fli.^a^Wvrt-5Wli»^1^»J« »i3lU ,B." 0<^ a»ii>^^'- 

* ft'- ,','■ ' ■ . jl.- ‘ ' f> V' ' ^ ■ ' 



tf’ 

■‘t, . 

' Yi^ 

■■■M= 

If,', •♦,! ♦ • - ' ■’ 

8ft 

■ 

•‘ )t 1*,, h- « *' 

(X? 


/; . ., ■»„ r,".. 

,■',, ' , '3 

,^: 

■'.'i’.j ■■ 

^ ^ B^i!" ' ^ ? 

rJi- ' ’ •. . 

otii 


. , \- 'jJI?' 

■X.sr-’» ? 

'■: ■' , , 

*.'7.-:..,'.:t'.. 





- )iq«T'aofb>:ff 'R S-^ «HL(! 


■v r^.. ,' ..v-,'^'?.Ed:j«l(5., »v siugi'X 


' 'C 


■:‘»aiTirf2»«J:n .-B-V ‘i( Jf'Vt3.'-M/b<*o5' ■'»a®'S 

*. ' |i'<u»; I1L_. 


<a 






...1^ 


it, i.^W 




'rl»«.>Ag lawoJ aTiiatif 

tot: 'f '-i '::,, itlt id if^qqa i 




tOi\ .q 


{^' '^-T; « -i'-i . ' V' 

f ^ ' '' ^ ■ fe'■.^^'"'■■" .■,' -®^.- „ .. %. 

■ .-v.® '..::s.. v:.,',/V:^. ' . ^ Sf ... i^' 


„ a^uail 

fl, -li" 

PA »'srtf5iil'« ; 


“ii 


••■fejL.'^. 'MrawL ^ JM. ■ '^ffi"tati-iV' ■fe'* gdt£3^' '... . . 


s€ 





2c 

Figure 53 Little Basin Hydrograph - 1977 p. 108 

Figure 54 Little Basin Hydrograph - 1978 p. 109 

Figure 55 Lower Basin Sediment vs Discharge p. 113 

Figure 56 Upper Basin Sediment vs Discharge p. 114 

Figure 57 Little Basin Sediment vs Discharge p. 115 

Figure 58 Lower Basin Conductivity vs Discharge p. 116 

Figure 59 Upper Basin Conductivity vs. Discharge p. 117 

Figure 60 Little Basin Conductivity vs. Discharge p. 118 


- 




. ■’? ^ -IT I . na>f 

» V . .Br^l -‘‘^^riqxj’T^^ibxH niaaS 'sIlJlJ' ■■***i^ ftujIT ‘ 


CJf' m' 4 . . .&"i'>'^. '" .' . *Jtaiiwl38l(I'‘ av jnsotlM' Altai! .T9 Wq 4.. ,„ , 9tu|Jr'1l 

*- ,-. " ■, -7 ,,^ ' ''■',7 ir -• 

t<| . if. , . tfli adaWd .av olaafi ilfilitfi , “ 


i 


>'1 t -0 




.q . . . » . . .r^* . - ‘>sTi^o«ta «v 3A«fflit>9a nii.aaH .aiugt’f ^ 

n ' . k. •ft.Jii-' ■' rt^tm ^MikiJL #«« ' «« A Cf *• f tSktira'iMta ( ^ * ' H 


dll .q . . .V - V5Jlwl3r>wb<Ws£;flit«aff itaeoj '7 

aiaan 

\]I .q . . . . ^ .'^^v . a^i*ir!>a ,}0 i(Jly 43 t)t^lVflK »0 Al«a« I 9 qq 047 ,.^s 9 c oisr^r^ 

'■ . 4 " ^ 



Hli .q . . 


9 ata#l 3 «l<a'%«v ,yiHv-i:| 3 ia <^3 .«Jta »8 al 3 Ajl:.J^^ 0 <d sWgi*? 

jiS p *- ■ » 


3a 


TABLES 

1. Lower Blacktail Channel Stability p. 31 

2. Upper Blacktail Channel Stability p. 32 

3. Indian Channel Stability P. 33 

4. Blacktail Station Water and Sediment Yields p. 45 

5. Blacktail Station Hydrochemistry p. 54 

6. Blacktail Station Bacteria Counts p. 56 

7. Lower Clark Canyon Channel Stability p. 58 

8. Upper Clark Canyon Channel Stability p. 59 

9. East Fork Clark Canyon Channel Stability p. 60 

10. Clark Canyon Station Water and Sediment Yields p. 71 

11. Clark Canyon Station Water and Sediment Yields p. 80 

12. Clark Canyon Station Bacteria Counts . p. 81 

13. Little Sage Channel Stability p. 83 

14. Little Sage Hydrochemistry p. 93 

15. Little Sage Bacteria Counts p. 95 

16. Lower Basin Channel Stability p. 97 

17. Upper Basin Channel Stability p. 98 

18. Little Basin Channel Stability p. 99 

19. Little Sage and Basin Water and Sediment Yields p. Ill 

20. Basin HydrochemLstry p. i20 

21. Basin Bacteria Counts p. 121 





PiW 

bC 

■ '' 

I £ . q 

: ^«,AI . ■' 

- ..v::;- ■ ■■' t''-' . ■ 

\(j|ltdiiEJ2 X»nniu(D '»i»woJ‘ ,1 

SC .q ..... . 

..... . . yJ,tIi<}*X2 7»nn«d0 ■T'*qqU .S 

n .q 


-q , 

-fi-* ■■' 

,« , - '*{[ 

. pbftiXY tvoB ncliaiZ I ;; t. J;rf”!t5lfl ;,*k 

' . ' ■ 

^ * p »-• • • 

. . . ' . . . yit JrtijffldffaoibxH rrotJfijB 

dC, .q : . :. . . 


&Z. iT ....'. 

. , . . y3t/id6j[<J I*»«/Terir) rtoyoftD .'I'ibU) t^woJ ,. V, 

Pi: .q ...... . 

•\ ' 

. . . . yX> Uriahs l*»«a£.ifD 'royfiaO )JiaiO ‘i*>.qqi .Q 

Gd .q . . . * . , 

... yjliirf>;33 r^onflfD noyna,') rfTaIG jfxcl 1hh3 

i\ . q . . . . . . 

3ni»«lb9i2 bfiR irotiajS noynr ) >t7JaI0 .,01 

iVi .<4 . , . , . . 

p.bf-^iY in»ffllb95 b.^ft 3936W nol3f.i2 novnaO .1? 

{ S . q ..... , 

« . , . . a3n',ro3 noyqftO ,>1 ibID .SI 

£3 .q ...... 


.q'-, ...... 


.q . . !; . . . 




m .q . V . . . . 

. . . ifinmcMD nldafi luqcO .\.l 

. q 

. , IsiimiHJ ntsafi sIjJlJ .ftl 

iiJ T » > t V 

tfblaiy bna bna agaS al33lJ .?! 

Oi:' „q.. . . ... . 

i . . . . ..... . . niHofl .OS 

i:i' .'f . .. 



^ 1 * 

... ^ __ i''" 

''•m ' 

<lkilir,u 



A 


INTRO DUC TION 

Watershed managers have traditionally been concerned with the quality 
of the waters that leave a watershed. As man modifies watersheds by various 
land use practices, disequilibrium in both the terrestrial and aquatic 
environments occurs. Problems result in controlling accelerated sediment 
and nutrient release from non-point sources within the basin. Stream 
water samples provide the investigator with insights into the general 
health of the patient. In an attempt to reduce watershed degradation, 
Congress recently mandated that local and regional agencies and authorities 
gather and assess environmental data for the lands and waters under their 
jurisdiction and authority. The Fed e ral Water Pollution Control Act 
Amendments o f 197 2 (Public Law 92M-500) was promulgated to require: 

1) the assessment of the sources and extent of non-point pollution, and 

2) the development of methods and procedures for controlling non-point 
pollution resulting from agricultural and silvicultural activities (FWPCAA, 
1972) . 

In April, 1976, personnel from the Montana Forest and Conservation 
Experiment Station began a resource inventory in southwest Montana for 
the Bureau of Land Management. This integrated resources inventory was 
designed by Bureau personnel to provide environmental data on watershed, 
wildlife, and range resources within portions of Beaverhead, Deer Lodge, 
Madison and Silver Bow counties near Dillon, Montana. More specifically, 
the National Resource Lands in the Rochester, Blacktail, Tendoy Mountains, 
Dillon West, and Centennial Planning Units were inventoried. The I'nviron- 
mental data obtained is to be incorporated into the Bureau's Planning 
System and into the Mountain Foothills Range Environmental Impact State- 


ment . 




.«i!r 





Yillaup s>rti <i 3 lw b®(jT* 2 ino 3 n» 4 »d Yllanolllb^iS svwl aiajawMi feaK^IAlaW 

■ . . - -_ It-." i-^ ' vr'. 


^ ET- ^ “i 

Butaliiiv vd i6b?iri«i33*w a*illbo« nwB *A a nvusl ai^Jew »il3 1o 

r-v; ■■ ■ ^ 

r oiicups bn» I ftii *di rf^od nl arulndi j;»«Tq ««u b»Al 

b* ' * * ■.,*,- » , ♦ . ( 'i' ■ • '■fc . 



’t^' t*^ ^ ;■ ‘'’•' V 

3n5Mib9» gaMlounoa fil 3lu»s»i 

' ' ' . ' " '^’ ' 

<■'. ■ SB - 

.nii>*d dd3 flitrtjlw «ttoan;'4» ioitxj-fion «oT^ seirtlai-Ja^iiun Hitb 

w 'm ■ '■• ffi ' '\''^ ' 

fmadBg 9rtJ oinK*3dgliw>i dJiw BbJvoiq «»iqiBRa ^ 

* 'Wr. . •. ■'• ■"•■* 4 


-SIS 


«i «i -V^y - r,^''’ 

.nylJtibBlfgdi) tode'OJBv 03 3q«t»3lft oft nT »f»3 10 rt3l»an^ 

'^' 3 . 


'•Bi^aliodjyft bo» »V4^q^B b«»i ,r»ao4 yt3iya.*>»i »»*ns«qD , 

V. ' .V"^ ^ 

Itisd'l i^bou diaiftw bnt r.bniiJ adj loi fiJftb £ft>3fttf«iioilvo« BBseaB boft Tad3»jj_ ' 

^ . .. . . ■ ^ ^ ® •'■ ■'■ *-|•:^i-iij| 

ttt< ■ - V- 

3yA ZftiJooO oci3v£Io^ia4iiW adT . <3 r Ju6 ‘ brift nftl 3 ai b«iiu t 


ri\ — 

{d'ljtupai OJ ba 3 oiii«j®i 3 ”jq 8 »w (OOC'"HJ? weJ ^i td«di) ^ 0 Bj f»^b r» 9 «^ 

bnft ,ftoi1i4loq inlaq^noQ Jo bo« »ifituo9 arts Jod«a«a«»6 add.d 

— (Si • •'s- 




■ If-' ^ ’ 

aoloq-nan sulitftt3f»o3 lol e9Tt;bAao'j<^tb«t *i>ort3s»« 3ni*mqoI»vab i*ria (S 


V ^ 

.MOW) ii*13,lvj3»& /ftTuituolVUa bnc X6tttJlu^^1ga dKi'iJ gnllloaai ffot3«|lo<j. 


fs ■ 

■ 


m 


noi 3 is.y‘ 39 ^noD bofc urt 63 noH arfj moil ian/ipaiaq ,liTqA oI *' 

'■’a - % ^ ;,V- I* 

90 l ftfi«i 3 /ioH Jaywri 3 tfb« ok yr.JO'jvni aoiuoa®! ft ^rugad nolir-li 3 n»<ii 3 aq *3 


CBW yi aBfja-vin^ »ii.dT >■;: /ivi Kagofri ii'^ bna>l 'lo i/naoi/fi 6 d 3 

if, !■ v' * ,. 


^ f , *■ ' ■*. ■ «■ t i_ 

.borid’iaJiiw 00 iiab lftJtt»>*7ift6’ilvna -Ahivoiq ftJ l,%ijdivRi4q ot.aT»d» yd B*>ngi»ao 

1 : '■• ' ■ „ , , . ^ - • .. 


^0|i»od TS»a^ .ibftsd^ovnsH a«ol f'joii nkdilw R*>r4ur>a&t *>gri6i b/ift .alilftCiv* 


, ’ ,. v-' 


^ ,ufin)ncH ,anlll‘l iwan m»1 30 ut)y'wod Tavli?5 bnc, qi!j« ■ boM 




‘f'' , , 

^obdaT ,'d l« 33 if 9 ttJa ,T»j8?»d^oM adJ oi abmi.l ao'rftoaaH iisooUt-^ sd 3 

ij ■ O ' ,r ' ^ 

-]ftt)i^t’Jtnb \adT . b®lT 63 o«»vAl v.iaw '1^1111113101 nn«. Cl iHirmyl’n'i'^bKOa;, *k*jW >Mjll 4 .d 


» JkP 

g^(ilop«I*l 6 'u» 9 ii>ll »dJ olhi iij.HtOffrtttuni aid uJ hJ b»*wl*» 3 do 



5 


The water quality study portion of the above resource inventory 
project included the monitoring of 42 temporary stream sampling stations 
located in 17 drainage basins within the inventory area. Stream discharge, 
suspended sediment, hydrochemical values and bacteria levels were monitored 
at each sampling station for the 1977 and 1978 hydrologic years. In 
addition, the macrobenthic invertebrate communities at each station were 
sampled, the results of which are reported elsewhere. This volume presents 
the results of the water quality study for Blacktail Planning Unit which 
indues East Fork Blacktail Deer, Indian, Clark Canyon, East Fork Clark 
Canyon, Little Sage, Basin and Little Basin creeks. 


ovoda aifa lo, aolJToq vl^jii;^!rAl»u|> 7»stii\4 mU 


k 


fS 



an6iJ*3» 9nlli{0r,« Ip gpiTOSiaoa 9^4 

V V* ^ ... , 

,9aT£dpelt> au^^ilZ .asi* y'fojndVPJ i>ff3 nirilJrw aaiAsd ^jiaoln^b^ VI nk L#t*3>Pj ■ 'Sf 

" ' r**' / ^ 

h*#TP’lpo« ftl#vpl ikt'itfS'iBd bflur. «ppI*v i*pl»9dpoTi»Yd b»bn)|N}AUA 

:.. ,.^\ a ' ., ..vf-'';. " '■ >' ''^ 

al jii<ii bo« Ui?l »di ir©l ©©l?ip4f irio**,, 

a.. ■ .W .^., ^ ^ TIr, ji 

ttTPW npJtJfcje dp&9 “j|t 8©i jJnwflBirop ©j**fdii359*'o/ j»X{t3«pi*<wpatt «pp^)ibbe 

-Mouloy mltfT Ip «tl.P«9:» p/fJf r'Mi- 

■ ' i» 



*< 






iipiriw 4ip0 gPknnlKlS. \bti;»»3jV3JlIai,ij^ 4»l«w pUj 1© 




*5 




1' 


^JHIO j|M\a ,np?riAD rfafcjPi^pMteJ^ iXKPQ li43j|p«fa 3a^ tpvfnnt ^ 

■■^«*<7jra^n ' ■ ’ ’I; : ■ 


at 




'■f '■ 


s 


1^ *^f 

' i: %.'■ *;’r#s 

,'h,., l-'l. (T' ■■ 

I'"' ^ 


, 8)i»»iP rrkefid ,s»ffi8,9l't ;1J ,poycr©3 '■",'] 




■i-' 3 



MU* 

• ■ ' '%< . v-V < 







6 


METHO D 

The basic experimental design of the water quality study, developed 
by Bureau personnel, includes the sampling scheme, field methods, and 
laboratory methods. Minor additions and modifications to the original 
design were subsequently incorporated into the study as field and laboratory 
conditions dictated or permitted. Specific comments on such alterations 
are included. 

Inventory Design 

The initial phase of the water quality study involved a stream reach 
inventory and channel stability evaluation of each designated stream reach. 
The method and procedures used during this evaluation are outlined in 
Pfankuch (1975). The stream reach ratings were completed during August 
and September, 1976. 

The 42 stream sampling stations were established during September, 

1976. The selection of each gaging station site was governed by criteria 
presented in Carter and Davidian (1968). Each stream sampling station 
included a staff gage, a crest-stage gage, and a max-min thermometer. 

A standard 3.3ft. staff gage was mounted to a fence post driven into the 
stream bed. A crest-stage gage was constructed of 3/4” diameter clear 
acrylic tubing, using modifications of the plans set forth in Buchanan 
and Somers (1968). This gage was afixed to the staff gage and fence post. 
The max-min thermometer was bolted within a piece of PVC pipe, laid on the 
stream bottom, and attached by a chain to a fence post. 

In addition, a 15 unit precipitation gage network was established 
in the spring of 1977. A general purpose rain gage (forester type) was 
installed in a plywood frame at each designated sample location and placed 
in a clear, open site at a 12” height above ground level. This technique 







p, n ^ 

aOHTaW 

— «*l« A I 


b«*|0l4iV3b ,Yboj» •!»»*« 44 j lo?«[j8itt»t> %l»»«l »rfT 

^ ^ \ .. '■ ,; y; JJ- 

-; .fl vb/tf. .aboifjftfli bida %»&rfa« 89bal»«l % 

T * Hi' ■ • 

• 'Sc . .i^ ' 'i^ ~^‘ ‘^ . 

Uo|^»iio arfa 03 fttioiieoinuow^bitu «noUfbt>R tofltM y"ro3BT««*l|f ,, 


YToJ»iod*X bn» W»Hlr«» ybuiB 'bbaVi^^oa#*' n*X>»b 

<_ « ... .» *, •' ■«-- *!;.. '"''a 




anoilmafl a ^sua "fto a3a‘^jii«>o->- I'l J'l^i'S I fe»3'.ii Jbth^ a«oi 




'■<'' 'V’fe 



.'ffi 'ix® ;. 

a. 1 . Js" ' . i ' ', ._,— ‘« ftj* ". ^ - ■'S 

rioAo'i ii»a7llff bovloviftt 'fbui* xJtUup isiav# fswii M 

4 '■ *“ --" '*' "■ ■■ 




3 tt: ®- iii •• 


Kn;." 




iu " bf •'' •’«rr f v' ■ 

M(i7&9’3"mikai3^ baaBoiiaW da&a riwUHwtav* ioaijttiiS ‘bn8'\io3^^^ 

_ ' ifm. ' '& " "‘ a 




.1 


- ai> .b»niiJuO,»T» jinHub b»«« «»iubs30T<i l»n« boriJ^m 




a -..,--■ ^ ^-et i. - J 

3&og;>A I>»39l<ppoo li»w ri960T «ft9i3fi5 sMT .<2vl9X> . 

_ ii '” <* ' ■'■ ^ S ': 'fi iHf 


gnlJc^tlHW a>fci!ni 3« 9rfT :' ' ■ ., 

^ H ;S. ^..’..^T^ t - 1" . 

\4 bai^3«v<»8 ibw ?>Ji« n'd;!;3*.3« gatstiji d.oa# !o noUiMtia# ■^. 

\». IS. -iSI.*' jl ''*1^'; -.lia alF iku • • j. ' . *^. 


,.ii) ' a 


,r3ft 




p . ^ 

. d i , 1 9Cl«Bfl 3 0 '^K iWWi 

..“1 - J_ il>«l^" ' 




-.- (tol mantai*' '* XB'tiP'a'o nftXbi v'ftO hii^T ibStpD ni* 




♦rfa 


;**',, .' ' n lf*l'^''V, ” '■.,^ ' ^ »f **'»*- !• . '■^'l A 

ttioJi cwibviib 3«oq J i" ol^ba^noura haw 3if .£ biebtre ja A 

si»s^"V ,■ ■ xiL' 

1**?^ “•AVJf Hi^w ‘'»Jrft.38‘*3a9ia A *b’»d rttA&tS* 


mm ®<C ,l " V '■■ 'T. k f ., - ' ..?■ '■«. *• TO 

™, 3'»3®«ftJtb -A\c ^0"i>oJ'bi>3 3»j»rii}' aow •>jjrva>|tft38‘*3a9ia: A *.b«»d' rtM»s»i3^ 

'*, vV . * ? “0 


™ 'a* 4#<wilq' bdj’ 3b ijft.ol'dbr;f'l3Xb':jit» gnlwu ,jknl»Ju;3 :il Iv’t'in 

(#'■'. .' - . ? , «_'JtiV-.l.«l 1«Wf 'S. -,&-j ■' _nE:. ' ' i™ ' 'ST Q 


■t"' 


^ I'D-x^Ve «bw, p3dT" .(HdPl; fti'jwno3 hnii 


nt Odi tfp'bbal ■,bql,qpv*l'40' h jni.diiu 

'ySA : ., »■ ' " t $- a 

-^erf biw^ .woaabd Wtoi'ta 

1.-1 1 ’ 


^ 

Mi;-' "* »¥ i' ■ ■'i.,,’*'- ' ?.,“"..ri 

b^ib.iq, bw abA3bb4»/'' 94q«RiB bi'J4pn»4aAb"dp-^r,‘#y'i^>««T%,baihi^lq.bi^;ni'’b^kiii>i««|^ 

X, 'c . V ^ 


bnuo3;a’':''-’Vw«f|i3rt|lbd ”XJ ft tfb |.li't ^^<L *“**^*** 



7 


conforms with that recommended by the World Meteorological Organization 
(World Meteorological Organization, 1969, as cited in Aldridge, 1976). 

Such a placement minimizes the error caused by wind eddying (Stringer, 
1972, p. 29; Aldridge, 1976), and reduces the probability of disturbance 
or damage by livestock or vandals. 

The stream and precipitation gage networks were monitored during the 
1977 and 1978 hydrologic years. The basic design called for all stations 
to be visited on a prescribed schedule of weekly during peak runoff and 
monthly during low flow. The field seasons included: October - November, 
1976; February and April - November, 1977; and March - September, 1978. 

The following water quality parameters were monitored as applicable. 

During each visit; stream discharge, suspended sediment, specific con- 
ductance, air temperature, water temperature, max-min water temperature, 
and precipitation were determined. Once a month, a water quality sample 
was taken for the following analyses; pH, alkalinity, calcium, magnesium, 
sodium, potassium, bicarbonate, sulfate, ammonia, nitrite-nitrate, and 
ortho-phosphate. A second stream water sample was obtained for bacterial 
analysis to determine levels of total and fecal coliforra. 

Macrobenthic invertebrate inventories were also conducted at each 
stream sampling station during May, July, and September of each hydrologic 
year. Four individual square foot samples for the smaller streams and 
6 sainjiles for the larger streams were obtained during 1977 , while 2 and A 
samples respectively were obtained for the streams during 1978. 

I' i e l d _ Mi^t h^d s 

Discharge values were determined by standard techniques using 
procedures described in Buchanan and Somers (1968). Stream velocities 



^ 

Pi^ \ • 

_;’4 '-IV 

.PIH. - " -jj -ULCrTT -a ' - -T^ ^ 

n<,U»ln.SlO U=i 80 l 01 .«J»H blToW »*•» xJ 

'" r-’t’V*'**' 

» 3 ii»ifioje»b I 9 »31 ildiido??^^ asDub**! .(S^W .•»l»Sib^ :?J^.<)#;£T#( 

, -_ • fTTiL. r.’jfi .r ^ ‘iy.- 


'■ifl 






1 


nJa gniii/b^Wlo 3 lnu«i iijJtawian 


7 \ ' 


ba 8 .HbaSl *»q-»n 7 wb *^<^‘ *'l 

,r*dii«<.n“-’?»d^«0 !,b»bul«.r.m..^.& W»fl^«fT -.won'i^l gnt^uVriKJW'-l 



iwi« ,-„d««<r.i - 5„1 !h ba/iUH* V.|«i.v<^ - tt3<,A bA» !«\»r .» 

T.-- ' J-. . . BC 'iV': ' hte 


" ■<'V 1 . .. ^ « ^''- 

F' »j^ t ' (£' 'r,2' *’* tt \ J'TO- 

.0 JLdftr>H^qa *»3»w 4^i«ai&iftq >(3l r«bP iniwoHol ?.ffT • 


•Ifiip 


.laiJW #ii'i 0 «^itwn^, 


a ■....»i<,«..V»ltI* 0 (i 7 «»^ <• •:"«» .bMJ«ns.»b •.**- <.rtj;^*<il>«<i bn. 

S'" tv,. J,... - ij* ■ , ::-®- ' ' ... . . :M 


**' -, * 
Jew , 9 tij 3 *^ 2 »q)fin» 3 «''^ 3 |b,- ,» 00 a 3 t>'</b 

aiS 


-i"' ' '.' '.^ ■ '^'' ‘ -Cl' ' 18 ' SI ■ -. ^.■•■. . ^ ■.;,>■ '■*' *• ' ^ It 


-i'' , ■ 7 , .£1 •■;■ 'W S ■ -■ «■■•■> ■ pp ■.i.'r ■• '■•- V 

•> '-, 7:1^ '^•®;' IL, ^ ■ ' ES ^ » 

® ^.«»aa<|aori«j-c,f! 3 ,^:, v * 

■■■■"■ "n^ '""■a.Tii ■ B i . 


'fc^rr.' ■ ■■'■^. ., i(, 

. im^Jk 


m • ‘ ' ' >i\ ta "‘^"' "~ -~ 

'#:■■ . m 


J.; _ *■ *1^ '^' ’P -II 

''ij.ldVti.vnl 3 l>ti.i.».l.n 3 «.M 

..^ , •to. B Sr «• 


a Jl 


■4 


" 'Wb W «,t-.«<« jS&I bT».-t« Ir,«blvl b»l''T«oH . 3 b'«* 7 ,.-, 


A b^«i» 3 dp> vw '***’■ ^ 


■' 3 ^ bc ' '..^ ' ' «. ■' '■'-iSCi;, ' ku- ■ 




.nMikPuae, ■.>!:■. 5,-1 .xv r' 



'**ii 5 

^ b 90 lnt 3 J-)b it's «»mI«* i» 1 «<t 3 «l^ 

^ « 14 »iwo 2 bn» rtiwift^,^t/« ftX 


' ^^F'C'v, 




■m. .'j. 


:± . 




8 


were taken with a (iurley Pygmy type model 625 current meter. Sediment 
samples were obtained with a US DH-48 sediment sampler in conformance with 
procedures in Guy and Norman (1970). Water temperatures were recorded 
from Taylor max-min thermometers. Precipitation was collected in standard 
7” rain gage (forester type). Specific conductance was measured with a 
Delta Scientific Model 1914 conductivity meter. Hyd rocheraical samples 
were collected in acid washed polyethylene liter bottles, which were filled 
to exclude air, and stored in an ice chest during transport to the laboratory. 
Microbiological samples were collected in 250 ml sterilized glass bottles 
and also stored in the ice chest. The macrobenthic invertebrate samples 
were taken with a Kahlsico stream-bed fauna sampler. 

Laboratory Methods 

Immediately upon arrival at the Dillon laboratory, each sample bottle 
was opened and an unfiltered sample was analyzed for pH and alkalinity 
respectively. The values obtained closely represent the values at the time 
of collection in the field (Brown, Skougstad, and Fishman, 1970, p. 129), 
while minimizing the potential for instrument damage during transport or 
carriage over bac-k country roads or trails. This method has been adopted 
by several USDA Forest Service personnel (Aubertin, 1974; Snyder, et ^1., 
1975). PH was measured using an Orion pH probe and an Orion 407 ion 
analyser. Akalinity was then determined by j)oLent ioraet ric titration to a 
preselected end point with a standard acid, as outlined in Brown, et al . , 

( 1970 ) . 

A 100 milliliter aliquot for ammonia analysis was then acidified 
with 0.8 milliter concentrated sulfuric acid and refrigerated (American 


}noailb‘»2 1 9bon !S<rt5 yAltui) u rfjlw ngi*} »-s<iyw 

— ■ J ^ *i-< ■- -Kr i ‘ 


If 



fljlw **.'>ni4«ioift03 nt i 9 lqft 6 »,inwil>»a Bii-IW 3IU « rf^iv b«oU3^o a^lqiaae 

tfl ■ ' . ^ ‘ /'■ ' ;:- '**■' 

939y ssio T93»Vi #(0^W) oiBanoW bno '(mO 




bHiinaJ# nl h 93 D 9 lIo& asw ool «3i93»n<|ln9rf3.nl«-«»# TCiix*T rto-ji 

d ^ ' Jt ■?! - .j, *. ^ ’'- ^ '"' 


B 



a rfjiw baiitaaM eaw 9:>fi&|b^booa SJtlti a9<|<5 “ 

to • . '>» ■, «^ OTi - ■ '. . '.t '-9 ■' U 


B9li|nfc8 1 83iai9('i>0'tb*(M »i9J^ viasufailoo lirboH &lll3n^l32^8iX»<I 


W' 


it: 








bairi^ 5H9W rfoidw ‘aiiaJOf! -isail sh^IifWl^Ioq b9»!»»w,Vi»® ffl bta^slios ?»i»w 

11.' ’ - ' lH) ’ «l .J. - -n •■■' 


UB , R f 


.tfic5fiiodf>i^iirf3^bj jjaqdftAiJ auilob apJt ng oi i^TOJg bag ,iXg o>' 

■ Ci.;. ' ‘^ ' .. f—.v. -. ■' ^ •? -' ■ ' 

^ "W&ig bsxili^aja tiff 0?^ «1 b»i^II09,9t9v 8>Jq«g« iB9/HoJoNoiMlS 

'' ■ ^ s. , '^a . "'v;_ ' ■^■' 

v.» tsJqinfca sjfc-sigdiavni ^Jifan^rf^ifag® »rfT 9»f3 nX 



■s' i.' 




^•jaXnfBB*, onual ba^rflfgatJ* 0DiaUig>i & d3tv ogj»a« 9iii»w 

' a ■ ■^' »H 

'TT t 


,>Vv» 

■': f I r 

,"' ■ *■' 



gboriasH 'jioJBj odhJ 



■I 


»%* ' 


sla^od alqasM rf'Sg? . Ynolaiwjai^rroiilfl adJ ja raviTiA nnqu YialglbiKiaal 




6$ 




Y^lniigj^ia bH* Hq 7^1 bi^sy lgftii gaw b-Ma)£i1'?ti bna b{3riSt{0^ y^gi^ 


M . 


dMli gff7 Jft a%uXg^?trf3 5«>^ji37q.s»i vl^gols bsntgJdt^'^S'Sulfiv s^.T 

■j:' , . M '* . i/.' iP a er 


' .X?ri bi& ,bgi'8iwo>n! .^'itwo 34) bJ'»i r udi fli fiui»-»viioJ>1<> 

• Wii “■ - 




^o iBiJookJCKj 91M ^nisictplfn 9Xl?3w 

, ^ S' 

aki.it t>o»t3»m ^^vo yniil7i6o 

^ a 0 

\ .1® '’ ,3r^bvP«J :^Xfi , nln atliiA) Xg^iiVoai'jq 9 DIyi«* >a9T?>'f MISU Ipir^v'jg \d 

■ "’ HI ■ ^ 


E)_ "^ V ’ 

ffl -A '^Vi' 


■*)B. 


«f/C VO^ a<^'iO ftft fan« gdpxq Hq rtoH© Pn sniaw tofiwsavai uv,*# >1*1.^ 

, ,." ' ■ ■ . « a . . „ . 

a qS b^qlflnAfvli H'irilj kuv i(>iw5 Ui 4A *i7tvx/fcni» 

I .. . 


•’ ''i> ^ ^ 

i4l3i»^v''<^'# kb* biAlrttfiiJ' M « |lv( briy by J3 *j1o*»4j-vi ^ | 



SS!' 




m 




,« . 




' 




■% 





.(ntf O 


': 1 


f; . S-* “ 

fa9j|itib>:i4i'^r>l**i3 raw alaxlana i»jLnd«fgg Yo7 t9 3lJl i M iai XW* A 

,^' W "^ ■' RS. 

, ® si «- c; 




P4Pl'iM|A4ib»7g’>wS N J»i bnn-fotpg ailMtlug b^JatinytirtoP 43 Iw 

g . ^k‘, ' - - ■ 


• ■'- 










I) 1 



9 


Pul)lic Health Assoc., 1976, p.42). The remainder of each stream sample 
was subsequently filtered through a 0.A5 ^ira (micrometer) membrane filter 
and frozen. Membrane filters were soaked for 24 hours before using to 
remove any traces of soluble phosphate or nitrate (A.P.H.A., 1976 p. 472). 
Ammonia samples were analyzed on an Orion Ammonia electrode, model 95-10 
(Orion Research Incorp., 1974). This analysis was routinely preformed in 
the Dillon laboratory on the final day of field collection. 

Upon return to the Missoula laboratory the frozen samples were 
defrosted for analysis in the following order; 1) filterable orthophosphate 
2) nitrite-nitrate; 3) sufate; and 4) common metals. Procedures followed 
were adapted from Standard Methods for the Examination of Water and 
Wastewaters (A.P.H.A, 1976), with the exception of nitrate which was taken 
from Metho ds for Chemical Analysis of Water and Wastes (Environmental 
Protection Agency, 1976). All colorimetric tests were preformed on a 
dual beam spectrophotometer (Beckmann ACTA model III). All glassware was 
acid washed. 

The Asorbic Acid method, procedure 425F, (A.P.H.A., 1976) was used 
for dissolved orthophosphate. Results are expressed as PO^-P. Nitrite 
and nitrate were determined collectively since nitrite usually occurs in 
insignificant amounts in uncontaminated surface waters. The sum of the 
two represents total oxidized nitrogen and is expresses as nitrite pi; s 
nitrate-nitrogen. The Cadmium Reduction Method (E.P.A., 1976) was selected 
because of its low detection limits (10 ^g/1). Sulfate was measured using 
the turbid imet r ic metliod, procedure 427C, (A.P.H.A., 1976). During the 

1977 field season measurements were made on a spectrophotometer, but during 

1978 a neplielometer (Turner Designs, Inc., medel //40) was used. Both 




10 


methods are recommended in the procedure, although it was found the 
nephelometer increased the precision of the test. Sodium, potassium, 
magnesium and calcium were run in that order by atomic absorption spectroscopy 
(A.P.H.A., 1976) using a Varian Techtron AA-5 spectrophotometer. Lanthanum 
chloride solution was added to the samples for magnesium and calcium analyses 
to prevent anionic interferences (EPA, 1976). Total dissolved solids and 
bicarbonate concentrations were determined from specific conductance and 
alkalinity values using calculations presented in Brown, et al., (1970). 

Nitrogen levels, ie. ammonia and nitrite-nitrate, are consistantly at 
the minimum detection limit of the analysis. Ammonia levels are particularly 
suspect owing to the limitations of the instrument and the technique for 
the analysis. In interpreting results of ammonia analysis; a presence or 
absence of detectable ammonia approach should be used. Thus high levels 
of ammonia indicate that a source of ammonia is present in addition to 
those which are naturally occurring. Such levels are usually transitory 
and may vary in order of magnitude. Nitrite - nitrate values are also 
near the minimum detection limit; however, the nature of this analysis 
yields more precise results. These values, as a whole, tend to be generally 
lower than those expected under the environmental conditions encountered. 

Low phosphate values are to be expected and were confirmed by this study. 

The method for phosphate analysis selected is tiie procedure generally 
used when working in this low range of values. The other ions, ie. sulfate 
and the common metals, tended to be present in sufficient quantities so 
that ni' problems we're encountered owing to Ltie sensitivity of the analyses. 

Water samples for microbiological examination were analvv-ed within 
six hours of collec'tion (Millipore, 1975a). Fecal coliform were cultured, 
identified, and enumerated throughout the study by the membrane filter 
method described by Millipore (1975b). Total coliform bacteria were cultured. 







01 





.-^ooi, "S''*'’*’" ■’-'^ 

Bunal^’jn.r /T»l»«.10>(q0\J^^ nsrtjrf^.t n»i«» » »«tiv^».i .•4;l»‘‘'-*> s,? 

1 ^ * ~ 


<9 . . 

bn» ©feU^AibsivJowii^ f 


l(J| m "s SS ' .’i^' ’ , , ,j 

‘•i \'* w itrniMatim 9tii 03 b«bbA^««w 'i«i.TuiOji »UTi<*Jjn3 

aaa^Una «obU 3 IMIA ^ ^ ^ 

^ASa) R'>t.cisTo^l»lrti 0|.«oln» ) 

!,„» «n?5=>..bno, 1 



<o1vB’'i!Si M, ,.^pia-ot bs^aPlsiq «"<|l;»«I*>4‘>=» sni** 

M Ito . . . 4'“' '■■ re>> ' r*’ “ T' ", 


':* ’ 

■Hi '■ .• „ -i' Wflrffi::; ' ' ^ilAw 't'^^W|l|IMililu>^ '.Sr _ 


i)' 


-in • P*' 


13 


"Tv --'uf ll^r>-.«’<> , 6 T'*»j 

# - ' *HS^1gsr»_ '^‘5!!' 


OOl-l3i9l'^ WliWipl;* •111 ^ 


tbi buplnrfa»i »H5 U o3 

..'^!''' '■'■•A; b' sf H, '■^' . .K »»>. 


QQ its;, ? 

«g' ' ' 


' ■ "■ ," - - 1 , ■'^'^ ^'■' - ^SJa, ( 0 f I 

■' ’ '■. fcf'.: 'I ■ '; ‘ ■ ' ' . ' "’*' 


, .'•'^ •‘'♦tf, . W>/ - -f -au „ ■pt a ™r>- 


. ':,t 


i o,' noWihl«^X xnwnq ,|ax;»r»»u.ql Uno*. Jo ^ 




' o*ii'|!..*ibui»v ,mj) »?'■?,»*! Ijf! to "» xW'’ 'i'" S"* 


*1 ' .."’■I '*, ' ^ 

* " ~S^^o\3\i^o':i U3Aiiioo^l^o^ 3 ‘^oshO s«aii> nwU awl 

;••:■ TW ^ '-',Jfv:^', ' Ei, ® ^ » 

»' ,• • v,tit^S'‘»'iMl.»-,,.-i^ >dj: ft b^f^ip»\i>.yt6M »»»aq»«<»q vVJ bo-tj-t® o-ll 


I:' ‘ 

'• 'vj 


■t' 





'?5! 




!bb «i jiflitto borojn.,«-.n9 '.v* .«»trf»x^ ■“•■.''fH 


li W .■■i^ftjVtw Utils' sidx mrfJpiU#Xi»!£l',n>Ja(»to't'S'«-il» ■'“''■:^'*|.q‘r“ ■"-"'•‘‘^i? 

1^ *' ' -J ■■’^ bW (jt ^ . 

"'■‘>’4* *’ii"’*'; 


K«J*biWrp» ha. 


‘ 4 T',.:' iE" ,g 7 ;, ..f^ ,- ta- 







IdfiU i 1 i od , and eruimeraLfd by the membrane filter method (Miliipore, 1975a), 
but with the modifications outlined below. 

Total coliform data for 1977 were determined by counting the number 
of wet colonies that exhibited a visible green metallic sheen, either to 
the naked eye or at 1 . 5x magnification. Miliipore (1975a) recommends the 
use of a lOx magnification dissecting microscope and that the colonies be 
dry. Geldreich (1975), however, indicates that there is no significant 
advantage to drying the colonies before counting. Without the lOx 
magnification, however it is probable that colonies growing close together 
were mistaken as being one colony, and colonies having a weak metallic 
sheen were not counted at all. This procedure would result in data that 
would underestimate the number of total coliform colonies present. 

A modification of the membrane filter method was adopted in 1978 to 
minimize the problem of underestimating the total coliform colonies. In 
the previous year, only the wet colonies exhibiting a distinct green 
metallic sheen were designated as coliform bacteria (Miliipore, 1975a), 
while those wet colonies having a "non-sheen” red color darker than the 
medium-permeated background had not been counted. The degree of pigmentation 
and sheen development of coliform colonies grown on M-Endo medium, however, 
is variable according to both species and biotype. Furthermore, the 
identification c-ritoria, i.e. colonies having a green Irldescenc or 
metallic sheen, is highly subjective and may vary from technician to 
technician. Thus, some authors admit that "questionable colonies" may 
occur which need more technical procedures for verification. One such 
l>rocedure is to inoculate questionable colonies into a lactose broth, 
incubate at 35°C. for 48 hours, and determine whether gas and acid have 
been produced (Ge Id re ic-.h , 1975). 







cT 



•■Sf.-WiJ 'r .) 

.wolt*rf bonlisuo enoJi^ai Vlbom udi rt’tiw ^jad 

V 

^9{i&Uit a/fa aniJfluOa ^d baniar'ia^ab »iaw 'C\9i no) *i«b irjoliXos I«doT • ^ .'t, ( 

■ -a v ' ' '\ :S 5*-, 

pj ijoddis .naada <wii^ aJdiaiv badXdJrfxia Jttdj afifrpJTdp *o 

" 3 ■„'.. 

adj abfi*<iBCoo»T! (af;ef) PtoifilliW .rroXjaal'ilniiMi xf.l 541 baslan adJ 

r - . 3 

ad aabipCpp »d3 3#d3 bnaf aqo-oeoiaJoi .sfti Jboaaib npl ditoil io^aiB *01 a lo 9a»» 




dmiol^iiTt-*^« &fl ni PTaiid iarfj a»5adibrtl , TavawPif^, di)3y5bla^i• ’-tib 


-' ' . • B- ■ '■ 1, A ’’.I. , 

.i jiQi *rt3 JiKifriyw pioiad' arfi agujnavbik 


^ f * ■ • 

arfdasbd i»*ol£> ij#»ivoT(|t a»to*>ioj> iadi^aidjido'itj ti jri i 3 v*wf*H , 

' ■ — i3* ' - . ,,„ 

■- : .-^-i . ~- . * -' 

3illa3:!>/r jfesv a jjniv&d aaippipjr^boi; ,y»bloi5r aao^jniad «ta 


3td3 «3ab «i Jlwaai bXuou aTtrbaboi^j alilT <41* “f*- loff rti£#w fradda 

? 3 f2 . . ,- ^ 

a»inoIo’> mipliipb ladtil lo bdl 3«»Tbb/i« bivoi^ 


>p- 


P3 ^<<*1 n^^jb’^oqoba «nw boddoft laiill d0«7d»ixa i>riJ !« noXiiiai iibom k 


nX .saiao/p^ r^oliUd Xa303 add atiiawal jspTabnw Ip add aiiiaifal* 


i '■■•' 


Si 


dootjmib « SRididii^a aeinoXPs ijw add auoiy^iq iwfd 

'■r\ » ■•■^ * 

r<a?.T?l ,«icM5li/I«) citKL-^/ucd ardPlHoo 86 b%iwiasi«^ naada aJUajai*. 


IS 


^d3 padu liAaf ^i.b iPlPb b?di ”/«M*ria-!/Too’* « aeWad *aiij<j|oy doy aaoda piiilit 

■ - ,^rj O 




ji3' 


noid(;dOP«;;$X4l /ilo ■vdT ,bt'4ndd» aattd ipfi b4wf lwiU<>Ti(^^*>d bPiMm s'jq-nui biwn 




pdjr ,wTfi»i*d4‘r«’t .9'frtddi‘d brtB a%i“jn»i^7dJO(i od idaHav iii 


lij a«d»i 3 1 ivpailtda h’ 4 ( »»i Vf-d , « v i obl 0:4 . » . i 1 3 n j 4 1 '^ ' nn l j b - j f l » dm»b 4 

(iM;';'.'' ... 15 i* 

»n*bljP)rdt>»311«»Pd1 ydfiv yaw h»t« yvi d/f jXdi/<» yid^^Xd ,npf4(t»» 'inf«,J9ni 

*S|bd 4 M* 4 c>s 3 6XdW»oi J4«d>» aTpddOR ywcik .autlT ^>fitoiol<iil'i«d 

' ' ‘-r ■'* ^ > .JE 

id\ii>4i- «ydb^p«>dq J»>lfid'i^l p>f)« ;Hldw^ 3 u jJ<ir-‘ 

.■ , , ife ' ') _ 

/ vd^CK^d !S«<^ 35 bi * bMi »**Xnp|i;» ^fdbfiOi -tlKfl/VKri «d ^ 

^. ■>■'■ i7' *« ’• ' ' 

4 V*> 6 d hXpaH btna 8*^ ia|fi*»rtw aaifWudftb "hua ,»ioof( ^ t'j 3 Jo ^dadu'^nJ 





4 k -. < 



•JiiUXei .dolpiblvU) b*40i4f>p*jq mttd 


■■■ ^ 
1 >.iL' 






:^.tL 


12 


IlKltiK I tn* nliovc technique, an estimate of the fraction of questionable 
colonies was determined for which the lactose test was positive. After 
testing a series of 26 non-sheen, red colonies representing a variety of 
recognizable colonial morphotypes from several different stations, 69 percent 
were found to be lactose positive within 48 hours. Additionally, 16 percent 
of all dark red colonies found on 369 membrane filter samples exhibited 
a characteristic green sheen. It was thus estimated that approximately 75 
percent of all red colonies darker than their membrane filter background 
conformed to either the green-sheen or lactose-test definitions of coliform 
bacteria. During the 1978 field season, all red colonies, sheen and non- 
sheen darker than their membrane filter background that were detected 
with the use of lOx magnification dissecting microscope were counted as 
total coliform. This procedure had the potential of overestimating the 
bacterial count by approximately 30 percent. It should be emphasized, 
however, that bacterial counts are not absolute values, but only estimates 
of magnitudes. Geldreich (1966, p.35) evaluated the total coliform bacteria 
for 40 samples using both the membrane filter method and the "most probable 
number” method. The ratio of their results varied from a minimum of 0.42 
to a maximum of 2.52 respectively. 

Tabulated total and fecal coliform data for this study are expressed 
as arithmetic means of either two or three replicated subsamples. A ‘hough 
the total coliform levels for the 1977 field season, i.e. May through 
November, 1977, are underestimated, the fecal coliform data for the two 


years are commensurate. 


* ■' f5ii» ' » • * 1 ^., ^ C ,.--- 

nildfiflonasup ip fiuiiOttii pHJ Vo uJiPsi J« i «» ,»uplnrf'>f*i *jv«Wr. nrif ««! . . ^ ,^ , 

isjiA .uviiiffOii i»»# JBPJ **pJP 84 <I?lrtw loi J*fcw iwrinrt/o'r 

v>** Jfc »ri*T« 

lo yJdfVsv fo ani £^#ioioP 1 *pt ^ n»ofla-» noo dV i® a*i*is« ft gif»t*ili®i 


loatnsq 9d unpialitb «3d«ittbaO0#T 

. yi ' irjffi. #-■.•. , ^-r , 

j/iS 3 i»q <!*1 i)b£*A .a*ii»orl P nMitw wcj-jmI W baoPi u^ov 


sfiBicwsfff na Vki jt'Tftb tin Vo 

e\ vlsjiUFjjMiiqqft iedJ !»»3ft»l3»» ftvdJ esv if .»uiir1« f;4»»T8 >A3f»fT»13»»int3 ft 

;, ,: . - ''S^i'rvA ■ ' '. . ■ r ° " 

JO) J>fi}M)rg.)lss<l 1S3 ifl' 'IX.® 

lo maohlntfii^ ao V>J h<urJplaop 

-nofistfhb naprift bai fl* bfftl) 5t¥t. vd3 -fltaaioftd 

\ ■' ^ 4 S ■ 5 ^#^ 

^apajab ijipa jsttfa aaaiH afarb njrw(4 taiiftb nasd* 

® ■'' . .■ ' , yr 

Rft bsanuoa 9-»f>w awiia^ss* rtolaaiiVirtit**' t®* «gu adj difw 

& 

'fdl snt J<sai7»»7ay0 lo tftUnwaoq^'^rfB burf aDtfb^aoaq ^t,df urotHoo ltitn% 

: Si ■'’ ■/ ■ ^ , - . . ■ 

tb%aXe&Hq«9 »d if »5fIpg^t'iK| OC vl»3i.<ftJROTq<|fc xtf T ■>•<}. - 

x,4.(yp ,3'iid ■'j.aattf'fry,; tt><T yy# 'R3fi^‘,» X *■ I ^ ^ 

ftliaipfiri DIPS l[iJt»A ifcioJ as/(3/b93iM>ipv*» (ff.q it )ti» tbiwB ai «'»bulJ'f»gft« k. 

^idiMipiq tirtita*' Itrtft hodl^ iwliii ooftictoeij wilJ epiq«ofc X)<^ op^ 

SiJ-.O *B0'>1 bpJtiiw ftj ti»d3 •< oM®* a>ft '^S'idcma 

'”^ .xf*»vl j"'* WfialKpc, ft. ol 

., ■ - ... ® ^ &r' ■ ■■ 

houH9t<i,\^ * i* ^Irtl loV |tifti> ixr^uillrm lap**) Inift i«K'i 'troVivlofftT 

j|goc»rif A ifti9i>^4iW.>ft. bftlftPl Iq*! "I'o owl laHyt-* 1o Vl®i ‘‘W pi .vijnd J i ift np 



■'.i 


>, -noaft^ l-lftf^ 'CX»?I uHl Trot nn.if I 1 /<d ioJo^ udi 

... A v,.' , t. . * ■ .... A ’ 

^9 vil .boiAaii 3 «OT»tknw ^ l ^ ini^ ^.^rflndvotf 

f.-l® «TlftdX 

^I. 


^ v' ^"" 



■u. 




13 


Analytical Methods 

Stream discharge values were determined from field data with the use 
of a computer program based upon the procedure outlined in Buchanan and 
Somers (1969). These measured discharge values were then used to generate 
a staf f-discharge rating curve for each station using a linear regression 
program. In several instances, two rating curves were produced. Instant 
and crest stage discharge values for the two water years were then estimated 
from the respective staff-discharge rating curves. 

The annual hydrograph and sediment loading graphs were plotted with a 
computer using field data. Missing data points, i.e. winter months, were 
estimated using available stream flow, precipitation, and sediment con- 
centration data. Estimates of annual water yield and annual sediment yield 
were generated by a modification of the computer program used to determine 
stream discharge. In a few instances, unusually high or questionable 
sediment concentration values, apparently caused by cattle present within 
the stream environs at the time of sampling or by sampling or analytical 
error, represented long sampling periods, i.e. 30 days. Where such conditions 
occurred, an estimated "corrected" level was substituted inorder to generate 
a more approximate determination of the annual sediment yield. The 
relationships between measured values of suspended sediment vs stream 
discharge and specific conductance vs stream discharge were determined by 
J inear regression and plotted using the computer programs. 



^ . ir=' " ■ -v^ ^^"'' ' ', 

0 ' •* , >'» 

iittf 9 rfj dJlw 63 <ib bl^n rnaih b?alai 939 b sdulsv «ft»T 38 a' 


%i,V "’^ 

br»« nanerf >1/8 nl biftHJuo •lubssoiq^ arfa ooqu afii^OKi laJiwjitoo" 


' -^ p -' ''ff 4 v -.i,, .-Ts' 

93H3snoS b*«u nt»rf3 «i9w 99ul&v 3'g7£d;>irii> b^iiueas# ^asdt Bt*»«o8 

nol8tt9ia!ji7 7a£>«H * gdlttj notM39 riaaa lol av^iib Jlnlia^.^g^wi^aib-Vlaja a 

'■^ it ~" ^' <■ ^P”* 

“ ."- '^p^S IS, “.'■ '.V;-. — ■ ' j'A* 

in£38nl ^.B>99ul>oiq 979 W »9vtuy 9i*>-\«93aii38ai f»7'jv»e fil ^ .iBaigotq 

-■^'^ m:- ^ ^ 


A 


c> 938 i&ii 8 a ft 79 w » 7 A»>( t* 3 bv» mf 3 Hiii agTa/fTafl)* agade >8979 bftU 

"■ . ,, 2 . ^ :- 


■'*’" >JVi.,J 79 q 897 i»d:J,^,« 1 ®l 1 




MS 


,si -i! 




« fialW ttsjiolrf 9n»w arfqai^ g<nib»61 tnci«liHi9 bna dq*VT8<n<3yH -iajtf<infc adt 

si’bw 3!Sijnh> .aTi ^^ainits-q »3*i) giriaifliH ,4!lfcb bl'»Jl ga'la*» 

• ’ ■ > ^ 

-' i' - , ■ *■ 

-aod Jcwlbalir bna .noJ;3aitqi®9^;8f ,w6Xi^'«»a»l3« aldaiiavb baitaoIdH® 

blii^ 3 n^oiib ‘78 laurma bna olslv 793 aw^ tBnane. ?«x . 0 ?,ab <icrlaft 73 fw »9 

■'■- ■ Itf' ^ ■ ’ O '^ ^ K 

bJ bbeu fii&igo^q taa^qeba itoi Jibow. !/ 9 a* 7 *d 9 g »isw 


>£ 


fc>? 


^ , bidafioJJaaup to datrf yliaaittimi ,awWRt*nl wai e nl . ag^adjialb waaiJe. 

- * ■*< 

ftlrfiiw Jitsainq Y<* btfdju*^ yl. 3 /j 9 t»qtjiji .a^t/iav rrrf afi^taibaa 


, Xa 9 i 7 yi&)iA 3 b yq ib guliq «»4 I 0 t»«tJ »da 

' if'V ' if’' '• I ;3 Ij) 


Bficialpbaob /iiiwa 33e4ii: •^v,«b i1t ^>1 ,«bf»ii9q gnliq«fts Kb«i biija'^v^iqba ,ionb 


I- ■* 


93 839 / 39 $ ba 1 HiduB Li}V 9 1 '‘ft 9 l> 9 n» 3 y* b 93 aat »«9 <»fl ,b«no '>30 

■">» 'i'* ' . . .' ' j^A '- i 

»dT .bu'bJTt ad^XbE/u iRuana vriJ }o v.1ii«ixd3 ibs atooi a 

■-'' ' ' :« " 1 ''; 

(Bb 9 TX«' «v Jd^raibba IwsbMaqjiim a'tii^gv « 9 ' 3 iwivd •^qi/fanoi j»l»i 

a * j B'f 

y<i b»«?4.#rj^3«H[> ,i»|(3ado«ifr} wftbi Ja »v y3<«?kS*'Ub<io') U ba*> 9givr»o«lfa 

tif 


. .'inrnTgn'T i9ibq<?(0*v »rtj gniau bajaolq ixiniWoiBssTga.i 





\h 


STUDY AREA 


Beaverh e ad County, Montana 

Beaverhead County is located in the southwestern corner of Montana 
immediately southwest of Butte. Almost the entire county lies above 5,000 
feet and is encircled on the north, west and south by the Continental 
Divide. The area is characterized by broad grassland and sagebrush covered 
valley bottoms and river terraces, while the flanks of the numerous mountain 
ranges grade into forest lands. The westernmost headwaters of the Missouri 
River drain the county to the northeast via the Big Hole and Beaverhead 
rivers. The forested mountain areas are generally administered by the 
Beaverhead National Forest of the USDA, Forest Service; the lower mountain 
slopes and terrace lands are managed by the Department of Interior's Bureau 
of Land Management; while the valley bottoms are mainly in private holdings. 
The land resources of the county are primarily allocated to the raising of 
livestock, although lumbering, mining, and recreation constitute secondary, 
but significant land uses. 

The Bureau of Land Management's district office is located in Dillon, 
the county seat. The county contains five planning units administered by 
the Bureau. The Blacktail Planning Unit lies southeast of Dillon aid includes 
the East Fork of Blacktail Deer Creek, Clark Canyon Creek, Little Sage, and 
Basin Creek sample watersheds. 



BOB^iioKTci rtir boJHk3il3Jt»tel Yliiw«2> bft«ril9Vj*»fl 

fk :u 


000; c &Vi>4i^r»9i^XJOU<i-p,.k^litt9i' itrif-3tf3mJ^ lo J»9W<ljuCMr 

Ioin«fi|SitoD aft5‘ta 1>#» ie-av ,ii.J3!ow„«KJ floibd Italian* si bm asoi 


iv ■■ ** A u “ yv,4i 

b»7!>v<?a,jri«;«nct«t*A b»r *itt .^^..stWviaar,,--.^, 

■> ^ ^ :i^ ^ Mja , " «, * 

^flil,jhM!«»#''is«o79«um 'Sdi'*io'“sjixijii,f/ 3»vJti7 b««' *»oii3<Kil'-'y»Jlw ■ 

•• i ^ Bte * r . 

IiyOftalM'’ ■ 94<iT ASbiml oSiii' 

a gm '4,^ ' !i 

i/«9d7*viri''sai.b(ij tiiy' «i<.iii 05. »i^':vnii!»<»*) ^»dl /ti-lil^ ; 

'S*-' ■ ■ ' ' ^ , jji ., _j^- 

'y • fji ® ,,4 ; ', ,,,y. lis 7 

, '.'Bfjfa Yl|#%wr«^ ^.» ..jnsivli 

, , "a ' " ' Kf. ^ 

,A(|3U' #di bn^itsvmBi 

■=■'. ' - ' ■ ■ ;v .i, :? '•■[?; flSSRJ 

.. S' . % . ‘ ■ ■ ■- 

, '^<3: ».4J kjL^sidiuii Al»fl»X »rxBi*i-»7 'iwis t!»qortg 

,flir ,,^ ^,p 'i; -i.' 'jW't 

. - 4((«. , ■ *|i ' -sJ . ■ .1 

'.eMrrlbtJpdl 9afcvi7q',i!jtl;' Yfsxiif''' ■ al'idv fciii»ut ,,-j 

' ^ ':"■ ' '.'"ra',, ^ 

' '.'ta&bpoaab /wiSJAAi^^in/ 


o 


^gifi 











,& 




■'4^ 




^ . 6-. 

bdtt,ijr7'0&^niogle SUii 


■-fji)-' 


iKC, 





Y<f .4»«^ s»3nuo'j .%d3 

fc.'’ ' " .',v. -..'i ' ' - '.-Hi. - 


a 





15 


Blackta i l Creek Watershed 

The Blacktail Creek sample basin encompasses the nearly 29,200 acres 
of the East Fork Blacktail Deer Creek watershed that lie upstream of the 
bridge crossing in Section 6, Township IIS, Range 5W (Figure 1). This 
study area includes the Lower Blacktail discharge monitoring sub-station, 
the Lower Blacktail water quality monitoring sub-station, and the Upper 
Blacktail and Indian stations. Local relief in this predominantly northwest 
facing basin ranges from approximately 6,800 feet to 10,600 feet elevation. 

The upper basin is mountainous and includes several valleys confined by 
high steep slopes. The lower portion of the basin is open and composed of 
rolling hills and partially dissected terraces lying above the broad flood- 
plain. The geology of the upper valley Includes a complex of calcareous 
and non-calcareous sedimentary and metasedimentary materials and associated 
igneous intrusives. The lower valley is largely composed of Tertiary 
sediments. The mountainous areas are dominated by entisols, inceptisols, 
talus deposits, and rock outcrops. The lower valley is characterized by 
mollisols. The lower and middle slopes of the mountains are covered with 
forests, the higher slopes are thinly forested or above the effective tree- 
line. The lower valley is covered with sagebrush and grassland communities. 
Approximately 50 percent of the sample basin is administered by the Beaverhead 
National Forest, 35 percent is controlled by either the State of Montana 
or in private holdings, and the remaining 15 percent is managed by the 
Bureau of Land Management. Portions of the lower basin are administered by 
the Montana Department of Fish and Game as an elk winter range. The middle 
portion of the watershed is allocated for livestock grazing, while both the 
middle and upper reaches are used for recreational pursuits. 



w 






OOS-<fi vTiftio ^di 

- ^ . .. .%^“ . ’ 

Oflj )o »t| j«t(lvWl*i93i^ ta*3 orfiiH 

' ■ -.,v ■'‘' ,’. av _ 0 i; 

«irtT 


■-E 




av 


LrtT dii ?iaAJSif ^',811 <iU»r»w«i «d Bi'oJCiois ni ^bkid 

dt •' 'A-fl'T. .imii‘‘"#t-.. -^V’ • mm -■ ^' fit '- ' ^ 'i 

jj_ . /v5o Miyy- ^ ^r*. “^ , . . i* 

■" .' ■«!■■'• ^ 

‘ ^ ■■ ■' nr m ■>^‘''"'iig> S' ,a .f^' ■ w'' /“*■ 

hftA Uttp ^siJ|kW'''iJ«iJi99i« “i>wcsl sdJ 

^ jNflC' ' '3 '^* ' 

J»dwTl3t&J rtHiWtl^biut X|'A3)<7»tt 

iaol3ay^l» 39*1 OOa^OlCv auyti *»in*^^nlitgd. 

-WV. jwr ’ ' '.3?' '^IJi 

-litmX3 bsi'OTrf- orfj b«®j«llSt anllfoi 

L’^., - ' ’' ^ ■ ' '■ ■ V.*, ■ 






«»n>*mi>X»b v<fiJ:«}4«>!>’.fi' iato£k«X£'BJyA{.*l iii.v 

iM3Ai?9«^n trfi® aittlK-frliwf* 8--nttn boa 

^ *41* • .. . ‘ ’■ . • ' ■ A*’ ’ 




.■■••-■■■.. yYAiiif’al' ,4ivthiii%nf Huo^ngl ^ 




'iv : V .SI ,,\ •% ■ 

»?u«HTitti»uO»n »rfT .alnwpil)** 

;■, - ■'■^^ : ‘S . ;-(, jj j: 'TW 

■a, ytf 7i!!«r,J: ,:;^r jS'joy bttn ,«3lu0^<*if g ji€3 /9 

.™ , ' ■ fv: . ■ ' w. ;: '^f^ ' '■- ..„■ / ■ •* 

e«U- ko dHybili b;i9 ,.7i*wt%X 4tff »4lt«lfIo« 

'!'■ ' '..' ' ’ ' f- , *» ' . p ■ ^' • 

-^•«4 :^'4 '^Vovi'c ' £>*3 la^iQil -ari.! 


<9 


■ .'■ '..r . ...,: , ^ *:' ■<■ ' iflhi,.''. -'® 






' ' ^ j ■ jc'' i/i’ ' ^41.' ' 'it ^ "^' ' T4 ^'‘ ® 

al‘^oiir,4^» 4rt3ii4'o 3irTt>i>l9/r' 0^* 


vfjv '"j;.. -^ . to , 

■.'Jt ->;,',!^¥a,09M, to wii.jft 

si.J 


y*’ 




^ 41 .7 ■ 

.>» .i^nif Sj’ . (N) . M 

t-'W 


y«i4.fe>'.r'lwT3«t>9i ikj if, »j«nc1 {aiioi}»K ^ 

, ii'. 4f' ,,.,w .fv; , 

|f «3i*vlTq tt^. ro 

rrrt ' ' ' ' S r 


iKSi 


!■ 


' ■.<»' ^". r,‘-‘r " '“it-'' ' ^a ' 

,'' '*• ' ■’ ^ ^ . -Tuf" ,. "^aa 


U/khI 


■ ’ ^ ' • ^ --M " r 


f 


^5 *' ' T' * ■ ^ ly ^ 'ffl 

V;, v; •. '^V ' „■ T? ; J ,.;i!|,V!“..i'7: ., ■ ^ ^ 

>; SMKilPMI '7.73,'’. aol .■,6<i»(M# 8*jd9(i»^‘'as«ww /bd* slbMa 


,v.>L loi ■,6'<i»*i# ‘»Tr8 8ad9*^''Tb'?<Tw/bd* sl-bM* 

' '. varii'^'^'/^ .v4>]Trit;.Bir'r'dii_vYii,i'ijju_Ati^HUWM<i'.jn c^'vi wxmMm wnMi i’.-'^'^.i- -'.' ( 




16 


o 

o 

et 

■Zi 

Q < 




Figure 1. Location of Blacktail Creek Sample Basin, Blacktail Planning Unit, 
Beaverhead County, Montana. 







i 

i 




17 


I>()Wfr Blafktail Station 

The Lower Blacktail station is divided into two sub-stations. The 
discharge monitoring sub-station No. 8(B) is located in the south central 
portion of Section 6, Township IIS, Range 5W (Figure 2), at the bridge where 
the road crosses East Fork Blacktail Deer Creek. This location is found on 
the Price Creek, N.E., Montana 7.5 Series U.S. Geological Survey Topographic 
Quadrangle. The station is depicted as site No. 8B on aerial photo No. 
5-119-147 of this resource inventory report and is shown on stream station 
photo No. 8(B)A. The station is located at 6,780 ft. elevation. The 
watershed above the station contains approximately 29,200 acres, has a local 
relief of 3,800 feet, and is oriented to the northwest. Approximately 50 
percent of the watershed is forested. The water quality monitoring sub- 
station 8(A), is located in the northeast portion of Section 28, Township 
IIS, Range 5W (Figure 2), approximately 50 yards downstream from an unnamed 
drainage entering from the southwest. This location is found on the Price 
Creek N.E., Montana 7.5 Series U.S. Geological Survey Topographic Quadrangle. 
The station is depicted as site No. 8A on aerial photo No. 14-120-73 of this 
resource inventory report. The station is located at 7,120 ft. elevation. 

The watershed above the station contains approximately 18,600 acres, has 
a local relief of 3,500 feet, and is oriented to the northwest. Approximately 
75 percent of the watershed is forested. 

Upper Blacktail Station 

The Upper Blacktail station No. 6 is located in the southwest portion 
of Section 35, Township IIS, Range 5W (Figure 2), approximately 400 yards 
below the Beaverhead National Forest boundary. This location is found on 
the Antone Peak, Montana 7.5 Series U.S. Geological Survey Topographic 
Quadrangle. The station is depicted as site No. 6 on aerial photo No. 






Figure 2. Locations of the Blacktail Creek Sampling Stations 




19 


lA-120-73 of this resource inventory report, and is shown on stream station 
photo no. 6A. The station is located at 7,350 ft. elevation. The watershed 
above the station contains approximately 13,900 acres, has a local relief 
of 3,100 feet, and is oriented to the northwest. Approximately 90 percent 
of the watershed is forested. 

The Upper Blacktail precipitation station No. 6G is located in the 
southwest portion of Section 35, Township IIS, Range 5W (Figure 2), 
approximately 100 yards upstream from sample station No. 6, between the 
creek and the upper end of the beaver pond. It is depicted as site No. 6G 
on aerial photo No. 14-120-73 of this resource inventory report. 

Indian Creek Station 

The Indian Creek station No. 7 is located in the central portion of 
Section 34, Township IIS, Range 5W (Figure 2), approximately 50 yards 
upstream from where the road crosses Indian Creek. This location is found 
on the Antone Peak, Montana 7.5 Series U.S. Geological Survey Topographic 
Quadrangle. The station is depicted as site No. 7 on aerial photo No. 
14-120-73 of this resource inventory report, and is shown on stream station 
photo no. 7A. The station is located at 7,310 ft. elevation. The watershed 
above the station contains approximately 1,100 acres, has a local relief 
of 2,800 feet, and is oriented to the north-northeast. Approximately 
90 percent of the watershed is forested. 1 

Clark Canyon Creek Watershed 

The Clark Canyon Creek sample watershed (Figure 3) includes the Lower 
Clark Canyon, the Upper Clark Canyon, and the East Fork Clark Canyon sampling 
stations. This west-northwest oriented basin encompasses approximately 



11 


20 


9,700 acres. Local relief in this steep and rugged basin ranges from nearly 
5,650 feet to almost 8,900 feet. The basin's complex geology includes fine 
and course textured sedimentary materials. Tertiary sediments, as well as 
ash and mudflow deposits. The soils include inceptisols, mollisols, and 
alfisols. Grassland and sagebrush communities dominate the lower and mid- 
portions of the basin, while forests are found at favorable sites in the 
middle and upper reaches. The Bureau of Land Management administers 
approximately 65 percent of the watershed, 25 percent is in private holdings, 
while the remaining 10 percent belongs to the State of Montana. The basin 
is predominantly used for livestock grazing. 

Lower Clark Canyon Station 

The Lower Clark Canyon station No. 11 is located in the west central 
portion of Section 35, Township 9S, Range lOW (Figure 4), approximately 
100 yards upstream from the section line. This location is found on the 
Dalys, Montana 7.5 Series U.S. Geological Survey Topographic Quadrangle. 

The station is depicted as site No. 1 1 on aerial photo No. 4-116-24 of this 
resource inventory report, and is shown on stream station photo no. IIA and 
llB. The station is located at 5,640 ft. elevation. The watershed above the 
station contains approximately 9,700 acres, has a local relief of 3,200 feet, 
and is oriented to the west-northwest. Approximately 10 percent of the 
watershed is forested. 

Upper Clark Canyon Station 

The Upper Clark Canyon station No. 9 is located in the west central 
portion of Section 6, Township lOS, Range 9W (Figure 4), approximately 75 
yards upstream from confluence of Clark Canyon and unnamed creek entering 
from the northeast. This location is found on the Red Rock, Montana 7.5 










V.'Tt, 


OS 




w »■' 


odr 


'M 


, , , r « >.>'^ 'i' '■ <t si^''*iil^M'^-T,7jShS‘‘'kV T 

Ynin»n aotJ fidgAfit nina^ baggui baA qseJa »idi ttl ♦«»«;* 

t , »■ ''''' ' ' ~ ■ 't ■* '■■■ ‘- ' '■ 

9nii «»burt>nl ^goJodj) xaiqaoa e *nl»»<r,, »ifr^. OO^.fts JaoijXn 

_ ^ ;^' . f '■ , **“ .rf" ® 

e» Xl9W ft*iii*T yiajBtNrlbM !>ai«sjt«3 Aaioo^ boa 

bnav^,8lcM^xiroiir laXoaXjqasrti abtiX^nX .ail'aoqab woll^biiB bna daa 

:.i.^ '‘■‘"'' a il^' , ^., _ ■■,^ 

“5i« boA^.iswoX arti a^silrXiacrb a^lJlmoiaiao rfavirfagaa b«a bf 7 aiaaa*fO .aXoaDla 
aria Hi aa^ia^faidaiovai 38 bA«#ai at* bjss-ioI aXiihi ^olaad aooiaioq 


v a 










E, 


'U( 


',^3. 


r . 'll ^ -•i'nii?' ts I ■ ■ 

iii9J9lttJ:nbA 3niHa9g»aaH\,brMJ vAm-iM ,9inj^,M:iAaA9t^%9qqu baa albbi* 

> . •^,t.‘5L, .‘Ml rS.- t IS. Vi .Mi ‘ ^ Z r. ' 


, Ultifni b|od 
nIitAd 


"'^ «t # 


t aiavttq nii*aX '^aoaa’isq 2£ * i^/f5^alr"arf4 io Ji»97»q Sd tJ«»J«ni*aiqqa 

i I . •.«S' “ % ,. <'•* 

anT ^soaaAon io-‘»83e an3 oJregoolad aoa^ioq OFj jiAiataaaa said*' flirty ; 




V 


it •• 


\,>y 


■I L^’f-aMiWfc .. 

'.'i.V 


,;.ffi P“ 


WlS 


:egm>la<f aoa^ioq OfJi grriotaaiaa 

n, ^ ■I’tii. .JL iW’ , ^ f; 

.gnls«75 jTooaaavil 7ot ba^o^XjoanlinohsTq #1 

' ■"'"' ' ' ' '■ 'y. ' ' 

"■■' J-: li V., . 

aoi3l32 noqoaO jiTall; twoJ 




lATinao 3a?>w adi ai bajatx*! «1 11 noi3&3a novnaO :ilialD ravui adT 
* ■ .,. ■*' •"' » "■ ' i3»'-,;- 

^lalarttxolqqa ,(^ aiogH) WOl agnuZ M qldanwoT ♦et'ftaHoae io ooijioq 

.. ■ , ,« w ^ , '*■ 

4tn3 no bowbl ai noljasoX 8lrfT .anil nii>l79aii adt' moil ataaisaqu ab^av 001 

. a' ,■ ^ -j^ ® “ 


-xv 


m ^signetbifeMp :»lrfq«7goqoT l^aig^ol^O .^:0 eal78S^ 2,T anfcJooM i,flviaO 


aiifj Toi G^odq. iftiiaa ou il .<^ ■s^ib *b ba^^iqab al aoi^aia aifT 

bf7& Ai 1 ^6it}^o3p*lq rtOJis bo^oworfa rilftboa ^Juxiai VTOjjjsviti: a'>7t;o8tt7 

“ ^ 'jWs « ' 


avoda barfaiajaw arfT .RotJaT/ai^ ja b«3a!>oI «J noidaJat 8d*X .dll 

t«i Bt ii|>, ,jtC,o “ “ ~* 

1 ' JM?^. 


“m 




. 0^,^ Id b eW .89T9a pOt,^ ^ftiJMBJlxotqqa aniBiaoo ooi^ai* ^ ‘ 


SI 


'V 




g f 




pr ifl93iJniito3qqA . :)«a^j7oo-fia«w arfa 03 basnalto aI bas 

'•■ ‘ra' ,j.W> i*-„«ji Vf , & ’ 

..iovujji . . dr 





.basaaiol Al^bjdH^aitmt 


•?. 


BJr: 3:; 


. 7 -?^ HoiaaiS ooxnaO ;J7fi,fO i^'qqll 


vw'. V Wfy.- % .‘^F-b ,u .vmm.'kZ, 1 

Ia7>o»u pi b^JbyoX ,; 5 ;i <? »qM oolsa^t irox^^O jliaiO T»qq(I -^ffT 




•tt •'•'iiAy'. v , II ^ ^ ’.ii ^ 

Ht^iMxor^oA A* agnbli^^Hot nttlJoaC . Jo ooU^oq 

*'■ °* ■ S- , "' .- .. <1. -r 



gal laja^ iaBt9 , b^KadflM baa^o>fflai^i7ai0^ib »a«a‘ul looo «ot 2 naaiiaao ^pbiTay 


"4 ^T, - . 


^ ■ Ji iiww'. -''• ji^ -- ■ 


<■«' 







7 f .‘A. 




21 


>- 

h; 

o 

c_> 

z: 

Q < 




Figure 3. .ocation of Clark Canyon Creek Sample Basin, Blacktail Planning Unit, 
Beaverhead County, Montana. 




22 



Figure 4. Locations of the Clark Canyon Creek Sampling Stations. 







23 


Series U,S. Geological Survey Topographic Quadrangle. The station is 
depicted as site No. 9 on aerial photo No. 4-116-26 of this resource 
inventory report, and is shown on stream station photo no. 9A. The station 
is located at 6,320 ft. elevation. The watershed above the station contains 
approximately 5,400 acres, has a local relief of 2,570 feet, and is oriented 
to the west-northwest. Approximately 40 percent of the watershed is forested. 

East Fork Clark Canyon Station 

The East Fork Clark Canyon station No. 10 is located in the north 
western portion of Section 6, Township lOS, Range 9W (Figure 4), approximately 
400 yards upstream from where the road crosses the creek. The original 
station was located approximately 15 yards above the creek crossing. This 
location is found on the Red Rock , Montana 7.5 Series U.S. Geological Survey 
Topographic Quadrangle. The station is depicted as site No. 10 on aerial 
photo No. 4-116-26 of this resource inventory report, and is shown on stream 
station photos no. lOA and lOB. The station is located at 6,200 ft. elevation. 
The watershed above the station contains approximately 1,700 acres, has a 
local relief of 2,300 feet, and is oriented to the west-southwest. 

Approximately 20 percent of the watershed is forested. 

The East Fork Clark Canyon precipitation station No. IOC is located in 
northwestern portion of Section 6, Township lOS, Range 9W (Figure 4). The 
gage is situated on a low knoll approximately 30 yards upstream and t L.:e 
left of where the road crosses the creek. The site is depicted as site No. 

IOC on aerial photo No. 4-116-26 of this resource inventory report. 

Little Sage Creek Watershed 

The Little Sage Creek sample watershed (Figure 5) encompasses approx- 
imately 14,700 acres and includes the Little Sage sampling station. This 


‘^ifr ^l/fiqii'isoqoT ysviifS'" Ift3b||ai'lo«d .S.U 

&'^-iuoa»*t ^airf) ,oli? aiailq no uk b93:iiq»b^ 






' 


.aoli«3« *Mfr ,AV ,o« oiotitj nol3»4i3< cui«'i3tt no mioifB iJt vtojnsvnl 

rj) ^ ' ' '*■ ' ' - ■ 

<ifil*jn(/‘> ootiaJs 9d3 ovod* bftdeiDJcw vfT . .aot3nW9l3 . Jm boifisoi ul v 


ai bfT* ,d»»i OK-,^ hUo t9U5H®i*>tffI?A sad .af'iiijt 00^',? 

. bsle^^oV «1 b^daissAv vij ^ Oil^ tfJ[«i4walx<nq<|A t^nimfiijUaur^iaov arfa oj 


(li 




- ,V 

\' V rfl'scifl *>f(3 ni «i ot .oJf rralijc^ri u'svni^ ibofll 3««S sdl 

■-<* .'s fc S'-" 

86 ' •■ . . t 






noffiA^ lii9ip il1»©^ 3ejk3 

^ fr' 


yirSd8«J:xot<)v;fi Vfi? qliiffimot \d potjsoi* ^<»» M»i3'x<rv<j nisdaaw 


'-r ■ ^ 


iB/ttgiyo srfT .aiiiato arfj fwBoyj bi^mt adi iiunfw (Brntl mvisequ Kt38Y 

^ ‘ si ■ #■ 

'» , ^ , . . —■ 

iflHT .itailsWoia ovoda MfctSY vl9*f|^i3t<t^qqa tnjM-yoi ee*t ttoJjmirB 

^♦viwe t^.U ?.t fta«3«oJ< :» »rf^ no Ww/oH tfi nofiaiKil'" 

‘ ■ -a 

iBlz-t^i ktf 0{ ,oM 031a 00 b9Ll:)ii[f»t;i sb rrol9a3« orfT . rri^inaTbaup »ldqKl8'jM|oT ! 
3nwp*^j8 w oworii *1: hn» , ^jti'oa-sn lo bl-dli-A ,o>i osorfq 

“ ' - , .. " , ,-. a 

.oioi3«v>9Xo IS li ftolittis OiliT Wb AOJ .041 soioiio roIibjs 

si. - ' " 

? ^aoarA (^T,l vfftTUtfCisoiqqs »r4»3n<-j5r aolssjo od^'^-oV’'‘4s i>ortaT!SJ*wrsK<T 

;. ^ '>i ■'* m 

. . J8»wdJiK*a-3'tei»tf oa U^imtyo «1 bus ,3o#l OOE.S to laaol 


'A’ 


aj 


>K . -vf y« 


si boifsToJsw io CW vXsJftfflJMroiqqA 


.^1'^ )^s5oi 90! .<>() noi isllqiddiq novatfO jiisld iioH 

oifV .fA s^jsglf) v2(PI qld^invfot no!3o»2 to 4*ol nnq 


A V « - 

' i bflo'^iitsiSrii's.di' »h“iAy x^^tR^TtxtrKlos iXorul woi o, oo boisojlo ai ‘ 

'W -- fl 41 

MjK afll« as' tis;j|.>tqob aU odT orfJ ssbso'J!) beoi sdJ 1o Jtoi 

'■. '■ ■ ' ' :?; 


\a dS*dil-A .oW 03mJq iBkiitti net 001 




.tKii 


m 


^laiL 



(■M 







•IJF 


“ ■^ - - 

•^^'fqcre (C •nixgicli bortatnaay Qiqasa olJl) J odT 


;« Irt r 


S 


‘ 



gniiqmwr oisjiil ftd3 c^bulooi: bos saxsstm diQT. Y^Aioai 


23a 


>- 

o 

(_) 


c 



Figure 5. Location of Little Sage Creek Sample Basin, Blacktail Planning Unit, 
Beaverhead County, Montana. 




24 


low lying southwest oriented basin ranges from approximately 6,400 feet 
to 8,500 feet elevation. Its broad open valley, surrounding terraces, and 
low lying hills are primarily composed of Tertiary sediments, but also 
include some Tertiary volcanics. The basin is almost completely covered by 
sagebrush-grassland communities. Mollisols are the dominant soil type. 

The Bureau of Land Management administers over 65 percent of the basin, 25 
percent is in scattered private holdings, and less than 10 percent is State 
land. Basin use is almost exclusively for grazing. 

Little Sage Creek Station 

The Little Sage station No. 12 is located in the southwestern portion 
of Section 7, Township 12S, Range 7W (Figure 6), approximately 25 yards 
upstream from where the road crosses the creek. This location is found on 
the Rock Island Ranch, Montana 7.5 Series U.S. Geological Survey Topographic 
Quadrangle. The station is depicted as site No. 12 on aerial photo No. 
14-121-49 of this resource inventory report, and is shown on stream station 
photos no. 12A and 12B. The station is located at 6,560 ft. elevation. 

The watershed above the station contains approximately 14,700 acres, has a 
local relief of 1,950 feet, and is oriented to the southwest. Less than 5 
percent of the watershed is forested. 

The Little Sage precipitation station No. 12G is located in the south- 
eastern portion of Section 7, Township 12S, Range 7W (Figure 6). The gage 
is approximately 75 yards north of the road at a point where the sagebrush- 
grassland boundary coming down the hill from the south meets the road. The 
site is depicted as site 12G on aerial photo No. 14-121-51 of this resource 


inventory report. 





' ‘ . , ^ ■ " ,*^' ;ja- -ri 

bflR.. fUs^aRt’iiaJ ■■ jnl bn w<)Ttu8*?,,y9|i&y ifti»q.o ' toROid ■4l|>^.ftoijBVdl.W''^i«»l ,OO^t»'W 

"••-- !§<**»■ '“'®' , \' ‘ . ■®®^i4'', ; 'gr^™ : , - ^ '.;4^ ■ '^h ^ > ',iffl ■■ * 


tC b»i»yb-i »J 6 Ri »*4 .rit«Ri>Xov x^«XJi»T^ttJSO« abi^lwil 


.sq’{i ' JiOfe-,. ifiiutlfflibb 4 s 4 i.'W bttRf«»Rit~ilR»Td;»«iia 

t,p "|<5' Tnpvo^^iaXJltoltflsb bisaJv-^^ u«»'i,Ma »rf7 ' '% 

“e mam :i' 5 -‘i^’-s«^;%-«. ■' ■ '%. ;;';-;S 


» jeis »J JUS'S j»T 5 of (Mwtj *»»j« kmi ;i!rg<il01<>rtJ»i&v.JJ<) iWTOJJwwi at *4 JitsDi^ 

- - ; .^; ■^. r: ' ,„jfV 

^T»rtlaAi* 3a,n«|ik a,i f«K ♦&«»! 

‘JtdK .■ lTl.^,<^^ . ',... -/A* *■•• 




Sfs-aj- «Jl *2 i f» 1 .. J 3 IJ 

tl"‘lfi W’^y ■- , , .» 0 


' iT 0 i" 3 iro« 'S\ . .aUt^ wfT.t 

:■ .'' 4 '''"'' 4 i. 's*- ,'■>«'■<■»* '>f ■ _■- ’'''=&:■ 


' ' , r ', ■ '^-■- : vt-rr^ !' St . ' , ^r- 7 7 isr 




eoU-;#®^ iO' 

s? ti* rj-™ 


•jlriq^kisoqqT-viiriuS' Xis 3 l)?faL£<>TiO: •SvU^'as^l^ :;> 4 j*rtai 5 [ 'ffiftaial *^‘ 5 ©a ‘*riy 

: .,i :■,.■■.■ ' ■,:: • yiTS^: m ' -vr.^^ ^ 


3p 


§.^^ 7 ^ yr'^%, -J^ 'od,orfq''lts^.#«'R^^ i:'qi»$if ai itaXia’i* » 4 T' ;»lj|tta'tt>Rijij> 

‘ ' 7 ’"^ 'IS'' t ■■• '- -'vn- — nJS, .S-, '•■■ '^''' . ' ^■., «« ' , sffl .a-„ 


* 


' £B. 


0.y. 


^ ■'■*'VQ'„ . "i' ' ■.■.li-J^^;"'.WEIili> Ifc, ,. 

'■^ ■ ^oXiiiaj,«A« 3 ' 4 B '«.v«Fo 4 a' al, "'^ i|f-*'*’' 

S'.'- a f - . e- . ^ . -‘V. .' 1 

‘ ■ ■" '* '■ ' bn* AKf ..an »ti3cntq- 


'-^ ' ' V? " , ,,vi' ' ire’ ■'^.v ''". , . 



' , .,W ® 

strD<fa b-jrttaT^^aw^ajfT 


EL, •■ ^, ■ ■ : •:'■ ’ '**’’ *“■. 'W'-' ' 

a anX» 33 ibn, 

^ aasi. 03 . ,)Sa 3 ,flEi»'t"ta li, bfia ■'; 1^0. imiivf 



ii.X.’f/'^<"a''>a 3 few 3 «#DTaq 




' ’'•.'ixt^ :'V "r-^ V , ^ - 

f»3VUf .“ mp ''M '■• - '.ai'.^VSi . ool 3 aJ a XfPi 3 mi tn l»tiq ■ '^.$iSi*i ai J ik-J. ^tfr 4 

i, • »■' ^ • ■ ■:.■' 






™. ■^' ,, . 'ii 3 H 

♦ 2 'S,I qt:!lt<»<»-»T: «o,ti .ri'oi'Jioq /it» 4 aaa 

s- ^-n. * ' «S»=~ .'’f . ... n '-Ji- 

w 





■ 4yMiifY!i.<|^|,««a';^ ,' b»o3,^i»Frf3 ' <<3?®n «)l<3'«¥' ^i;‘' ■ vi„*tMB:f»«i,{Mi*i ,B:i,. 

od-U.. nyab a^xwoo fTafwiK'd.hnaTa'av^iit' 
.'c^*i’ 1 i%f'X,^^^p'lodq. ialt'a*’ -Ifio oti a 4 ' bj^jiiiqab ai 4 A} 4 . 



ji ^ . Ri 





" 7 ^ 


ninPHtin jjfojfMSvni; 


. ■>'>;■ Jf! 'I '■ 




MtLi 


25 



Figure 6. Location of the Little Sage Creek Sampling Station, 







26 


Basin Creek Wa t ershed 

The Basin Creek sample watershed (Figure 7) contains approximately 
33,000 acres, and includes the Lower Basin, Upper Basin, and Little Basin 
sampling stations. This predominantly broad open watershed is encircled 
by low hills and faces mainly to the west. Local relief ranges from 6,300 
feet to 8,700 feet elevation. The geology of the basin is dominated by 
Tertiary sediments, although some calcareous sedimentary rocks are found 
in the southeastern portion of the watershed and Tertiary volcanics appear 
scattered in the lower watershed. Mollisols dominate throughout the area 
supporting sagebrush-grassland communities. Nearly 60 percent of the 
watershed is administered by the Bureau of Land Management, 35 percent is 
State land, while less than 10 percent is in private holdings. The area 
is almost entirely used for livestock grazing, although large antelope herds 
winter in the broad open valley. 

Lower Basin Station 

The Lower Basin station No. 15 is located in the south central portion 
of Section 30, Township 12S, Range 7W (Figure 8), approximately 100 yards 
south of where the road crosses the cattle guard. This location is found 
on the Rock Island Ranch, Montana 7.5 Series U.S. Geological Survey Topo- 
graphic Quadrangle. The station is depicted as site No. 15 on aeriac photo 
No. 12-122-50 of this resource inventory report, and is shown on stream 
station photos no. 1 5A and no. 15B. The station is located at 6,420 ft. 
elevation. The watershed above the station contains approximately 33,000 
acres, has a local relief of 2,300 feet, and is oriented to the west. Less 
than one percent of the watershed is forested. 


■/J**ii**iKoi«jq« an}^J<i6'' Mujll) barf«io3»w j>l<?<y«c 

..1 ■* » ■«. “. *-r .*’1 ^ 

nlana i»«m ,«i«Ba j^'jaiqy t^IeaS iwt»J*ad3 ,a#TO* 000, 

bfriitloot a l t»i»d*3^3»w osqo Jb«bid ;jirfT _ <?f;i tquaa g» 

^ ; ^' ^ '' V. , /. . 

OOC,^ ajo^t ^ojuai l-jiist lfr:>«>4 _94| o3 

^ yd bs^aaittob al flibad'^dJ 1«# xlSoi»X 

■ 'Jiv^e «a ■'■ -■ -■ “ 

' *■ '■'^- ".. w ■' . ' ®‘" 

taualt 


IJ.Vl '"> 


>&t» 2|ib<»n»iVTa30’t>flti'b»o, »t*o»3«»lab aaw« lipaCfiylm ''^BJ.iiaiitiib** 

,j». ; « a. 

- 7 a 8 «qfc iSiq*3li»vftxt&l3^9T bqjT b!*d« 7 rdj«w llolnoiq-joqTitndt^ikadtuoa iirf3 nl: 

-'■•\ _ ; >• 'f ■- . Bzen *3 ■'® 


€ - O- «# _ , - m "*',4 < 

, * '. .< . * . . ». -■ .,, ' "" J."" 

- od3 foV3b^3J^qj,0d yX*ia»« ^^R»XJlrtoa»aob b«*i« »«•»«- anl3t6qqw» 

,^.:. . ■ <• - ' •’ 


?5, "'5.'. 


fP 


^iK'jd'sr»3fiq*^?c’>qn3WfiaadBH 'i>rt#J ioJiiHa^wa adr^l'd j^t»3«i'« - i^a .»? ■ bafla-ia.iaw 

■ ::,'t. ' , ' r^'' , ', ''' -i >^ ■ ■ ' , ':* 

oiiT ; ■ ■n«ji3-'*4»i9l slidw .a3ft3a ' 



'->. ‘.'I'., ' v® 'r - W ® - ■” * » » •„) 

^ab3^rf sqoXdrf^* *g-fai jiSmjrfsi* .ijnXsftit 'aJo^3aa^ 3®» ft^Wi yXfui Jiwfr 38W» ?- 

^ n y^q6 bMJrtd ni 3«3nlw 

«Ol3TO<J l87 3iM*^>‘ dj'‘^a'i^d3 ql. bftJ'BOoX B.l" d'X jxl HA3 1U'/04'‘" 'Jd'^ 

■ ''' ’ a' ■ '■ 1.' '"•' ■*■ '‘^" 



\„ 


{>» 


^'1)Tt'iY "OOX^ q'irtftmiKiT ,,0<f'®nai "io 

'^"" v’ ^ ■:.: . 

^, Uwq'% M bojja>of ^i*rf >t)3iufjj «X3i«» 9t<J niatf»»>3 ‘ rt3«oa 

^ ,’ ,,V’ 08?" .. ^ .^l*' .Ji Bi 

.«;0 &3l3«>a t.} ««BSaf^ ^da*wa Mi«I#l ♦ifJ nn 

.‘.IS. ' : .*^ ’', ■ g'’ '■ 3. 35;'^ ^ ' , 

® o3^{q b'«3b.Xq%fa >1^^001 .aljinBibftup iXdqa^SI 




JSi 


•^3t»<»8«3 aids lo 0^-£SIrSi .oH 

^ - ' .:>p„ ■■'® .. *-" rfiiT ''^ 

38 baSHiwi «»l «oi3»3» adT P.tei boa A?J .©n ao^iodq ik»X3«3» 

' ■ ■ ' ■ jil! — fil , ^ifl 


.5 


j;^ 

Uf 




a'aXeUnoa:^' dol3».3a' *d3' ^vof^ badttfliiwi •riT ,w^ 


PT'J h' ' ‘■f^“^'*, ' l*]|jH 


r;3»»^ OOf .l » »ftrf 



.'75 ^ 

vfcart®3»3«f art 3 \o 3WB3’»©q *«<> flfbd.l 

,.Tfi..™ .. . ..Vg 




27 


>- 

o 

o 


cC 




Figuie 7. Location of Basin Creek Sample Basin, Blacktail Planning Unit, 
Beaverhead County, Montana. 




fecF/iiond 


Z 




^ ( 
^ / 

» / 

\ 

/ 

f 

V 

1 

\ 

2<V 

\ 

\ 


M 











rrr 

)-X- 


- 



. Locations of the Basin Creek Sampling Stations. 


Figure 8 





r 



29 


Upper Basin Station 

The Upper Basin station No. 13 is located in the northwestern portion 
of Section 36, Township 12S, Range 7W (Figure 8), approximately 450 yards 
upstream from the section line. This location is found on the Vinegar Hill 
Montana 7.5 Series U.S. Geological Survey Topographic Quadrangle. The 
station is depicted as site No. 13 on aerial photo No. 12-122-52 of this 
resource inventory report, and is shown on stream station photos no. 13A 
and no. 13B. The station is located at 6,980 ft. elevation. The watershed 
above the station contains approximately 6,700 acres, has a local relief of 
1,400 feet, and is oriented to the southwest. Less than 5 percent of the 
watershed is forested. 

The Upper Basin precipitation station No. 13G is located in the north- 
western portion of Section 36, Township 12S, Range 7W (Figure 8). The 
gage is approximately 75 yards upstream and to the southeast of the stream 
gaging station No. 13. The site is depicted as site 13G on aerial photo 
No. 12-122-52 of this resource inventory report. 

Little Basin Station 

The Little Basin station No. 14 is located in the northwestern portion 
of Section 1, Township 13S, Range 7W (Figure 8), approximately 15 yards 
upstream from the bridge where the road crosses the creek. This lo at '.on 
is found on the Henry Gulch, Montana 7.5 Series U.S. Geological Survey Topo- 
graphic Quadrangle. The station is depicted as site No. 14 on aerial photo 
No. 12-122-52 of this resource inventory report, and is shown on stream 
station photos no. 14A and 14B. The station is located at 6^860 ft. elevation. 
The watershed above the station contains approximately 11,800 acres, has a 
local relief of 1,800 feet, and is oriented to the northwest. Less than 


one percent of the watershed is forested. 




es 





-r,' ' ' AM 

noi J70<) n’T<% js4w<f JT^ ©rfi ini ^ l>» J nxii'** * i Cl *0^ aotJB ]9 nlciifl 9 ffT 


abiav 0e?YlBiftuilxoiqi?6 ^(« Btugiirw^ x^nnS .2^1 ijiri««woT ,i»€ nolm? lo 

”■ * 0 ^ ^ : f.' . - .- r * 


?» V 


lltH bmioi «i na|3»ooi JToJ:3'»Ba HfifooiL^ MSilaqu 

- ^ „■ €i ■ ,T “ 


^Vr!^,«»lMnB-jb*up 3iriqtT1p>qot 2,t ^ft3noK 

• isu ^ — . y 


,«td3j4fi i2-SlI-sl .e« oJOrfq l«Ha» oo EX- .oH 4 m Moii^ab til noUftas 


^ V 


Atf *^fl^Kcj2<>»fq W0i3«4« *4«3 |«i no auQti» ^ Ui4 ,3»oq*"J «f303n3V«rl )»o'juo«»3 


^ . ■■' ' -"i ’■ r 

b'&rtfcaBJf^ b 4T ♦«oi3ftVJ*i-!» .a^ 0?W,n >e ti noiiej* afTT .€Ci .^fOn bit* 

' '-ih ' '■ "- 'j?/ 




Iv « «6rt ,3»->?Ca50J[,a viT»li««i»0^qq« »rfj^ 9Vod» ^ 


% "^A '^'* ' 4 'A 

•i<(3L.lo 4n»3Tiiq“.e-niil3(' »’*■>.! .»»%«( 5 woa «U qj teJotltl'# *1 *5* ,J»sJ 00i,l 


t 





a 

L\; 




«4 barf&aoaMW 'jf 




iLilU. V»* 




-ri330/T aJ3 rtl b»3felvol «1 pCI' .oJI «i343£J« not JkJriqiJJr*^ ^'UmS 

' :'7:SL' ^ ' -^,4-' . o ■ 'A' id 

p ' " ■ ■' 


BdT 


'i; 


. ■ ‘v 

artTer .(0 Biirsifl w\, ,21f qirf«siiwol nor Jaae »o nolnoq hWz^ 


"fes 


ia«333» ><<3 3<!«srf3UO« adJroJ bt^M JiW3«qi' «i »8M 





o;otfq IniqjfM no S^Ct »1 '- bsaftiiqai) si xkjJI’B 9Hf ,f fe nolana* ;ini}|{M9 

•. T •■ 


ly 


>ir<K}93 f%03<i®vn • * »3^«os*d3 atiJJ 1o S2-CSI— Si .oW 









ni»<wi afJliJ 


noisaon *43 nl f>*»j«wi at uotiMa* »ifi 

■J ■ ' . ■ 


IW 


bbOBv -ibnil'f) ^&Cl qi:ri»»tiroT cwJ r»-ie 


^ Mi*d« •qfci'jd 'irfi »03^' n7Bd>J8qii 

'■ *** ''*■ t- T ' 

^ :4 S 


v*#vi«ffe .2.X!' B>jiX9ft f.'C od^iinaH .rftawO v»n£id arfa no bouol si 

IH R 


^1 ,oK B3ia t^'noianJ* arfT .<»rj|n«3biufT> aidqn?* 

'.^'i 



no f»wo4« if. f'-WM ,33oqtM ifaoafievnl ooawcMsai «i 

V'- ■" . ■•' L'i ' . . 1 ' 


\^a se-ssi-fcf .cM 


rto34Av4l4 tM .bni« *qi al wlicJa bjI^! -i^l *»«» a'^ 1 loaodq ooMfw^i 


« lAii "OO^qli vl» 3 «UKOiiijq« not»»3« Bd3 avoda budivaJiUir s4T 

f. ■ “ «r 


ai^] »i»'*.l .JS'jviljiaa adj *J» bsjiwljajBj laB-.JMl 008,1 1« Isll&J leaol 


< i 



Ta- 


riff- 


^vlbBiRBioJ »l t-idnaliw »d3 lo 3na?3*q *no 



S' 




30 


RESULTS AND DISCUSS ION 

The results of the water quality survey of the Blacktail, Clark Canyon, 
Little Sage and Basin Creek sample watersheds of the Blacktail Planning Unit 
are summarized ' and briefly discussed below. The basin data for each station 
is found on the Appendix of this volume, 

Blacktail Creek 

The Blacktail Creek sample basin was visited a total of 13 and 13 times 
during the two hydrologic years. The watershed is closed by the Montana 
Department of Fish and Game until mid-May. The upper stations were monitored 
13 and 12 times respectively each year. 

Channel Stability Ratings 

The Lower Blacktail, Upper Blacktail, and Indian Creek stream sections 
were evaluated on August 15, 1976, The portion of Lower Blacktail Creek 
between the lower station and the Beaverhead National Forest fence was rated 
as 'good' (65) (Table 1), approximately a 2.5 mile stream segment above the 
Forest Service fence was rated as 'fair' (77) (Table 2), and Indian Creek 
as 'good' (67) (Table 3). 

Precipitation 

Precipitation was measured at the Upper Blacktail precipitation station 
from May 12 through November 12, 1977 and from June 4 through September 15, 
1978. The general precipitation patterns during these two fiscal years 
are compared to those of the Lima and Lakeview weather stations (Figure 9) . 
The Blacktail station received heavy spring and early summer precipitation 
in 1977, although this pattern is not indicated for 1978. 







.no^neO orfi io y^vruft ylHsup laiaw^sifj'^lo «5£ui«7 srtT 


h 




ff^,' "" - , ■ '.. ‘i_ ■ ^ 

@ "i^- 1 t£F' ^ ^ ^ 

3 inU 8itirtO»l‘? lliii;)i»*iQ Jo »h»dai 9 >«i» >jIcp»Ba 3lwl3^nt>fta hne »^i»8r »l33l4^ 

, '-' >' '' a c 

^1 ^'•^' ''iflP ^ 

rfaii® Jol fcjab nUod 9ifr^*%K)XiMf b»»8}f3«lj|> y f J»i:ap(b 9iA 

.MuXov «I/47 jelbn««{^ »fl3 i»o bMDO^ it 

® -T - 'W^- 


I 


l \ 




■* 








I l a3 ;f9aJ8 

adAXJ £I bWi it3oi fe iipJtaitr awf ntaad »rq»a« Jjtfc^ii:Apia »iiT .• 

Bfl»:$tt^ adJ ’Vd baaoXb «1 bsileTaiw »<«■ ^e-raay aXgOloibyrf ow3 »H$ ^aliub ^ 

’• ~ .' ' ■* . !i' ' ■J, 


?J? 




bsToSlatw *7*1^ aao£3aia '3si^<j*» 9rff [l3fii» boa 

'-^ - "Ui 

,5 '■ ’•* '^'' ’■' Hi>»9 yft»yi3aA<jf«ai aasl'l S^i hft'ft -€1 










A»., ir 
' .11 ^ 




:’•- •«*. ■ 




^3 


agfllaaJ? vJbiMsiyS X»nn»»D 


’ "Ss.; 


'3, 


enoi3<>»»"»Mrl3e at9l''iO wirkftl bnk , UBJ3i3iifff£t9.^qU liwoj sHT 

- 10- 



{7^j(;3fiJ« aawoJ J<4n«>13^9i? adt laii^uA fto b»3»i»lBV9 %**«• 


■ •' -A. 


. '‘1 


■ ^ ''®’" ' f ■rr ^-**1^ V -* r^iV ^ ^ 

b^ JaS idW «3n5ii Jastdt JarioJ )*}? sHi bf.* fR»llfi3«*^-Tav»oi »*f3 r,i>^^iad 

>rt3 weaaJa .'»,lli.' ^.S & , (i_ o£d«i )^ (£^) *boog' an 

^ ^ ^ »S. t ^ 

jlsalO n»/Xfc«r btt* ,(t f‘5V) SlaV a* b»jur »»v 93nBi 9'>lv*is2 3««3o’l 


.. .,lf 


■ * ..0 



.^ fC ^M^£> (\p ‘boog' «fi 


Y3 




"- ' " '■ '■"-' ^1 '>■■'•’ ' ■' Vs- t. L a 

tt6iJia3E >toJ:3a3i48Jt99^q 3'*qqLi adi j» b939»t»i>tf 

■•'' '‘.i^f'U'-: . -4 - . • - . I-. V- . '.«, 




»Si laiimtvoM rfgooidJ £i ysM «t>ii 
V. gri^ la9»ii«8 »HT #8t^# 






. (.g 'f=»ri 3 'e^ «oiy93t«*l b«» aisiiJ »rif f o o.1 bsifcqmao sra 

■■•» S '!* a >s ® i. ’^K 

>0> ^ Jtni i^7i^qi3»'iq y b#yi*9^f^noX3* Ja arrt* 

be^patlwri Jao pi ntsllap 




/- 


31 





5s 


I 

c 

SS 

-f, 



iMch acor* of: <38-Excallant, 39-76-Cood, 77-114- Fair, llVf-Poor. U-2JOO-5 (t 




4 


u 

<0 

ffi VO 

Q> m 
Cl 

0-' — 
D QO 


C>4 

0) 

Ji 

(9 

H 


32 



a 


Om 




> 


fl 


:s 




tMch acora of: <38-Excallant, 39-76-Goo<l, 77-114- Fair, 1154-Foor. U-IMXV-J (4 





Table 3 r-i stream chawel stability field evaluation form Indian Creek 

8/15/76 


4 


33 




I 

a 


s 

A. 



I 

9 ^ 


a 

i 

V 







a 




1 f ■'' 



w. 

s 

kj 


' 0 |» 

tto 

















1976 1977 1978 



(«T) Mi 


& § 
JS 

a <s « 

•H M 

*4 3E 


> 

01 h 
•W 01 
> JS 
01 4-1 

^ rt 
(C 0) 

►J » 


c 

o 


<0 

4-) 

CA 


35 


Stream Discharge 

The staff-discharge rating curves for the Lower Blacktail, Upper Black- 
tail and Indian sampling stations are presented in Figures 10-12. The 
Blacktail Creek gauging sites remained nearly stable during the two sampling 
years. The Indian station, however, experienced both sedimentation and 
modest bank erosion during peak flow periods. 

The 1977 and 1978 annual hydrographs for the Lower Blacktail, Upper 
Blacktail and Indian Creek sampling stations are presented in Figures 13-18. 
Peak flow during 1977 at the Lower Blacktail station apparently occurred in 
late June with an estimated crest stage value of 220 cfs. The lowest 
recorded flow during 1977 was only 18 cfs during late September. The 1978 
year produced slightly earlier, but greater peak flow estimated at 430 cfs in 
early June. The lowest recorded flow for 1978 hydrologic year was 12 cfs 
during the Fall of 1977. The Upper Blacktail station exhibited similar 
patterns. An estimated peak discharge of 167 cfs occurred in early June, 
1977, however, the lowest recorded flow for the year was 13 cfs in November, 
1976. The annual peak flow in 1978 was estimated at 275 in mid-June, while 
the lowest flow was again recorded at 13 cfs for the previous November. 

Peak discharge for Indian reek occurred in early June during both hydrologic 
years, with estimated crest stage values of 5.2 cfs and 7.1 cfs respectively. 
The low flow period occurred from September - November 1977, when discharge 
was less than 0.20 cfs. The differences noted in flow patterns for the 
two hydrologic years are largely attributed to differences in the annual 
precipitation and snow melt patterns. 

The respective annual hydrograph data was used to estimate the annual 
water yields for each station (Table 4). An estimated 22,700 acre feet 
and 30,200 acre feet passed the Lower Blacktail discharge sub-station 



.,An .v„« !.:»??!.. 


„(T .il-Ot >iiwus«f*" b'»jrc^«<( i*1« f’lrolJ*’® •*^’ '’” ”**^Jgj 

- J ^<>T ,«..X 

ibjiL ' ^ 

f- x--« ,Hx..T.artq*x»««’(« *--«■ 



s ,***--- — - - j| .^. K 

»j, ,8^-^TMusM ’H?» <- 

"V ® .. 3 : ._ a„,i!i ,rti :!• wrt'-iyb voi,V'«t,»8 


„l UT1./OW. S^’^■‘T«^8» »rtJ -,., 3 

“ ■‘'tr i- 

~yf ... _ - . . » * 13» K<t.K « ri<*k<k"ff 

ft •' 


Jfi&\rO^ SWl* « J^. Y: • :,s 

"i , 1 .1 if vino «a« ^ 

8T0i >|1JJ .T^><iw« t<|a3^ bI** ^ , 

ai Of ^ je |j^'J*wi l-a9 woll *» * 

- • J t kirr< ft?#!'’ loi wl>Il ItJ'^VIIil "xn 

# 4 Si «f>w :>^8oloib'crf tnt woi i o ^ ^ ^ . 

.• l.._. .. .», rfftl ^»v rfa'4 Aria Sfrl*T«h tl 



ys -«» n^;.r..l8 T.8C,1^ .« AM. .0 U.x r«.X Sn .« .„ _ 

n. ..8,«..alt ArH >«»->«» ■'* 




"iiw^vovi £1 '»' “4“'’"*' ”!“"■' 

l.M« Me. M jr*;. ^-8 U.mn^ _.^ 

SL'iffi '*' ' ' ' ' '.^ 'U, . . I _ ■t'uXi^.ibT 'Ilia 


’ mVt -,.ji al-j £i il$ ^ 

■■» ^y..»i»d4BaVxoM%i<atv^--»q ' i* „ ' ' ’ ' ’ 

• ' ■ . vfaRfl nl netbni *.5 

S4oi03^>( irwd *ai>t xfiB® >1 

5MfT 0 £. 0 ijnb 41 aa^ 


IRTi’ *V^ isniTJ-v -1"^ - 

t*'.? Xiia.'i.- r: "■..' ^ ‘ ■‘‘-- -^t-.'^* ^'•>-''**a« 



■A.^A4.Sfe. *-■' ' . a ^; ■ j- _ 


'jteri?Mfl^. 7. #ii'. ''^ „ Vs.uii'dflBt' '■^‘ '"Jt* , E> kr«*.' * 

— ^ .^ _ m "v':^ 


mil* O w T 

b.,4r^ ...fxo. , - 

w.»xUu. 

, .H^«',r ij *:^ " ' JIksS.^; iiflw „f. '''''®vK®l 

A:A'. >--‘;10fflP’ '*‘- ■ 



Mjn 



Staff Gauge (ft. 


36 



Stream Discharge (cfs) 


Figure 10. Staff-discharge Rating Curve for Lower Blacktail 
Sampling Station. 


— I 

1000 





Staff Gauge (ft. 


37 



Stream Discharge (cfs) 


Figure 11. Staff-discharge Rating Curve for Upper Blacktail 
Sampling Station. 


■'■ ' ^ ,, ijOli-E^ii^ ■ 'V^' , f 





Staff Gauge (ft. 


38 



Stream Discharge (cfs) 


Figure 12. Staff-discharge Rating Curve for Indian Sampling Station. 



a^^l s>mii 3ft»>ty (llfij^ goJ) 5^98.1 t « 4ia .|,s3J 

. ‘^"^^•- *•' 



FIGURE 13 . annual HYDR 3 CRAPH AND SEDIMENT LOADINGS 


) ) 


4 


-4 


c** 


(O 


as 

■X 



I 

4 > 


♦ 


0 


4 


4 


4 


4 


I 


! 

i 


[■ 


I 


I 




o 

X 

tn 


cr 


O 

u 

Q 


t- 

LJ 

O 



• • 

o o 

O LO 

1 /^ 


O 

o 


c 

ir* 

fM 


o 

o 

<N 


in 


c 

ir 


o 


(O 4* as r«S ^ 7* 


•• O X V) •• 




FIGURE 14. ANNUAL HVOROGRAPH AND SEDIMENT LOADINGS 


o 





o 

o 


c 

o 


□ 




•• O by ^ •• 




FIGURE 13. ANNUAL HYORJGRAFH AND SEDIMENT LOADINGS 


1 


i 

i 

I 

I 


4 


I 





□ 







UPPER RLACKTAIL - 1978 




FIGURE 17. annual riyDR3GRA?H AND SEDIMENT LOADINGS 


) 




FIGURE 18. »NNO»L HYDROGPAPH »MD SEDIME*IT LOADINGS 


4 - 



7) f-> « to ^ X 




l: 


0000*05 




Table 4 Estimated Water and Sediment Yields for the Blacktall Sample Basin, 1977-1978. 




45 


U (t> 


c u 

0) *>3 U 





fn 


0 «d 


00 

00 




•H 0) 




o^ 


ro 

•Of-*® 

<U ^ 

W iH 


\r\ 


^3“ 




off 
ac . ) 

r-y 

^3* 

On 

On 

<S 

00 

vO 

c ^ 

• 


• 

• 

• 

• 

3 • 


CN 

fO 

o 


\D 

oi a 

•H 




fM 




DO 

a 

•H •O 
u 0) 
3 j: 

® 

o o 

o o 

o 

o 

o 

o 

JH CO 


m 'O 

in \o 

ON 

Ov 

ON 


•w w 


«— « in 

^ m 

00 

00 

o 

o 

U (U 

u 

» * 

#> •> 

* 


* 

* 

u u 


a> 00 

ON 00 

<n 

en 



c ta 
0 :* 
u 


«N| 

CN *-< 






•o 

4J 








C 







4J 

® 10 ® 








a iH c 

O 

o 

o 

o 


m 

0 

•H a> 0 

00 

NO 

CM 

cn 

cn 

rv 

•H 

•o -H *.» 


m 

00 




4^ 

® >» w 


« 


* 



® 

C/3 


m 


cn 

























4J 







0) 



U.4 







4J 


'O 


o 

o 

o 

o 

o 

O 


0) 

rH 

1 

o 

o 

o 

o 

vO 


0 


0) 



fS 


CM 

m 

NO 

•H 


•H 

• 


* 

9> 

* 




DC 

> 

u 

CM 

o 

vO 




® 



® 

CM 

m 


CM 



u 











u >.■ 


00 

fs. 

CO 


00 

V 4 





pN. 

PN. 

4J 4) 

ON 

Os 

Os 

os 

Os 

ON 







—4 











•H 


•H 


a 



® 


® 


o 



w 

® 

4J 


•H 



Jli 




U 



CJ 

c 

O 

c 

® 




0 


o 

4J 



fH 

•H 


•M 

C/3 

c 


oa 

u 

CQ 

4J 


0 



® 



C 

•w 



4J 

Vi 



4-> 

0 


C/3 

0) 

CO 

•H 

® 




a 


*o 

4J 

s: 

Q 


a 


c 

CO 


hS 


:=> 


M 




i 




46 


during 1977 and 1978. The Upper Blacktall averaged approximately 75 percent 
of the lower station’s yields. Indian Creek generated annual yields of 
560 and 610 acre feet respectively. Each station indicated greater dis- 
charges during 1978, although differences for Indian Creek may be under- 
estimated owing to channel changes at the station site. 

Suspended Sediment 

The annual pattern of sediment concentration for each station by 
hydrologic year is depicted in Figures 13-18. Suspended sediment concentrations 
at the Lower Blacktail water quality sub-station ranged from ^5 ppm at low 
flow to 670 ppm at high flow, those for the Upper station ranged from <5 ppm 
to 585 ppm, and from <5 ppm to 480 ppm for the Indian station. Higher 
suspended sediment values were recorded during the 1978 hydrologic year 
when there were higher discharge values. The relationships between suspended 
sediment and stream discharge for the Blacktail and Indian stations 
were statistically significant, and are presented in Figures 19-21. The 
variability in sediment concentration with stream flow is partially attributed 
to a seasonal effect, specific storm effects, and to the hysteresis effect, 
whereby peak concentrations of suspended sediment generally occur prior to 
peak runoff during the rising stage (Gregory and Walling, 1973, pp. 215-219). 
Annual sediment yields for the sample stations were estimated from respective 
water yield and sediment concentration data (Table 4). Sediment yield data 
for the Lower Blacktail station were generated from suspended sediment 
concentration data obtained at the water quality sub-station No. 8A, but 
using water yield data from the discharge monitoring sub-station No. 8B. 

The Lower and Upper stations produced approximately 1,180 tons and 820 tons 
of suspended sediment respectively during 1977. These yields increased to 
5,360 tons and 3,430 tons for the more active 1978 hydrologic year. Sediment 







‘I. '•*’ j ^ ^ 

ia«o- 39 q iK yi» 3 Miixoiqqft b«j|«i 9 VK I)iiJ 4 'jr 4 ia mqqlj ndT . bn* ^nflrub 


«.'4 


■a 


lo 8bl9!v Ltkunnm j<* 973 nutbnl > .eblnty e n<*l?».i« tnwvl jMi 

Siy^ ' to?- 

i- ■ ' - ’ i ,ir . 


-iilb :ro: 3 B» 9 s f> 3 :}ft 3 Jttai aoi 3 «J 8 d 3 *S r>*yX»vt j':> 9 q« 9 T! 9 *» 1>8 Olb btm (Wi 

' P 4to'. ^ 

^mhnij s^tf yiirtt j<99Tr3 naibtrS lal 8tk»A9iA3:lib rlgu^flM ^dl9t '^nliab arngited^f 

' ^ 5 s ’ ■ 



3 ». Ls-ff* 


i»lia notl«i 8 Intmtd j t >;2 gnlvo bsJAJtlieo 

8 .^-^ 


T 


Sir? 





SIK! 

3 !i<fi«lt:»i^S brcbnsqsuS 

g «■ 

ytf nol36J« d>it9 tol 50wi'ii>9« lo a7%3;j»q t»i/am qrlT^ 

•noiatt^ Jo 0 Of>o 3 3 a»teib*wi biitxtiMqauS . 81 -tl nn^u^lH ai tji^t 3 lj|olo 7 byff 


!S 






!? 


woX-as fPqq £> woti b9j|/ia'\ Q<ilaa3a-dfi>tt -yJlJat.*p 9 aj»w ila tswo? ada a« 


tf 


«q<| €> aioiJ bagiJaa aca^^pJa wfa tuI 9»oria ivoj i d^^t! <i>qq C(^t> o.t wolj 

^ ’ • * f* 

^ ■«( , 

toitoiislB naabffjf arfa to^ «qq 09^ ^ t'lqq ,oqq €8? o3 


snf3 grifyub^b^hjoi^Bt oTjiV ^aaurlbaa baitfraqnua 

KJ 


^ fA 9 y v^q<».(o^byd 

<j 4i ' ^ 

ad aqiifsrtdli^iatj »dT ,«9i4i%v o^Tfwi^alln tadjild 9T9ffsl nsdW 


■>£ 




*> fu^ibal., bn$$ 9<f:J toV ajiTadrMiiyb bon raiwHjho® 

■ 8 :: \ 

9 ifT . 151-^1 aaais’jiT nl »i« bm? vr^apiaeljaa* 9 i 9 v 



J. 4 ’ 


faaibdivjai; yXl«i3t«q aX wct^ twoTJIa daia ©OijanMBanoo i/rawibfqk aX y^MiduViav 

. ■ ' <j: 


, 3 i:;ran 9 aX«ai 94 *yd ada w tea anola iswioirwa* a 03 


D 3 aatiq qw:>a« yXtftilaitsf 3 n^gi 4 s^ 9 » (tabnsqauM '^o enoFlAiJosanios, slaaq ydoiartv 

i ^ ^ 

.q% y^yi f^ntllaV f^iTfc yioj<rjti^> a^iua a/rleii adsf l^owi *•£><» 


•vi'1'^ iqa/sr njci-j'l bt»3ai9J 4<it!» ausw anoti'M* 9lq«fc>a Y'yl ablsXY 3r»9«ibi!M: IsuaiaA 

•lAb Mtftlv' 3 iTjjQrlt> 9 | riXdaT) aisb yoai^ibB# btfa Maty n^sfde 

'' ”' ' ' ■■ ' ■ ■■■*'-^ ' ■ ■ ' 

immlh^ ii^^tiittqbirn (fo-ji irIiJr.'iairai 9'»4>w ontjftja IJ ffi SavoJ 9rl3 io1 ^ 

» -'■?■''' * wm. ■ 

ii*cf .AB yJliaiv «d3 ia lw/jla?do /rol^-f; 1 3^Ta?>4K>^ 

■t: ^ ... ■ . . 



aft 3 idOiV^Jxb' f|ialy -jidaw iptJt 4 *>C j 






i»r.u3 0£9 fc.n« anoj 0Si,J yXaXuitMEj^Tqqf #aol3aa« taqtU hbia qayoJT' aciT 

■ ' -' ji 




03 baflayianX abialy ^VtOi ^niiMb sfliKVdJti^s^&t >n«ari:b^ Xo 

^ ff ai . 4 . i'LXii 


C 2 ~ 


^.iBayiOisuitnbyd 09X5r»* bit A «<toi ,2 

, ,£r. , ' 



il.' C'- ± 


11 ? 

\ 

M 



‘'i 







FIGURE 19. SUSPENDED SEDIMENT VS STREAM DISCHARGE - LOWER PLACtCTAIL 


47 


^ ♦ 


> ! I 


AO 

O' 

c 

♦ • 


o 

o 

o 


I 4^ • 

o ^ 
o 


(/)=>v)a.'^«or»so <Acooi^Xb3Z44 


n 


STREAM DISCHARGE ;CFS 




FIGURE 20, SUSPENDED SEDIMENT VS STREAM DISCHARGF - UPPER BLACKTAIL 



STREAM DISCHARGE :CFS 




FIGURE 21. SUSPENDED SEDIMENT VS STREAM DISCHARGE - INDIAN 


49 


4- 


o 

n 


4- 

I 4 


O 

9 

O 


n 


I I 


4 


(OSV)a.(OZOCdO 


•• 4 ^ I O 


1 


STREAM DISCHARGE :Cr'S 


r 




50 


yields for the Indian station were 31 tons and 75 tons. 

Hydrochemical Parameters 

The concentration of dissolved solids is inversely related to stream 
discharge so that lower concentration occur during periods of high runoff, 
while higher concentrations are found during periods of low summer base flow 
(Gunnerson, 1967; Gregory and Walling, 1973, pp . 219-225). Patterns for 
specific ions, especially the ecologically important ones, often vary from 
this generalization (Likens, et. al., 1977, pp. 74-76). 

Specific conductance for the Lower Blacktail station ranged from a low 
of 208 pmhos during high spring runoff to a high of 363 ^mhos during late 
summer base flow. The Upper Blacktail station exhibited a similar pattern, 
values ranging from 190 jumhos to a high of 357 pmhos. Indian Creek experienced 
greater range in conductivity including values from 282 to 462 umhos. The 
relationships between specific conductance and stream discharge for each 
station were statistically significant and are presented in Figures 22-24. 
Variation in specific conductance with stream discharge is partially 
attributed to seasonal and storm hysteresis effects (Gregory and Walling, 

1973, pp. 219-225). The ranges in ionic concentration for specific ions 
are presented in Table 5. 

Bacteria Levels 

The concentration of fecal and total coliform in streams draining 
rangeland watersheds is directly related to the number of cattle present, 
their access to the stream, the physical and hydrological characteristics 
of the basin, local weather conditions (Kunkle, 1970; Stephensen and Street, 
1978), and the time of day (Kunkle and Meiman, 1968). Seasonal patterns 
include a spring "flushing" effect during the rising stage (Kunkle and 





ffl!»973ii 03^i>^«adi ifXW?»v/rlf»V nwic« i>s»wJ©a8lb !lc 

.» .,1^ ^ -11 «. a 

la/f:) „o« er»:iAii>«Xh ^ 

^ ^ ®. SJ. :.; ' ’^- ., j T ; . . ■^, 

iiMgmu B^vor io^aboXia^^ 8"i’'»«b ija’»niiijt J»t2ra»a«b{> larfgirf ^ 


i” ‘ 

^.a-^oi^K©^ iaaliwfontb^U 

»«=-=^Cl_ t ' ■h li'i 


:fi - 




m 




■^r j. 


1^ 


^3■3lq8^'l^V«»M)i tjlilorjqa 


'■’V! 



''^■'‘ ' '/' .'-■wSl'»*'^>*«;^iJ) TO^j4sa«-i9flsg «id» 

■ 'V v-i#' 'A ^ . . 'V'-'ff^V,.™^ • ■ Si - -^■' ‘ ., TS B 

woi « tfrojT;.>»gi,8^ rtdlia:jMbaSi<iM8Xtf »DflA35ub«oo ollioacE 

M aJ©r anliwb «^«f«u t.)€^ i© rfsM’a o:) Yl<^«Tt »r^iW ^atTtub toifau 80£ 1© 

■' a![fT<iif*'^ '**' ^ >» "vj — ■' 'i' . 


«?»■ 




,qtai3a<i":^bX,ii^8 8 b©l>45rrk®‘‘i(9;i^|je''^ ii»qq« &rfT*^.wotn £»«Arf;*r-ww««k 

,■ .'^ 5j..,f*’ “ f:*? - , V -!?,: ' ■* ? ^ a it a 

,^;4»;m«i-,»q,., #M,3,;B,llMrt .r»fl<<i.«^ »4: *<uJaj-0i>l «c,-,3 inJ^nsi «But*v 




'W' ' ■ , . , ,; ;-;5ir« Jt , , , jc '(5 a '4 

■ *»? W ttwulBV/ ^iiwisJ.oaboOi )»r ?8«at loUMB^tn ■ ■ ' 

■ ■■ "Wj^' ^ ::E fM .. ■ >..' • '.^F^' 

• ■ !!<?>*& iq 2 bA«" «J5(i4«3ft©t»oo3 sJt3lr»a^ ■ ri 

li ' ' 'L^ '-is, ,,. !;«-■ ® .. “^. 




it ai u^imBBTkH jei»lilngj*«^'^iXaa;b.«l 

if, ^ 


L, 


i,5IT4 ' 'PiH I- ' 

r - 3in jwHU'jW 

. i'. ‘ . ' - A' ' *■_ _ 


,SK^ 


«no#a bna •^iMiwpfcaa ©j 'ba^udin^ j« 


a^ «,4^7.artT .(.eiS-^lS .,qq 





.1^ ,i4> «' <f4tr lli b©Jas99:t© 

iito «□■■ 

'■a.- ■■■ ■' 






FIGURE 22. CO»IDUCTIVITV VS SIREAH OISCHARGt - LOWER BLACKTAIL 


J ) J J 


4 





51 


♦ 


j 


1 


! 


I 


i 


!♦ 




« 

* 






1 

1 


I 

I 

i 


I 


1 




♦ 


i 


I 


i 


I 

i 


OD 

V> 

If) 

rvj 

fN 


♦ 


t 

I 


I 


I 


i 


OD 


O' 


4> • 

tr 

r.- 


STREAM DISCHARGE ICFS 





FIGURE 23. COSCiUCTlVirV vs SIREAH DISCHARGE - UPPER bLACKTlIL 



STREAM DISCHARGE ZCFS 



FIGURE 24. CQNDnCTIVITY VS STREAH DISCHARGE - INDIAN 



STREAM DISCHARGE :CFS 




54 


Table 5 Hydrochemical Characteristics of the Blacktail Watershed Sampling 
Stations, 1977-1978. 

Lower Upper 

Blacktail Blacktail Indian 


pH 

7.95 

- 8.28 

7.76 - 

8.23 

7.95 

1 

00 

oo 

o 

Alkalinity (CaCO^) (mg/1) 

130 

- 165 

121 - 

178 

142 

- 178 

Specific Conductance (iimhos) 

208 

- 363 

190 - 

357 

282 

- 462 

Total Dissolved Solids (mg/1) 

135 

- 235 

124 - 

232 

183 

- 300 

Ca (mg/1) 

41 

- 56 

39 - 

55 

52 

- 76 

Mg (mg/1) 

9.7 

- 16 

7.8 - 

15 

8.5 

- 15 

Na (mg/1) 

3.0 

- 4.8 

2.7 - 

5.0 

1.3 

- 2.6 

K (mg/1) 

0.72 

- 1.3 

0.70 - 

1.1 

.60 

- 1.0 

HCO (mg/l) 

159 

- 202 

148 - 

218 

174 

- 217 

SO, (mg/1) 

4 

5 

- 28 

4 - 

26 

14 

- 69 

NH (mg/1) 

<..01 

- .14 

.^.01 - 

(.44) 

/i.Ol 

- .13 

NO^ + NO - N (mg/1) 

PO; (Ortho) -P (mg/1) 

/i 

< .01 

- .17 

.02 - 

. 15 

.02 

- .31 

T 

- .055 

.002 - 

.048 

T 

- .077 







« ^ 

^nl lq«u:S bcidaraiftW <Jni)/asIH »dl »ld»T 



xi»34i><iia i 


*j«wSi 

,,..rifc3^»®tfl 

ly 



.'iTj E; 

A nftXbftl 

'ii«i&S*'<5 ’ i^’''3fr-ste»v ■.%, 

n.’* ''•■•:/'‘fe«*"'J^«' . 

m'Mm ‘ ffl ' 


t" 


i'& 



' '. ,' V •. - ^ - ■...- 


S> ;■ IT- 

'''V)S^>|^'"y' 



w 

a f 



a 3’*’^ 

.do f\ 

d,* £i' ■“'. 

■r.j 




qs 


• Of f ^ CdC - 60 S '0 ' (aodkwi) »i>«fe3!>f»biioD »b5A::>5q8’ 


SS£-%*S^ 


|raiw«‘ o^,| . 04. ’i?’'''W-o -*n..(i 


'■ V. '' 

nV" 




«bUo2 x«3crt’.f W 

8*< . 

'( t\irf) «ia 

illN^) « -!> Jr»M 




55 


Meiman, 1968), with high counts during the low flow summer period, counts 
which often continue for some period after the cattle have been removed 
from the area (Ste|)hens('n and Street, 1978). This seasonal pattern may 
briefly be modified by local storms which produce their own "flushing" 
effect, and which may or may not be followed by a short term dilution period. 

The concentrations of fecal coliform for the Blacktail basin sampling 
stations for the study period are presented in Table 6. Higher values 
occurred during the grazing season, especially during 1977 when there were 
higher livestock concentrations. Maximum fecal coliform levels were 50, 

4, and 23 colonies/100 mis respectively for each station. None of the 
sample coliform counts exceeded the 200 colony/ 100 ml limit of the Montana 
Water Quality Criteria. The lowest values were associated with the spring 
and fall seasons. 

Comments 

The Blacktail Creek basin sustains a high spring discharge owing to 
its mountainous upland watershed. High water yields contribute to naturally 
high sediment yields. Cattle use was moderate during the study period. 
Because of the limited number of samples and the nature of the hydrocheraical 
parameters selected for evaluation, relationships between the water quality 
characteristics of Blacktail and Indian creeks and the Montana Water 


Quality Criteria cannot be addressed. 






3 ' 



tf'Oino)* vrofi \^ls*rfi?|l(it7obVgirT«o!b ^ 

ib ns ^ "''■>■ 

® b*VjjflmT ofssKf^'gVttrf »ifi "S437n b^tisKi owog'^^ioJ sualliott H^i'riw 

m }k '“ ''*■“’ ^ r'* :v..' »f,: ■ " '’ll .Jl; 

tv?'' -, ,': ?® vr.m nibflnb fenoH6'»>f^‘fcJ^/rr . (R^?l:» ,JV»t >?. Urn* n'*«n*rif»j*jJ8) n»Hft *itit wo"il 

* 



r 






'’SpflhlRulV* rrvrt) li^dj ifaiilii » 


i)l... ^ ■* 

MS 




:.S2- 


it»:>of Yd 4d 


, bolibo iio! Jultbj.ffl'JdS itdrfg ^ Yd tmtlfillat 




it- .. 


Ji’ik'-;^ jjnl tqaiM ai^Ad^lAttoistfl «rfj Tiol 'wiotil^ 


■tL dE '^ A4''' 


'<W 


3«i«%' 





’Sk ^ 

o bdT 


1^ 0 


asiwtftv t» 

■ .:vv. 


tea’ll aril to i onoliii* 

" ■ ' ’^' " ■«!?« W-; ■ /'’(f;,. ’i'" 






Aril^lo a«0*d OOlV*aiffoio> LS b'o# »j> 

inia ^0 i* OOl XyaoJ^^ OC^ »43 ^lP3ritK>aa(^ 

■ 'i- ■ "'■'% -vV"” '’'' " ^ ^ R, --'ij. “ 

3 p/j "■ Kyi® BT ^ ‘ 'i- T*' 

3*n)Yq« ads rijJrw bsJ«i'Y»*ii«ft anYlr iwswigY Jewol arft, ^sUauf) S9J*W 

-u ' ■Me'’" t „ W''- '.*'■,* jr 






l-tt:: ■ B 






' .1’ 

,1 ' 


«3 

.1'^ 



,iiao8&ae.v ilal Ua* 

v'.T^'. ■' y 

'', ’■ D fr: 


Hi 
" I V 

^riiwp agiadsaib dl^d llpaiiPAia fwlT 

® ... '■^. , '" 8*; ' j(r -: ^ 



7* « ■ '■ 1, ' ^ ' ‘ *’ 

,yj.iJT|’3va«fl da' 'a'ludtYiriO'P ,«'lb^*riYv tal.gv . bwfg'taiiui. bnKlau 'tjiuo 

w ' ^ ■ 'i^r’e. , **' ■ 4^® ?F''' ’'?i‘ 5i , ® •: > If' •^. 

" v. 4bd/saq y,b^3«. ■’ 

:■■ .r ■"' fiSjm -* "J r 


IV 


ijiuflWlftSfrrWa* 


'&! 


TMlibPtt rfjid ,y 

■ik- l®a BV. K,. - .,;« 

' ■ ■ ' ' l^ij^ K'' 1,1 1 ' ^ 't.*' t ‘4^ i ’ »'- 

Jtijibl'KagtrJfiltfyri iirfa 1-d PsdjriMi adl hriR ifaXlcjidiw io -jddwtrn Uar^ainiil »(11 lo 08u»3»d 

• 'J. '•' ‘ ^’. ' ' ..i'Ji’S'.i '■ ■ v.Wrn 'LJaL. ^ ■ -‘u... .Ai- “» 


•‘ . ''VliXRUJJ’ YR'JCwSiF^nPidJtWiRVd*’ Ta'.l, h^a aSftSSASYiW} 


adhdfts yiilBt/^) 










56 


Table 6 Fecal Coliform Counts (colon ies/ 100 mis) for the BlacktaiJ 
Watershed Sampling Stations, 1977 - 1978. 


Lower Upper 



Blacktail 

Blacktail 

Indian 


1977 

1978 

1977 

1978 

1977 

1978 

April 







May 

^ 1 

2 

^ 1 

^1 

^2 

^ 1 

June 

1 

^ 2 

1 

3 

^ 1 

<1 

July 

51* 

^1 

3 

3 

^1* 


August 

40* 

27* 

2 

^1* 

23* 

2* 

September 

8 

3* 

4 

1* 

^ 2 

4* 

October 

4 


< 4 


^ 2 


November 

2 


1 


^ 2 



* Stock visually present 
(?) Stock presence uncertain 














tt # 




8V 9 1" • T5<* ij' , «n«l lltyja *|«4 i <l«»»l! tuViokj 




OAibnl SI 











^ III 

Vt<?l ‘ 


•) 


Tp»' pw 

* 1 vkl'^ , i; 

■Kf ■ ■^- <51, 

1 ^ 






c. 


, 1 l*f ^ ^ . M* 


■Si,',’-’* ■ V’T; -!' ; 

i;* ® ^ 


i ■ ''ii^ W: :<%;y: 



f '*®^"*^*^**< 




' • ' f .. ''■'' ’'I ! PS 

■' J\?i ' * i I'tf S' 1 * ■' * or^M /i /J! 

A *V' ''Wb!%' ' '.‘■d«-^‘‘ - 


: V'V: 





A''- 


57 


Clark Canyon Creek Basin 

The Clark Canyon Creek sample basin was visited a total of 16 and 18 
times during the two hydrologic years. The Upper Clark Canyon and East Fork 
stations were monitored 15 and 18 times respectively. Sampling problems 
were confined to the East Fork where residual ice, flash flooding, channel 
alteration, and irrigation diversion were intermittently common. The East 
Fork station was moved after the 1977 hydrologic year, but channel instability 
again precluded generating a valid staff-discharge rating curve. Instant 
discharge readings are primarily those directly taken in the field. No 
crest stage readings were obtained. Flash flooding often left the thermometer 
housing perched out of the water. 

Channel Stability Ratings 

The Lower Clark Canyon, Upper Clark Canyon, and East Fork Clark Canyon 
stream segments were evaluated on August 13, 1976. The portion of Clark 
Canyon Creek from the Lower station to the confluence with the East Fork 
was rated as 'fair' (99) Table 7). The Upper Clark Canyon segment extended 
upstream from the East Fork for approximately 2 1/2 miles and was rated as 
'fair' (109) (Table 8). The East Fork Clark Canyon was ranked 'fair' with 
a score of (97) (Table 9). The latter rating may be currently underestimated. 

Precipitation 

Precipitation was measured at the East Fork Clark Canyon precipitation 
station from April 21 through November 10, 1977 and from April 5 to 
September 13, 1978. The general precipitation patterns during these two 
fiscal years are compared to those of the Dillon and Lima weather stations 
(Figure 25). Precipitation peaks are shown for May and September of each 


'•"W -Tl 




^ r^if>n a o ^^ijhriX^ ' ‘ 

'!!tt to '. "n"' ,,®' **^."™ 

” ' “ "■■' “ • i. w 


8/ boa dl Id UJ03 » b^Jiatlv »*v fliead ^Iqoaa ao^^f0 ^toX^ arf'f 


Ja»3 bn» noxnmO jfiaJO ?»qqO s/T .aiadif alj^oXoiKd ow|??»H gnnub ««tlj it 


iV:- 


aw 


*t(doiq goiIq®tt2' JP-X brra i£f b%ic»^i',qo|# feflfoiJaJi® 

® . • % ■ ' ; , 

r^floud:! .gnlbooXl lieai'J Xairblwit oj antw 

a. . ' , 

;iaa3 OflT 1»5i>v (K^lXAginl b<» 


v^iill<i&4«nl^l»r»riBriv4Vd ,-H»v oXioiotbYri »dJ bs»v«a« »»w Aiq% 

^ '•i' njffl x'',^ ‘11 5 ^ \ 

^ .oviu:. l!>ebulDWVqfnl»aH ..^ 

' •' ': „ 3® ' ^ 

^ 0« ,bJ«i'S. wil rti YXx^97lb s^iadaalb 

'S b- 

io39«om9d3 «dJ 5i#i fi9i^o SffXbooll /f*AXt .bwtlttiaa^aw ^gAia JMla 

&* ^ 

tito b»(}ar»q jrfiJttifcxI 






o» 


l‘ i*ii 


,,'{«-^> 'f' 

* ■<. t. 



.W 



-•?> 




*W. 




!«i ’ ;%i •"'"Min II iHI a^nl 1 i i X d a J 0 i ’:>nfl«D 

i^5 ■ ' pin^H *' ■ '■ ^ 

rtoyrtRO dialO ifno3 j»aa l>nu .fivxnv.^ 




jllfiiO lo «o|J!ioq'*'9ffr .dtei ,t4 5«U3 |aiA H»j*i>Uv« a’*ow 






' >*X 

JaAS »|H1 riJltf s>anawn0«i*A/ii da tmlafSa jawo.! wo-rl jlwaaO noqn^' J 

'■’., 'V. •■ ■ ,(/_ ., . ; -'■'* -i 

bsbAaXxa ,<>t>'^(U-a^ taqqy "^WIT .(^ £9?!^ Tf al •* b^4at aaw 

■ V ■■ ■ '<•« 

aa baj*-! Aawf bUfe aafi* SVX 1 xl»i»WRJri^«r?qqi* lo* jIijO^i ada mo'f^ atinaaqu ^ 

■j ‘ ^ it -■-“ 

S rf^iw 'f-JBlt) y-tbl aid«T) 'tlftl* 

■ ■' ' 

^b^aaSi^hATtaJMtu. qil/?4;nr*/b %d j« 993M *rtT vldisT) CX«) a 


iAifc 

JT'''' 


■?h ' ' 

V ;■ 

'*j' 

I' 




i 


■# 






0oUi»lJtqX3i9‘>'I 



fw>X3»1X^Jl^>a^q J?C»\oa;;> j^^afD jlaot ataS i»dl if b#TiwM»-«a a6v rWiiawJlqi '»£y»'l 

■ ' I - Q ^ «£ * in 

g'' bi brifc ^;Pr,of t«d**a^aH if;?u(rtriJ tS it^qA «n/tl noHoaw 

■ ^(.r-.^ -^ •. ^, B Lt ft- 'IS « “ 


‘r;.--'^^ ■ - R '*' " ■■\v '■.^- . 

W3 ye-idi gdWub Ani^lJqq noXJ*iXqi/’«'*q Xai9«aj# uiif ,XI , -3f 


>y 


. ... .. ~ ^ ^ 

f^nol iftia 'Xn(cx 4 bo* nofli^J i‘»ft3 lOrtSRoiia <i4 b«<taqipAy aia 

’'j. ,■’' It/ ‘ ' 


"i‘ 


31. 


Iff 


Av 


3>iui 10 nMii:ii|<& («s»;i<^ ml owodt »i» !o)*o4 .<4S aiojil) 





A 


I 



U ^ 
Q) ro 
^ •— < 
O 

H-) 00 


5 

£ 

z 

o 

H 

< 

3 

5 

U) 

3 

UJ 

(■< 

t: 

•J 


H 

to 

UJ 

§ 

s 


0) 

•H 

XI 

(0 

H 


e 

> 



r*4 

I 

a 



2 

A 

r> 

V 







Table 8 r-i stream ciiannei. stability fieu EVAa'ATiON form Upper Clark Canyon 

8 / 13/76 


4 ~ 



4 - 


R««ch score of: 08~ExcelIent, 39-76 -Good, 77-116- Rslr, 1154«Poor. Rl-iSOO-J (6 


vyiy ffl 






> 






I A.a. ^ , 

. iv, ^ 


ij"* *f 

»r ••» * 

■it U 







7 m‘ 


k! M'* LiiL 


iy« 



SP 


feft-S- 





(V i 


%h\ 

^ 'i,' 


111! Jr 

^ fell 5 

yT-*'- f ■ 


sksi!?!' 



Ifi^ 


" ^L , 

* j ^i. 




c 


4# Ik W l<^ 


8 




J a 


ft ^ V» 

<# » ^ a 

» <a « V 






f 


’5«|5| 

' w \ % 7| <1 




'i 

- •. -’M . 2 i 


^ 7 

5 d • :v 5 









^4 


Si» 




« 




Sf.'sStu.J - ''3 ' ts-^L? 

ii»ir 


!‘M‘ 


i 

m 

Mia 


» 





■•.I! 







4 


c 

o 

>» 

c 

CO 

u 

<0 


u 

O VO 

rs. 

u m 


(0 

5 


o\ 

0 ) 

iH 

CO 

H 



- ■? 


^ • 


4 - 



62 


yc^ar, the iatter peak being reduced each year as the rain gauge had been 
disturbed. Precipation values for the East Fork precipitation station 
apparently exceed those of either of the weather stations 

Stream Discharge 

The staff-discharge rating curves for the Lower Clark Canyon and Upper 
Clark Canyon sampling stations are presented in Figures 26 and 27. The 
channel section at the upper station remained relatively stable throughout 
the sampling period, but the lower station experienced moderate channel 
erosion near the staff. A staff-discharge rating curve was not generated 
for the East Fork station owing to severe channel instability. 

The 1977 and 1978 annual hydrographs for the Clark Canyon Creek sampling 
stations are presented in Figures 28-32. A hydrograph for the East Fork 
for 1977 is not included because of the erratic discharge values caused by 
channel instability, flash flooding, and irrigation diversion. Peak flow 
during 1977 at the Lower Clark Canyon station apparently occurred in early 
to mid-April. An estimated crest stage value of 5.2 cfs in mid-April may 
have been superseded by a higher value during an unusually warm period in 
early April. Lowest flows were recorded in August and September at 0.26 cfs. 
An estimated peak flow in excess of 9.4 cfs occurred during mid-May, 1978, 
which was proceeded by an annual low flow of 0.12 cfs in mid-April. The 
erratic discharge patterns at this station are primarily attributed to the 
widespread irrigation diversion of stream water between the East Fork and 
Lower Clark Canyon stations. An early peak flow of 14 cfs occurred at the 
Upper Clark Canyon station in 1977, however, this value may be overestimated 
owing to residual ice conditions in the sampling reach. A later peak flow 
of 8.7 cfs was noted for mid-June. Lowest recorded flow for the year was 


3 



nyu<f bArf ih^ufig nlm ">rfJ ttft 1)t^Y 

: ■ , '■- .; ^ ^ ^ ; •^' , 

ss i^oiiR^a noJ:i4}l'^l:>9iq ilm*3 3«^ »rfj ibl «^>u^4^^v 

79fl3cmf »il# 1o >o ♦#»«13 W*»aflf» ^ 



Iw • •• '"v ' ■• 'l' , ■ 


'M % 


1i 







79qq0; bra mv^raO i;ifcXO i9W«/J miT rti^ savTfl j dJ|Mtrnii«ib->!Htim» «<{T 

fij t ^ , , '•'■^ ■■ ' 

a«fl ,52 br.» 3»i»'jjill a± b*Jb*ra'tq Hm i|/»ta.‘at« |^«i Jrwnttf, ttoqiwl# 


'iij 


,#.. -S 


v 


jo8<t^4JW5rf'* b'^rtt'fcrtvi n^t:<a3'» **aqqf» 

' «. , , ^ T. • r ^ ^ '4,, 

i3«9‘jtK« tttanrtlihwipea imilalll ^Wo|r w*a^3tnf ^Bklsfou^ aiij 





i*v(.- 


V',' V . >5 p. , " 3 

l><b»iafi»V ?<>*** •«-w ifYilSai A aitfi^tasci rrtiwtaoTo 

St '■ ll 

' l^<WTaWt> »>3avaa 

• ' -'}.> ^ 1(1 ..L ,tSf, , . • 'S 

jtntiqnaa jIs'^kO rtn^rtip if^aJia^j loi af<qa,^aothy:<t launnn bns, #rtt 

■,fl ■ '‘*->' ■ ' ' 

' j *1*3 9<l2 > UqM'ij^^bvfJ A <S£<~8S- Cl I ft’^3n»in>9T>q -iTa 

^ ■ : ,, . - . " 'm . 

y4 raofAV jl3»Y7o‘*wi3 Iq ^i-m»f9’J bbbbiaiuit ftf 

wr^i vffbiat'bvXb tTbl 3ASjL 111 k(m rf^»wn j,Y^XiHA3ay|i f aftlttArtl 

<- ' ' ' ' . 

“* . ■/’ . W ' y* ' ‘ ’“* 

•:^(fii*i SiC V> »ur*v 9{^l« M *J jtiJiA-W^ OJ 

. .'■ ■f." ' ' ■ V j;ffl.« 


oA b»>i't«».i vtr.v itli^uavnn ttk VqJsv i -ad •svii.l „ '# 

' ./ '■ a ' .".- ■ 

•ii 2 ?4ra 3®4/ii«’A ill ribjbw 4ri*>pJ 1 .lIiijA V;I^aa 

. ; ,...:\*- ( ’ • '■ e: ^ 

■'■ V’ •, ^’.' Jj(-’ •■ , . - 

btfiiwaio all? A.4 *i«(aD>tai nl uo{% «£ii)q b»Jtu*|1a4 nh 
''','*’ -^TT/V ••H tl.Q ici woi't -Vffl ^ 

'' . v.^ ik' '' "■' ^ ^ 

V; vV. ‘ „ r‘ 

'‘'"■.Tift? t»3; ■ vi-tf'iwHq^irta nol2i(R.*ii alHl 3» 

^ .!<■ ' 




v <. 




bra i(fV^ 3i^ /»• »«w aft-jns* rr^iaivirlb qiaiiayin 1 i»ratqat*bi.w 

r ■ "'' ^ ^ ’-'" ii u ■" '*-'' ■ ’ ’ 

is ‘jgtis smw\'y'v “■ ‘St* '“*"' L: ’:‘ 



AW.' i ® ■»'<»^'iii', v' ’ ' ■': 

voM A .rf‘tAi»T tanq*ra mtp%i11t>nxri aAl jAubJiijai i^i 

'1/ ^ OT '-^L' ' D (t > jt- jilAjjk' , ' a 

fftWf^taaiSfsrb ‘‘’ipl vaoii babioia-i 34«*«ji jot^b«3w »aw «^*5 v.fl 




Staff gauge (ft)* 


63 



Stream Discharge (cfs) 


Figure 26. Staff-discharge Rating Curve for Lower Clark Canyon 
Sampling Station. 


* Owing to actual negative readings, 1.0 feet must be added to each 
recorded value when using this rating curve. 



• '3* '' 


\i\/' ry'' 

■ ■•■■■;>.,„ ..V 


'•V ■'.■ 

’.PliSr ' 

. ■ ♦ . Wifi w V 


'^0 t»ui>j io2^4tn>>a gdiun .^£ sxugi^ 




vv. 


V r/^-w n« ^ 

*tt£' 

'i£. 

,j^ , ' ;V- (Jt 

i!»Vl ^t>j|(»a OJ ^ 



■ 7 ■ t i . 

i' . .4 # >'1‘*'*'| ' 

^■1 -ijU.* ^%9* ■* 

iS , 


3 , l>.»bl><k ad iatflB jaaJ 0*1 «< 

,^ynu9 4|r!i J*!i .«it» ti»(hf aiiibv .j# ^ 







ara^i ‘8?fa«« (li:)» 


Staff Gauge (ft. 


64 



Stream Discharge (cfs) 


Figure 27. 


Staf f-discharge Rating Curve for Clark Canyon 
Sampling Station. 



FIGURE 28. ».NNUAL HYORaGRAPH AND SEDIMENT LOADINGS 


o 


65 


o 

o 

9 


4/)Oioa.u3aeocaJo cobjo^: 


o 

9 


O 

O 

O 

O 


'I i 






+• 


Oh-tV)Ux<ttOto 


□ 


5uOJ»« * '■ * 7 j A • * 7S.0WV.0 




FIGURE 29. ANNUAL HYDRDGaAPH AND SEDIMENT LOADINGS 




1 


FIGURE 30. annual HY0R3GRAPH AND SfOIHENl LOADINGS 


4 


■h 



OCT 1 : ; ore ; ; FEB : : APR : ; jun : : aug : SEP ■>0 



FIGURE 31. *NNUAL HYDR3GRAPH AKD SEDIMENT LOADINGS 



o.coeo** T TT ♦ 0.0000 



EAST FOfiK CLAkH CANVCN - I'ila 



** oc ^ r OA^(nOZ««^9tt3 


•• U k ;o •• 



70 


0.69 cfs in mid-September. Peak flow in 1978 arrived during mid-May with 
an estimated 20 cfs, while the annual lowest flow was recorded at 0.76 cfs 
the precocdlng November. Discharge values at the initial Hast F(^rk sampling 
station ranged f rom peak flow that would have been well in excess of 2 cfs 
in early April to a trickle in July and August. Peak recorded flow for the 
East Fork station for 1978 at its new location was 2.6 cfs in mid-May, 
while the low annual flow of 0.10 cfs occurred in late June. The differences 
noted in flow patterns for the two hydrologic years are largely attributed 
to differences in the annual precipitation patterns, although the East Fork 
station responded specifically to individual storm periods. 

The respective annual hydrograph data were used to estimate the annual 
water yields for each station (Table 10). In both years, the estimated yield 
for the Lower Clark Canyon station was slightly below that of the Upper 
station owing to largescale irrigation diversions. Yields for the two year 
study period were comparable, ranging from 980 acre feet to 1,250 acre feet. 
Discharge for one large storm period in May, 1978 may have overestimated 
the 250 acre feet water yield figure for the East Fork station. 

Suspended Sediment 

The annual patterns of sediment concentration for each station by 
hydrologic year are depicted in Figures 28-32. Suspended sediment concentra- 
tions at the Lower Clark Canyon station ranged from 7 ppm at low flow to 
744 ppm at high flow, the Upper station from 7 ppm to 525 ppm, while the 
East Fork station values extended from 15 ppm to 11,500 ppm. Higher 
suspended sediment values were recorded during the 1978 hydrologic year 
when there were higher discharge values. The relationships between 
suspended sediment and stream discharge for Lower Clark Canyon and Upper 
Clark Canyon were statistically significant, and are presented in Figures 


OK 


5" '9* 

ri3lw jniiuli Ia*vH*» 6 BT^T nl woll ala Pdr( 


5'! •*' '-■ "*■ 

«l3 ()^.0 )« bsbio'jttt Aftw woil ^awifO.f luunnt 9f1i allHu 0$ ba^iwlita aA 

..r- T- ’-a 


Bi 



’ ^«n<jflui« JijftS l»ij li(»K*»rft Jh afluilwy fiiniirf.'iulU •irfl 


of . *♦ 

ie^rv S 3io 9397X9 nl flw *»vM hJutnt iftili vbii xMMt moj } b'.*gfre.i noi:JMJa 


aHJ Jo't woXi bobio^ait ilasM «4««guA bna aX » o1 liiqA a.r 

'_, -•• ,^v * -■.--*-*!« lie '■ 7 

r ■® %■ ' ■ ' 

.fisK-bi^ ftX #!!} d,S saw oai^B^I /tottmJti /i</t 3ita3 

* , , " I V’ 



i!t*-jfj!ii9l^lh s.'fT «9nut 93«i oJ bflUjiuaao alu 01.6 vroH Ifiuaan 'wf uds eliiB# 




0 V 


m 




i 'It; -'5i 

^ hi»3judi*r|^a oXsoXoibYii ow7 add toI anaajltaq woX^ /}X baioa 


(di 


>1^0^ j«a3 aaooaii^TIll* oi 

'V' ... jfn ■ ■ ^ . ■ ^ ‘X (4k 


ill 






3i ■ * . ' i, - 

I&’ ,9b0j7»q tnoia LBvbtvIkal oi babacxfAat notJiun 




Caunax 9(i7 BiumiJHQ o: hama ^txyn eJab riq^igoib^H tximtix SifT 


b.*»lv balanl^aa oJ i(0X »((Jm 7) ctoiiajt ri-jxa'yai abXaiy T»3m# 

a: ^ 


arfJ 3ji.iW woXad rtoyrw^. ahnaiO mwoinwli 


f^. 


’TB9Y owd 3rii toi «bX72Y .sooXikiavXb nolafigXtiJ i>X6t)a»|)»Ki inlwo nol3«7«' 
ra _ «i o 


a 


.Jail 0?S*i 04 4^1 97.*ia OB? «o-jl jtitlgaai^ Biaw bnliyq xbtua 

BE,, 


t 5,. 01 

ba»3R«ita^iBv*j ‘*vad .yaM nJ £»lt>4« :i<3^i?X »8ted'>«>i«E' 


'V* f ' ^ 1 

.rtoi ’4.i6??%#la K>) «7ttf4l blaJy laicw lAal atic, O^S odj 



4a4tBXbog bsb<7«<]fCtiB v 


^ tt^i I 3 m9B fl.'vaa ^ol jcfut4&Tj^r>no9 to. a<f*»4jbq lauirntB i»dT 

3 


s Z' 

3naflrXlViaa b^bnaqaoS .Jf-BS oli^buJjlqab bib :>lj?oX»)7byrf 


a^' 


04 woil woX Sfi'^dtqq 1 iitoyS bogna*) oouaia rta>yin^. 7?*wri./ ^3 ja 

.. ff D 


iiliiw .ntfqq ?i<! 04 mqq J Brcril itiaijr,3a 7aqqt^ .woXl dgirt .ib mqg iSAT 




j\ ,-v 


7iMiglil '"’.(nq« f)0B>lX liJ inqq £f ntil:3k3jii3ni./H j?»tta 

;-,5“ . - ■ ' a '- 


*' 


itnax oX^fo7Xiy4^8’v®'i iriiJ goi.yub aWloy 4*i9«±b»s bshoiiTaift^ / 


. i? 


'ft , '-.. ...W. 

riB^uf^ad *<}Xrlan'^l T-aX-tT iMfT .n-ivXav 9g7jwli«lb*,7artg4«X Arartl ir»tiw 

'■■"■. |, a. -•‘■X-' ® 4*'' . t.. 

l<»q,qO boa jiwoJpjot b*iB bkthi^qaue 


‘f 


ooiuaXl nl baJnsayTrq flt» brts. , inoo^l Inal® 

O i#6'- 


sl lalanja ®74rw novn«r' jIimIO 



>‘iv 


■r- 


4fi 




ilj. ^ .1 



Table 10 Estimated Water and Sediment Yields for the Clark Canyon Sample Basin, 1977 - 1978. 


A 


71 


U 1.1 

a u 


0) 73 <« 

<A 





a -H 

O' 


a\ 

CM 

1 

.H U 09 

• 

• 

• 

• 

1 

■O -H jD 

o> 


a> 


o 

lU >- .H 


•4* 

CM 


o 

CO ^ 





iri 



vO 00 O' 

CM cv( 


I o 

I 00 


-H CM 


a» ^ 

U .C oo 


3 

c/) 

Oi 

o 

o 

O 

O 

1 O 



l-i 

cA 

cA 

00 

00 

1 \0 

•H 

a; 

O 



CA 

CA 


u 


CO 

•> 

•> 

0> 



u 

<9 

Smu' 

os 

os 

lA 

lA 



C 3 
o 


u 


73 u 

01 c 

u V 
n s 
a -H 

•H 73 
U Qi 
CO CO 
b3 


•O 09 
rH C 
0 ) o 

•ri U 


oo 

CM 

CM 


QO <S 


I o 

i ^ 


0) u 

4J *0 «i-l 

§ a» ^ 
u 0) I 
•H CO -H 
V 3 >M • 
CO o 

U3 (0 


o o 

00 r>i 

O 


o 

CM 


< 

Z 


o 

lA 

CM 


M 

W 


00 

4J 

CO 



cQ 

Oj 

os 

Os 


>» 





00 

r** 

00 


r«. 

r>». 


a> 

os 

o» 

os 







c 

c 

.9^ C 


o 

0 

M O 


•H 

.H 

CO -H 


4J 

4J 

r-l 4J 


M CO 

.9C CO 

U CO 


Wl 4J 

1.1 u 

4J 


CO CO 

CO CO 

.9^ CO 


rM 

rH 

Wi 


u c 

CJ c 

o e 


o 

o 

b O 

lU 

u >> 

u >> 

Ss 

a 

01 c 

<u e 

u C 

CO 

3 CO 

a. CO 

09 CO 

z 

5"^ 

o. u 

3 

2 


y 




72 


3'3 and 34. The suspended sediment vs discharge relationship (Figure 35) 
for the East Fork station for 1978 was not significant, primarily owing to 
the variability of the data and the small sample size. This variability in 
sediment concentration with stream flow is partially attributed to a seasonal 
effect, specific storm effects, and especially to the hysteresis effect, 
whereby peak concentrations of suspended sediment generally occur prior to 
peak runoff during the rising stage (Gregory and Walling, 1973, pp. 215-219). 
Annual sediment yields for those sample stations were estimated from respective 
water yield and sediment concentration data (Table 10) . The Lower and Upper 
stations produced approximately 48 tons and 81 tons of suspended sediment 
respectively during 1977. These yields were Increased to 227 tons and 127 
tons for the more active 1978 hydrologic year. The estimated suspended 
sediment yield of 250 tons for the East Fork is an approximation based on 
an adjusted figure for the storm period encompassing May 9, 1978. 

Hydrochemical Parameters 

The concentration of dissolved solids is inversely related to stream 
discharge so that lower concentrations occur during periods of high runoff, 
while higher concentrations are found during periods of low summer base 
flow (Gunnerson, 1967; Gregory and Walling, 1973, pp. 219-225). Patterns 
for specific ions, especially the ecologically important ones, often varv 
from this generalization (Likens, et al., 1977, pp . 74-76). 

Specific conductance for the Lower Clark Canyon station ranged from a 
low of 284 ^mhos during high spring runoff to a high of 515 ^imhos during 
late summer base flow. The Upper Clark Canyon station exhibited a much 
greater seasonal variation, values ranging from 205 ;imhos to a high of 427 
;jmhos, while the East Fork station ranged from 178 pmhos to 600 /imhos. 


(iC d-sirgit) nv JnowJtb** bviiir^qiMJii «riT .>f l>rtt tf 


4.i 03 8»1 wo yili eatliq , joftsi )insi« 3on «aw^ BT9i -joV nol: jJfo'l jkrJL wrff -jol 

% o 

nl x^Htdaitav utriTai .asla 9lq«&e X1 ao« ads bn« Bitb 9iiJ io riJtlXdAi'tftV adl 

■•sa -“■■■:- zi, 


& 




oi odJndiTjqe ^Xlaiitaq al w'oli uraaiia rfilw ooXsat inaaiXbaa 
i9o:t^3d a.ltaai«3axd adj 03 Yll«t<'>aq«» «to3« iXIIoma 

'A>- ••ITT' s-.'Jt* II 

•ife- ■'it T- » 

03 idliq Du'^au JnsaJtboa bobrraqeutt to aoa3383 3rv93fK»o i#n»q vd^rgdw 

- Tl 

.qq ^staOliXfiW bn* »|j*3* gntait adJ gffXiOfc iloouT 4a*q 

1'- *' ® ^ 

avijootfao-j •oi’l ba^miflJa** tiiw eooiitfT* »lq»»» Oandi loi ab/aiv a/rswibae XpunitA < 

- ' a ' 

isqq'M bne qawoJ odT ^(,t(Oi aldsT) bSaIi ina-Wioa 3fH»nXb^ ^fart* bXalx laJaw 

' ■ o 

dofiislbae !>!9f^n^♦q^lua ^o «oo3 -IS bna »m»3 8A tXoJ&vXxoiqqfi boaobo-rq ii<ioX3A3* 


«s 




ban *«o3 T£S 03 bo*»«a3ni a-rsw abl«}x^^ot»flt' jjiilTn/li Yt*vi3>9qeat 




b}»$n»qi3ue boj£Al3ft9“ar{T ^•Igoloiibxd’ avi^* af^na %rI1 tol BfK>3 

’ >*s ' P3 *® 

no b^aad noilfc-ialx^qq* «» ai 3**8 odj yoI anoi Io b/«jhc 


a 



.8TPI g/il««aq<»o»(T» botiaq !>rt3 tol oiugll b«>3iu<tbfi ob 




Fi: 


I?' 


%393af«nat l*')lji?Wk>0'rbxlt 


o3 sil sblSo» boviv^^uiib «Olt3or3f»»ono3 udT 




dg|i< lo »botto^ sttXitfb .^o-^o anaX inYXfioonoo t»woJ I*ri3 n* s^^iaH^tb 

7 ■,■ ' IJ- 

/• ■4- -/A 

aeed ToaoiM# 4»oi lo bbolxsq gnJtiub bnuct i»ia itnot3« ua^oon*) 'tarfgid aZtdw 

1. 

.qq 4gnin«lif bn* v*iog<it3 ;TdVt , noaY»«nt/Qjf woH 

Y3»V dojito 3(TB3*io<|tBi t»d3 x^^oi->oq^9i ,«0Q1 ^l^i-yoqa 3ol 

'■ , , '.'if ". .,, 

■^' *(dt-/*V *,qq , .1* li jsa^CftS'H 839004 »Xd3 UDoYl 


•d 


ilpf 





■® ' ■ . „, ' V . 

A b^4f*A7'trrol'3qa!b noxobij dialD i^woJ jlbniiiJoi/bfiou 

.' n.SK' ' ^ U *"- 

S«fit7t»b ao^lflI^ $IS io‘ dfJid « QJ ^lonuY gnHq«|dDXd gnJMJb «orteu‘Adi, wot 
M ^ ’^: (,) A 

ntiiiajfi nrt«naO,jltA/0 loqqU »rfT «wol) osfrd toowioJi oint 

« '■ 15^ 0 . ' 

IJ .? ,??»' 

'fli^ Xo rfgJH r. ol’^wbdfw^ COS «o7l |flJgoBT caoXsv . cmliat 3 «v / *0.0^*911 

O' -.• * ' ,.» 

K» . -.1 '^' 




J!, KL 


FIGURE 33. SUSPENDED SEDIMENT VS STREAM DISCHARGE - LOWER CLARK CANYON 


I 


73 


♦ 

t ♦ 

o 

o 

o 

o 

• 

o 

o 

e 


r 


« « ♦ 


I ! 


**a.a.z** 




♦ • 

o 


♦ • 
♦ I o 


STREAM DISCHARGE :CFS 




FIGURE 34. SUSPENDED SEDIMENT VS STREAM DISCHARGE - UPPER CLARK CANYON 



STREAM DISCHARGE tCFS 



FIGURE 35. SUSPENDED SEDIMENT ¥S STREAM DISCHARGE - EAST FORK CLARK CAh^uH 


4 


-h 


l : 


I 

. I 

I 

ji 

I 

4 - 

II 


! I 

'! 

!i 

ii 

I 

I 

I 

. I 
I 
I 

i4 

il 

t I 

I! 

• 

; I 
I 
I 

4 


1 




I 


i 

I 

I 


I 


1 

i 

! 

i 




I 

I 


> ) j ) 




u- 

o 

a 












• • 4 I 

o 

c 

o 

c 


I 


i 


1 

1 


STRFAM DISCHARGE :CFS 




76 


The relationships between specific conductance and stream discharge for 
each station were statistically significant and are presented in Figures 
36-38. Variation in specific conductance with stream discharge is partially 
attributed to seasonal and storm hysteresis effects (Gregory and Walling, 

1973, pp. 219-225). The ranges in ionic concentration for specific ions are 
presented in Table 11. 

Bacteria Levels 

The concentration of fecal and total coliform in streams draining range- 
land watersheds is directly related to the number of cattle present, their 
access to the stream, the physical and hydrological characteristics of the 
basin, local weather conditions (Kunkle, 1970; Stephensen and Street, 1978), 
and the time of day (Kunkle and Meiman, 1968). Seasonal patterns include 
a spring "flushing" effect during the rising stage (Kunkle and Meiman, 

1968), with high counts during the low flow summer period, counts which 
often continue for some period after the cattle have been removed from the 
area (Stephensen and Street, 1978). This seasonal pattern may briefly be 
modified by local storms which produce their own "flushing" effect, and 
which may or may not be followed by a short term dilution period. 

The concentrations of fecal coliform for the Clark Canyon Creek sampling 
stations for the study period are presented in Table 12 . Higher values 
generally occurred during the grazing season, especially at the Lower and 
Upper stations with the known present of livestock. The data indicate that 
livestock were present in the East Fork watershed. Maximum fecal coliform 
levels were 409, 387, and TNTC colonies/100 mis respectively for each station. 
Approximately 8 percent of the sample colonies counts in Lower Clark Canyon, 

8 percent in Upper Clark Canyon, and 33 percent in the East Fork exceeded 






^■0 ^ V. ^ w- ■•'-'«■ ■' -..v,- 

-»8‘j4ti,i'jelb iiiGi>*iJa bn* »i>n*3Dubno3 n*»w:fon g<fflif«irK)^t JKilJt 


..lilt' 


aoiuaiH'nl bslxigaaiq »T*"tvn* ingoUt oiiVxUolialiBJ* -nw ^ 

. ^ ^ *1 ^ „ 
^linljisq^gi 9giitd:>glb aiftiia .dil^r »3ii»33bbii03 ni ocij^ai:i®V .8£-df 

.ijntJlnW (./IB ({iog»tO) beir oj b«.iidJi«B ^ 


r}^ 


.k!#4i 




•#ift «noi •( 

|^|^M|||h^ 'Ji ■^'" .'"'^ ' 'i q 


sr 


(es^-^is ,qq ,£^ei 



ar^ 


s 


.11 »fdBT nl b?»3naa93q 



elavaJ abiikiasS Ir 


'■ 



^msmm . 

fiir-^an&Tt adl^iiitb #«B%i« bi an^lloo J^aioi bff# H noiais^r i^»:>noD »ffr“ 

■ " ■% ■ffi' r?:- • ^ 

?■ Tli ' ' , 'P^vi ^ ® ■■ i*' 

, i/iaa,9iq dl33&3^^o 'a«<i«ub »rfj o3 , al* abofl8T»3*%^ hnal 




).na. 



add ip BP*1iit'f4‘P»ei»flP i®o>aoJbiibtrtlbb*- X63la^i4p/ad3 ,<a«*iT« »wfl P4 aaaoaa^ _a .>ij 

'® ' ^ 1 ' '^ C, 5*^31 ■'■' *■ ;,> “» ^ 

% \^ (8TQ/ ' Jiwt^albwa nsabadqa^fe i0t^lw,»Uf.nX)'^aiiPJ:3ibno.J, i»3o4 .niand ' 

‘ 'F ' ■ . ■ • ' f,. ,v->4t ' H B 

:r.,'\ '& 4 ^ 

'■^k 9l>wX4«X 8CiP31#»q £BrfO*aaaP*. fBd81 ,njMl»K’iVfljs ^ab \o waU aHi hwq 

;s^T I r^> ■ ■ iiq •’-- ■ . - -*1- _. .ji-.. '. ^ 


, i ■•'»=■.„■)« ’*'■^.584 ■® 'ff r ^ M , 

‘■" vSiar'te /.,. ,»io*i9M bno Bi^nuJl)., »s»J« gnieti Sm g«iairt> i#*!!® "sitMuuli" *ntTii« • ■ 

XA/:^ ^ »*'- . ■.*: , ■^'‘ V. 


1/ < i 


'4-V'l%y4 

'%'■ diirlw aibWa ,ln>i39q4fw«iwi*« woiV i*«l »rt3 uniiob ajnnPP d^id rbiw J - 

'f'’T *^vvi]9*’ 4.' 

' ■'* ’■ ill .-J ^ B 5^ * ''T.'* . B J -a - ^ 

^ •iW.)| ffictl B*srVaiD^t «p9^i ^ofttlfro^ ndJlo * 

|iSP'®ili,Yll®l'1< llm *irfT .(IKp ,'l»»®3a' biK rt®an»4q»3a) r®1» 

' 4 '.' •> '•»>'•' ,V, 

-bn* g J iwo' liftdj 

ymvkA®.-'^ ',. " 






i"- ■®L'-.7^“’ V ■ ^*4 ' 'V V ''* ' «» 

i. . - .4v , . ' • ;■ X ■' fif.®' •■*■' I 1>.' " ^ ^ ^ 


rtPidpltb.mPt diorle 
‘i" 


aonboiq dsXirht anntpje ,BiaooX j^d 'uaJUijiat '4jbr 

. Iv>5 ' .v l ' ■ •■' ■'"■ » ■ V’S 

i| v<d bwp'iXpf *d 3on Y*« 70 YBin ddidv ' ‘flj 


» 




' vrfV. ' .■^- i' . 7U A,, ,.,«», . >: V<S'' ■ -,, III — 'i ';■.! 

iif ;twl|iH^®^fSr.i»Xd44' iir.>93a«a9<q Bia.bolr*^ Y>>«3« i*d3 i*il snca tu3i? '• 


\- 

... «- ^ ■■■®’ 

bwi fflrrplilop 1*3*1 Jlo &e(jtit>^7n&‘iKuj odT 

as; ;«» li' J ■' ' ■ '■' . 





*. fi® 




1' 








e: 




^ia 




^^l;»cii*' g,n,U*T;|, -iriit %ffi^ab b^siv^tao ylLni'sm^ ,. 

!t; V9 ^ ■ 


^ 3w9**»tq m^*' 9d3 *rt3iv anol-jaan -rapiitJ 




. f?<VI 


fJ*TPl.l4po iiiqiaixafti -.bo-daipsiiw 3 j»*I #dif flX Jn-ansiq p^»w if j^JM^vil 


I# oil 


.i 




■<«wi».j.,;. i?s,.,,.5l 4*i«..„.iJ« . .. • . . 



II i “ ’«! J.' y .Z ' 51, ^ .J» 

Vlnivia®spr '’ ' '■ 

ti' 


d-jalO “sappplf aJt g30*3Y-*p 6 








FIGURE 36. CONDUCTIVITY VS STREAM DISCHARGE - LOWER CLARK CANYON 


1 

I 


77 



••3arxOW~ 



□ 


STREAM DISCHARGE !CFS 


If 


FIGUHE 37. CONDUCTIVITY VS STREA'< DISCHARGE - UPP'.R CLARK CANYON 


I 


t 


78 


I 




i 1 


••=»zxOM 


l: 


& 

♦ • 


♦ • 

o 


♦ • 
♦ I •> 


STREAM DISCHARGE !CFS 





FIGURE 38. CUNDUCTIVITY VS SIREA'4 DISCHARGE > EAST FURK CLARK CANYON 






4 


4 - 


1 


j 

I 


o 

sr, 

O 

u 

o 

o 


♦ 



i 


I 


j 

! 

I 

I 

t 

j 

i 

i 

I 





O n 15 Q 3 O I 


•• rj s: X T tn 


n 


STREAM DISCHARGE :CrS: 



80 


Table 11 Ranges in Hydrocheralcal Parameters for the Clark Canyon Creek 
Sampling Stations, 1977 - 1978. 


Lower 

Clark Canyon 


Upper 

Clark Canyon 


East Fork 
Clark Canyon 


pH 

7.70 - 

8.27 

7.76 - 

8.20 

7.70 

- 8.37 

Alkalinity (CaCO^) (mg/1) 

148 - 

275 

111 - 

214 

85 

- 281 

Specific Conductance (umhos) 

284 - 

515 

205 - 

427 

178 

- 600 

Total Dissolved Solids (mg/1) 

185 - 

335 

133 - 

278 

116 

- 390 

Ca (mg/1) 

37 - 

92 

24 - 

78 

19 

- 64 

Mg (mg/1) 

4.1 - 

8.4 

3.3 - 

7.4 

2.7 

- 11 

Na (mg/1) 

17 - 

31 

10 - 

19 

15 

- 58 

K (mg/1) 

1.4 - 

5.6 

1.3 - 

3.5 

2.9 

- 8.5 

HCO (mg/1) 

178 - 

336 

136 - 

260 

102 

- 343 

SO^-^ (mg/1) 

4 - 

12 

3 - 

9 

5 

- 32 

NH (mg/1) 

< .01 - 

. 14 

< .01 - 

.25 

<• .01 

- .13 

NO^ + NO - N (mg/1) 

PO, (Ortho) -P (mg/1) 

< .01 - 

. 10 

.02 - 

.40 

<.01 

- .08 

.001 - 

.055 

.018 - 

.053 

.030 

- .108 


Table 12 Fecal Coliform Counts (colonies 100/mls) for the Clark Canyon 
Creek Sampling Stations, 1977 - 1978. 



Lower Clark Canyon 

Upper Clark Canyon 

East Fork 
Clark Canyon 


1977 

1978 

1977 

1978 

1977 1978 

April 

— 


— 


— 

May 

^12 

^ 1 

< 2 

1 

4(?) 3 

June 

8(?) 

409* 

8(?) 

9 

8(?) 28(?) 

July 

14* 

100(?) 

-ti 2 * 

387* 

940(?) 267(?) 

August 

2* 

83(?) 

8(?) 

33* 

140(?) 303(?) 

September 

143* 

87(?) 

14* 

9(?) 

TNTC(?) 33(?) 

October 

51* 


7(?) 


5* 

November 

58* 


17(?) 


65* 


* Stock visually present. 
(?) Stock presence uncertain. 


82 


the 200 colony/100 ml limit of the Montana Water Quality Criteria. Low 
values were associated with the spring season. 


Comments 

* While the Upper Clark Canyon station reflects characteristic hydrologic 
patterns, the Lower and East Fork stations reflect contrasting patterns. 

The Lower station is strongly Influenced by the effects of irrigation 
diversion and several elevated sediment concentrations may be attributed 

to the presence of livestock. The East Fork of Clark Canyon is steep and 
faces to the southwest. It is prone to rapid runoff during storm periods 
or during early spring melt. The channel is unstable and is constantly 
altering its morphonetry. This small stream carries disproportionally 
large quantities of suspended sediment as well as bed load. Because of the 

* limited number of samples taken and the nature of the hydrochemical parameters 
evaluated, relationships between the water quality characteristics of 

Clark Canyon Creek and the Montana Water Quality Criteria cannot be addressed. 

Little Sage Creek Basin 

The Little Sage Creek sample basin was visited a total of 16 and 17 
times during the two hydrologic years. There were no specific accessibility 
or sampling problems. 

Channel Stability Ratings 

The Little Sage Creek stream section was evaluated on August 15, 1976. 
That portion of Little Sage Creek upstream from the sampling station for 
approximately 4 1/2 miles was rated as 'good' (67) (Tablel3). 


J 


Table 13 R-i stream ciiannei, stability fieu evaluation form Little Sage 

8 / 15/76 


4 


t 


83 



i 

r4 

I 

a • 







r- 

I 


u 

& 

<& 

fn 

V 


• 

o 

u 








84 


Precipitation 

Precipitation was measured at the Little Sage precipitation station 
from April 21 through November 13, 1977 and from April 4 through September 
11, 1978. The general precipitation patterns during these two fiscal years 
are compared to those of the Dillon and Lima weather stations (Figure 39). 
Although 1977 was the wetter year, both years indicate a peak in precipitation 
for May and September. 

Stream Discharge 

The staff-discharge rating curve for the Little Sage Creek sample 
station is presented in Figure 40. The guaging site remained nearly stable 
during the two sampling years. 

The 1977 and 1978 annual hydrographs for the Little Sage Creek sample 
station are presented in Figures 41 and 42. Peak flow during 1977 at the 
Little Sage station was recorded in late April. An estimated crest stage 
value of 3.5 cfs was recorded at this time, although a higher flow may have 
occurred prior to the first sampling visit. The crest stage peak flow may 
be overestimated owing to residual ice conditions around the staff guage. 

The lowest recorded flow during 1977 was only 0.69 cfs during early May. 

The 1978 year produced no discernible peak, although one may have occurred 
prior to the first sampling visit. The lowest recorded flow for 1978 was 
0.50 cfs in mid-July. The differences noted in flow patterns for the two 
hydrologic years are largely attributed to differences in the annual 
precipitation and snow melt patterns. 


4 


4 


1976 1977 1978 


85 




_ CA 


— *-J 


- as 


- as 


— 


« 


bO 4J 
(0 <0 
cn 4-1 
•H C 

60 


<u a o 

CO 


rH ^ 

CA 

• 

4J a <u 


flO 

4J 0) « 

01 

u 

Va 4J 

*-( 

(0 

»-3 Pm C/3 


u o 
u 

•H C 

i-a o 


• « 

U 
fO "H 

a 

0) -H 
Wi u 
S 01 
60 W 
tH fH 
Ch 


(ai) Idd 



c 

0) o 

-H 
U 4J 
fl) 10 
01 iJ 
^ CA 


01 

JO 



•H 0) 

^ 3 


to 

4-1 

(A 



4^ 


Staff gauge (ft) 


86 



Stream Discharge (cfs) 


Figure 40. Staff-discharge Rating Curve for Little Sage 
Sampling Station. 


FIGURE 41. ANNUAL HyDR3GRAf>H AND SEDIMcNT LOADINGS 


9v)a.u]ac0ta30 (/)ujot-4Xu]ae»« 





□ 










’’•'IIS’'" V: ' r 

' [' *•'*• ■ ****•**•••' 

., i” I "i i 5, ’‘5 1 'I 

*”i ^ i 


u ^ M- 4k «« 'W W '*» ♦ ^ « 







^ f,^' f . * t t % i 

mm vt/AM . jff^AV^-icn ^ jm. 











■ - i . -4 










^ '’iene^’ii^ 





FIGURE 42. »MNUAL HYDR3CRAPH AHD SEDIMENT LOADINGS 



DEC ; : FEB : ; APR : : JUN : : aug i sep 30 



89 


/ 

The respect4-ve annual hydrograph data were used to estimate the annual 
water yields for the Little Sage Creek Table 19, see p. 111). In both water 
years the estimated yield was 780 acre feet. This condition is partially 
attributed to the gentle topography of much of the basin, and to the 
possible ommission of a recorded spring peak flow for one or both sampling 
years . 

Suspended Sediment 

The annual patterns of sediment concentration for the Little Sage 
for each hydrologic year are depicted in Figure 41 and 42. Suspended 
sediment concentrations at the station ranged from 5 ppm at low flow 
to a high of 99 cfs which was not associated with high discharge values. 

The relationships between suspended sediment and stream discharge for this 
station were not statistically significant (Figure 43) . The variability 
in sediment concentration with stream flow is partially attributed to a 
seasonal effect, specific storm effects, the presence of livestock in and 
near the stream, and to the Jiysteresis effect, whereby peak concentrations 
of suspended sediment generally' occur prior to peak runoff during the rising 
stage (Gregory and Walling, 1973, pp. 215-219). Annual sediment yields for 
the sample station were estimated from respective water yield and sediment 
concentration data (Table 19, see p. 111). The station produced approximately 
31 tons and 21 tons of suspended sediment respectively during the study years. 
These differences are partially attributed to differences in the precipitation 
and hydrologic regimes between the two years. 


c 


FIGURE 43. SUSPENDED SEDIMENT VS STREAM DISCHARGE - LITTLE SAGE 



t/r»i 


STREAM DISCHARGE ;CFS 


91 


Hydrochemical Parameters 

The concentration of dissolved solids is inversely related to stream 
discharge so that lower concentrations occur during periods of high runoff, 
while higher concentrations are found during periods of low summer base flow 
(Gunnerson, 1967; Gregory and Railing, 1973, pp. 219-225). Patterns for 
specific ions, especially the ecologically important ones, often vary from 
this generalization (Likens, et al., 1977, pp. 74-76). 

Specific conductance for the Little Sage station ranged from a low of 
292 pmhos to a high of 428 pmhos. The relationships between specific 
conductance and stream discharge for the Little Sage station were not 
statistically significant (Figure 44) and did not conform to the pattern 
noted above. , The variation in specific conductance with stream discharge 
is believed to be primarily attributed to the low slope - low runoff 
conditions of the basin and secondarily to the usual seasonal and storm 
hysteresis effects (Gregory and Walling, 1973, pp. 219-225). The ranges 
in ionic concentration for specific ions are presented in Table 14. 

Bacteria Levels 

The concentration of fecal and total coliform in streams draining 
rangeland watersheds is directly related to the number of cattle present, 
their access to the stream, the physical and hydrological characteristics 
of the basin, local weather conditions (Kunkle, 1970; Stephensen and Street, 
1978), and the time of day (Kunkle and Meiman, 1968). Seasonal patterns 
include a spring ''flushing'' effect during the rising stage (Kunkle and 
Meiman, 1968), with high counts during the low flow summer period, counts 
which often continue for some period after the cattle have been removed from 


/ 


F1GUSE44.. CONDUCTIVITY VS STR£A4 DISCHARGE - LITTLE SAGE 


4 


I 


♦ 

I ♦ 


O ‘ 

■ 

o i 


•• •• •• •• ^ 

I 


« « 


IN iN 
« IN « 




• 3 ac I o w •• 


92 




i 

n 


9 

o 

4 • 


STREAM DISCHARGE :CFS 



Table Ranges in Hydrochemical Parameters for Little Sage Creek, 

1977 - 1978. 





Little Sage 

pH 



7.70 - 8.60 

Alkalinity (CaCO 

^) (mg/1) 

148 - 210 

Specific Conductance (umhos) 

292 - 428 

Total Dissolved 

Solids (mg/1) 

190 - 278 

Ca 

(mg/l) 


38 - 70 

Mg 

(mg/1) 


7.3 - 11 

Na 

(mg/1) 


9.8 - 14 

K 

(mg/1) 


5.4 - 8.5 

HCO 

(mg/1) 


170 - 256 

SO, ^ 
4 

(mg/1) 


2-8 

NH, 


(mg/1) 

< .01 - .09 

NO^ 

+ NO - N 

(mg/1) 

.01 - .14 

-4 

(Ortno) - P 

(mg/1) 

T - .086 












.iaaiO »g»Z (•l 53 iJ io 1 HiajaainM^ 






• fcsri 


.avH - 


F?L; 




^ 1 *^; 





;yv,' . 7 ,^ 

» ii* •^mmD^f^i' J ■ * u, ^ .’ "JK! 1 ^ 

ois‘ 7 . SaI-HS^ <l\a®) '^''<j^-«3!^ Yli-«H».»liA 

■ ',*iE „ 0^ 3 S''' r#*^ 

to' '^'.icil 


'J^- 


<i-ll 


’■'Sfe 


'A,, 


'r*' • ■ 


f.’ 












,; 5 j «r - r* ' ' IS 

8TS l^vf^wiiiKii lftSoT'j 

l tv':'74g ^ MUMLw ^ 

^.a ^ A.i' -fw-rfi'r#^ 'i nir i - " 

* 8 - S ,"':7iB!>iiliiiife.-av»«j *^o* 

« 3 Mr s» » iS"iit 

W,»- 10 . >,, „■** Z'* 

i* g*i: - 10 ..' <i 7 »> « - £«! .♦ 

j jJI^'iSBi;"'' " ' 'iji® V ,. ®. .r i 


■ 

jf 4 » 


Wfi 


*■■ ' ''yv',''^'': 


«* u.'llLi 




''■Sltf'. ‘*^''^ 4 £ 




It 


m- * ■' T, - 1 *^ ^ 

I, 


wTyi" 


") ■ ■•" 








V '* 


m' 


m. 


I ?!,. 


■;. 'i< ''Tlte"'’i 






I" ■ ■ ..A n ■8^' ', 

;, 3 ^' ....J''^,’','r',,'u''j 




0^ 


■■s«' . 

•-S‘'"^'*’'^\y)\a 


mI,'' ' ll**. « , d' 

"■ ' A' 



n . 

W: 

; 



■■» 


fcji 


vH 





' !• ,'^'»‘ ' M 

Sfr.'f'si?,, 






9A 


the area (Stephensen and Street, 1978). This seasonal pattern may briefly 
be modified by local storms which produce their own "flushing" effect, and 
which may or may not be followed by a short term dilution period. 

The concentrations of fecal coliform for the Little Sage station for 
the study period are presented in Table 15. Higher values occurred during 
the grazing season, especially with the known presence of livestock. Maximum 
fecal coliform levels were 2,000 colonies/100 mis. Twenty-five percent of 
the sample coliform counts exceeded the 200 colony/ 100 ml limit of the 
Montana Water Quality Criteria. Low values were associated with the spring 
season . 

Comments 

Little Sage Creek is a very gentle, high elevation, dryland basin. 

This suite of environmental conditions may retard the normal annual flushing 
effect encountered in other environments. Thus, neither suspended sediment 
concentraion nor conductivity was correlated with stream discharge. In 
addition, there is some indication that livestock influenced sediment 
concentrations on several occasions. Because of the limited number of 
samples taken and the nature of the hydrochemical parameters evaluated, 
relationships between the water quality characteristics of Little Sage 
Creek and the Montana Water Quality Criteria cannot be addressed. 

Basin Creek Basin 

The Basin Creek Sample basin was visited a total of 16 and 17 times 
during the two hydrologic years. There were no specific accessibility or 
sampling problems. The Upper Basin and Little Basin monitored 15 and 17 
times respectively. 




Vw"' Or 


vXi9i*i(f v«n msiaatf xWl#A« eirfT . (8Xei ,J*»?i8 

n %t 


bnu ^j:>aUa 'JjfrXrftwIi'' nwo iXadJ iawboiq, ri-jtriw eaitola^Ia^of bfllbbow srf 

- 11- ■ .|*'j» ■•■«« . . --V S. .S _ _ f. -1 'i « 







■«“ *''^f*:6‘,;. *'■ '-B - ■* ' '%. "■“■ ../'^'Sf 

.boll^q oolJuflb inftj 37ori* EvixdjbwoXlot *d ^on i£»» lo yM 


‘, ! ' * ' T" ' ■'‘JK « ( :f’ i''^ i‘''*'4lil]lin^Hiih 

' ".U V -S-a'''".- '-sffi ■ " ' r ® *■ 

To1 noHaJilaasa oX33iJ arfiaiolf l»3»1 H anoXistSUasnoa sulTap 


antlub ba.i7«330 asulav ladgjtH srAn* »"** |>oli9q Ybu3»^r»il3 

Jr ’M _ ' ^ " i; ./’/".r - '*«' ^ 

£U ' a^ 9 m - 10 " - ,*£^1 “■ ' “"' “'‘‘‘ 


. ' li* •Ylg* ' 


T ar-P'T^i'^ ^ ’~' • itl^J '8*''' 

at/iolxaH .;iyo.iBavlI 1o nwoii^ sirfi <l3lw ^aoaaaft adj __ 

' j#.,, 'k '‘" ' _ ^ 

I. “ E; V9dj io tlrnit i* 00i\Y««Xo3 0Glj,»rf/i>i»b«*5*« «ij««OD aio^iXoa alqBia# aiii ’*■ 
ip p ’ ' - ;r’ , ■■®' .:» -. ,t, 

^golTua -ftffa riJXw bs 3 aJt i o t w »awl»v ,«»haJ''JI!r#|ta3i.35 ,T93*W„,i.t'fftinoM 

K,... ''^#7' '1^^:'“- ■' « 


rKiiia«a 



'i'f 7§:, -v«~' 

' ■■ ’ ■ "' '■■' ' 

I't 

^ " I'nlaad^tm'liiYTb '*iioXTavai»,.d$i^^ «»I'itt»5l' !p»v a ffl »»ii8 aXX^J 






— - IT. 

“Sa “tt 


fc^id'S(«i#Uulfd#pI.»a»o<j^ »d3 biwaaij^Ybrn. lajawunailvna'-H^ aillu* «i(rr 


'Jf' 


% ,,wn KS 

\in«Brlb9<«i bibaaoBKB 'iftdaJaa ,8tjdT ,» jitBuanotlves tarlJo «i %n^^i>'iiyo'y.m 

■w B ■■‘■- '>9 tS ■ ai , , , s;- . ..■.ii’' ? 

aX . d5Xv.jb«»3«i*i^twa «'Rw t,«wi nblaif^nasttoa , ,r 

n.: ..... ’'■i' 3 f'_- *7 ,-. , .■>-. 


% 


L 




a 


^11 


jkw i3oi9a‘’<>5^#’ ftaonbwX^aJtii'JJaojttt'dv.jt'X 
¥ ^SiHSm . *“ w 'p o... .Ilf 


«£ 

flli Sii *' 

a a®fi>%5l-bni !tMB«s>8 ni s^arfl ,fifltiJibt>« 




im 


®-mL' I’..' ■/}'' ' — ® ^ ®s "'” 




-4' 




,,y,!ll<0ia4»«'lB'Va B'l'ii'a'istaa.taqf laal adi ttaafa-a ,;^. 


.’,&i , ^ ' ,/'V '*■■' "m '*■ '. 

■jajaw Hd3.:a»aw3't»er aqi'dartoi^at-at 

' ' 'yi, ' "... '’.y''^^" ■'.,' Wii'^' .■,*■■ ‘ '® d '* 


IT. 


.®.. 






'i*. f 
't.fT.j' ' 






i^, 



':.v: 


ni . *,v‘ 3 S ifi^' 


& 


'"7 f ' 

,'^ji" ' ->'^'' “ .Vl. 


V:.'!. '■'Ili' ’ .crQ (3^' ??>' 


... ... ■ mi'.riii!! 

fliBtftg iaatG dlairtf 



' 'aJwrXf ^.''taaoa a b*3',t«X¥J.«W'.,aU.iMf’ nlcaS' anT 

'''.^;''J<' '''¥«' ^’JadT ,- *d-a nalai/b 

i' . -Sr H ‘’^' ^ ‘iiji; . 'H 

tl btt#.erte'a3inGar’'«l«®8‘‘ai33X4 aUariatH'tJ j|nUq»aa 

■■“lair ’ ■■ «.»- 

UjOHMiBillB- W ’i> t.'itT^ 





»^i'avXa:»i»qw9ii aiMff.ta 


, t‘ ■'. 







95 


Table 15. Fecal Coliform Counts (colonies/ 100 mis) for Little Sage Creek, 
1977 - 1978. 


Little Sage 
1977 1978 


April 


— 

May 

12(?) 

2 

June 

390* 

17(?) 

July 

488* 

29(?) 

August 

50(?) 

85(?) 

September 

9(?) 

2000 * 

October 

18* 


November 

8* 



Stock visually present. 


(?) Stock presence uncertain 












19 


1 ,s?'{«n» .^«T . v-tei -fjj' . • ■‘•1 

III ■■jhiiiiiiWMiii III' I 'VtfuJiir TiiifYitnnii tiliir ''srmro^:- -illujiiiuniih: 


















iitoL .•> 






'<'l<!|i- 






% ■ W 

’iTJi 




9 "“^ 


tliiS 


...— ^ . '^ 1 . 
fa =^‘i 




m 


,:fe Q': . 1 , 




aniit 




Dii ■■■' 






;■. -f 


* - ffl-:! 


<t)oe 


'"" iauftwA 


9 


omi 


Jr 


^ - "'M 




ij! ,., '" F 


:a 

,;:'.;«4 




r«f"< 




’’S'*"' "f 






















>« 


S!.'" ' L*' 1 ^, '^T ^ 

1 ''"^ 'ii''’- "^ 1 “'''' ' 


'"'If.'. 


..V, <!' , " ''fli 






'if ' -h '■■* 






«'•'. .'VU;,'" 


„li>'l 






.J_®i 






’■ L" ^ 'A, pKammm 






':..U''’V>‘ ■,; 




I 


" '-.A 


,tf‘ f 




43 




w 








'■V' "R li'O 


■^*1 J 


96 


Channel Stability Ratings 

The Lower Basin Creek, Upper Basin Creek, and Little Basin Creek stream 
sections were evaluated on August 16, 1976. That portion of Basin Creek 
between the lower station and the two tributary stations was rated as 'good' 
(49) (Table 16), Upper Basin Creek as 'good' (74) (Table 17 ), and Little 
Basin Creek as 'good' (67) (Table 18). 

Precipitation 

Precipitation was measured at the Upper Basin precipitation station 
from April 21 through November 13, 1977 and from April 4 through September 
11, 1978. The general precipitation patters during these two fiscal years 
are compared to those of the Dillon and Lima weather stations (Figure 45). 
Apparently 1977 was the wetter year for the Basin Creek station^ primarily 
owing to greater precipitation in the spring. 

Stream Discharge 

The staff-discharge rating curves for the Lower Basin, Upper Basin 
and Little Basin sample stations are presented in Figures 46-48. The 
gauging sites remained nearly stable during the two sampling years. Rocky 
substrate in Lower and Upper Basin stations caused low flow threshold values 
in the rating curves. 

The 1977 and 1978 annual hydrographs for the Basin Creek sample stations 
are presented in Figures 49-54. Peak flow during 1977 at the Lower Basin 
station apparently occurred in mid-April. An estimated crest stage value 
of 15 cfs was recorded; however, residual ice in the channel may have over- 
estimated this flow. The lowest recorded flow during 1977 was 0.49 cfs during 
mid-July. The 1978 year produced an early peak flow of 6.7 cfs in late-April 
which proceeded a possibly overestimated seasonal peak discharge of 14 cfs 





S’- -r* 


'.'.I) 4 ' .-,;j,^, ••#''''^ ' 

wAiiifca .•] '' w * 

** 37.'' ^ - ,,. . ';*•' .1^ 

SV’ ." . . ^ ’ 5 '.'', i#' .*«, ''^■« ^ 

‘ '*jr- 

'■/ 


m^. 




a, ^<9 's>‘> 3 ' Ht' jflil I'jotj yaS|wA «'i' i>»^»iii‘l«v# '•»»W' • '75^'.^ 


-if ''^ Sh 

■■».- ' aj' B?-v -w ^ ■' ,- '^- *•'5 .<■■ ■' ' -*1. -i 

’ bttp,!* itn 'bm-lcT -<:)/iiT''nii:i &«‘ti not#»J|l ':,:t»<>t«r '♦lii "■ 


-•^ - D'. J, If ; " ' _7,f ■ ' .tf ^ 

f ,,. jllilpl'' ^ «» 3l^#i» 





>;■!? 




« iMf.'. It ' 

ifii^.'‘'„r. L, ' ■^■"51 




! 


, '*" 1- -'.,»■ -, s 

ffl .'iieiainii^.- " i#, . 

■•' f-ni; '''^S'^;(' ,tS IXtqA «K>K:i ' >Ti~ ■ 


m. 


^ jl^ 

,A*^;».iji«.q Ift“i9*'»!flia' ■»<fi' .fit'?! *11 

IBIHi 




'"W 


m- 


bf^'' mU b*i»w)3iior» 4 

'fc'-, ,, , .r^ ^ / ,^ ■ . ..>^ ^ 3 i 


M 




m 






iu 


'iH 


55 




111 

ip*5@fr 


::0 


rr-l ®3 s^lwo 

te/.: ■ .' ? m ' ' :#'^' 


•Si - — . 

-•m 



, ',V -„ : E : ^:, i « )5 

airti'T' ^ **^''^^***^*’K* lH« bft* 

' ', '^' 'w ' '"S^iH/r ' » . 



*, J,, 


W0.1 1' •' '»'0 J. 'if , wi; Jf »« 












f' 




K 




":iS3 


? 




Sn-l'twl*. w'it . ».(tif Hi **1# 


111* 



'iH,/( 




inHW MiiM' '^X^l 1:114, WffT «-''«3 




-'H-^ M *»: baUWa'iq rioidv 

'‘'®''' :: '^Idtan .v-I,, S- . i 



^.'% I,’*!!',;,, 

ftl -I*'' 


ir. 


ifi' 



Table 16 r-i stream channel stability fietj EVAa'ATiON form Lower Basin 

8/16/76 


4 





+ 

•s, 

O 


i 

r« 

I 

a 





f 


{■ 


Table 17 R-i stream chantjel stability Finj) evaluation form Upper Basin 

8/16/76 


4 


i 



a. 






Table 18 R-l stream ciiannei. stability fietj evaluation form Little Basin 

8/16/76 




99 





+ 

V 


+ 


C9 




o • 

« o 

■C iS 

« 

s * 

• m 

a V 





1976 1977 1978 


100 




- a 




— -> 






- V) 


— 


- X 


- X 


- •-> 


a 

« 

n • 

«) 

4J 

0) to 
a Q 
a 

3 a 
o 


tn « 
^ 4 J 
•H 

01 a 

"H 

3 u 
60 O 
•H kl 

b cu 


» ce 
a u 
M -H c 

O. O 

U "H fl 
0) U U 
a 01 «) 

O. kl 4 J 
3 Ck CA 




ki c 
e 01 o 
o -H 
u u 
<H tfl eo 
•H Q> *J 
Q » OT 


u 

o; 

X 



•H 01 

3 3 


Station 


£ 




Staff Guage (ft. 


101 



Stream Discharge (cfs) 


Figure 46. Staff-discharge Rating Curve for Lower Basin 
Sampling Station. 






Staff gauge (ft) 


102 



Stream Discharge (cfs) 


Figure 47. Staff-discharge Rating Curve for Upper Basin 
Sampling Station. 



Staff Gauge (ft. 


103 



Stream Discharge (cfs) 


Figure 48. Staff-discharge Rating Curve for Little Basin 
Sampling Station. 


>1 




«> 




A 




FIGURE 49. ANNUAL HYDROGRAPH AND SEDIMENT LOADINGS 




FIGURE 50. ANNUAL HYDR3GRAPH AND SEDIMENT LOADINGS 



OCT I : : DEC : ! fer : : APR i : jun i : aug : SEP 30 


FIGURE 51. ANNUAL HVDRJCRAPH AND SEOIHENI LOADINGS 



lO.OPOO 




FIGURE 52. HVORDGRAPH AND SEDIM£NT LaADINGS 


< 




FIGURE 53. ANNUAL HYD«3C3APH AND SEDIMENT LOADINGS 






FIGURE 54. *N\'U»L HVDR3GRAPH AND SFDI«EMT LOADINGS 



DEC : : EEb : ; Afu : ; jun : : AUG : SEP oO 


110 


in mid-May. The lowest recorded flow for 1978 was 0.26 cfs in mid-April. 

The Upper Basin station exhibited somewhat similar patterns. Residual channel 
ice may also have influenced an estimated peak dishcarge of 11 cfs in mid- 
April, 1977. The lowest recorded flow for the year was 0.88 cfs in mid-July. 
In 1978 an annual peak flow of 7.0 cfs was estimated for mid- to late May, 
while the lowest flow was recorded at 0.80 cfs in mid-July. Peak flow 
apparently occurred in mid-April, 1977 in Little Basin. Again, residual 
channel may have influenced the estimated 5.0 cfs crest stage figure. A 
secondary peak was noted for late May, while low flow for the year was 0.71 cfs 
in mid-July. An estimated 9.9 cfs peak occurred in early May, 1978, but 
was proceeded by the annual low flow of 1.3 cfs in mid-April. The differences 
noted in flow patterns for the two hydrologic years are largely attributed 
to differences in the annual precipitation patterns and to the influence 
of basin topography. 

The respective annual hydrograph data were used to estimate the annual 
water yields for each station (Table 19). The Lower and Upper Basin stations 
approximated 1,000 acre feet each year, while Little Basin averaged nearly 
1,500 acre feet. These estimates confirm general field observations. The 
reduced water yield for Lower Basin is attributed to evapotranspirational 
stress in and along the watercourse and to subsurface seepage of channel 
flow in the nearly flat terrain. In one instance a segment of Basin Creek 
above the Lower station was found dry. Absolute differences between the 
hydrologic years are difficult to determine owing to the high percentage 
of water yield that must be estimated for the winter months. 

Suspended Sediment 

The annual patterns of sediment concentration for each station by 
hydrologic year are depicted in Figures 49-54. Suspended sediment con* 



oil V:.'. 

. XliqA*Miii .'0 ''«)«« l '%&% v^i\ 

Ti, K.W -w ' ’»'■ " nr‘ -fitv ■ ^•' T*' ■''» , :~<\ 

i#rfW5,)«Mi' lw9Jil4trffC9 i&qqUr,4i(i*5P '{"‘T 


'Wr, 


yin'll 


M 



— TTlll 

*"vt' 


‘ 'ill"' 




W,p! - 


;Cjii ftl 'afs Cl '1o rflitq riA -h^Stui mtfi Ylfiin 

^.Iwl-biai «Av itk^x 'Wtti V „ "U tt I il'iirqA 


m W ®’ 






m: 4 i., 




«l,i 3« fowb'ro^Mki tseiVr 'l«^*rol'i'»rfj eilit^ 

..s' -i*-^ . 















4, .* . ■*,’!*' .«:-*-.=j|fc|»V «r; ^ ‘■'I', ««Js ■» , j, # ,,„, * 

iitl3,iT*0 a*#'Vii*i9^.v»d3' woJ' ttJbtlvr' I 












i\;’, ■ 

' ''-si 

■ ■»'' ' 



f' ff; ■'■ ,t 4 

; -l>«3 ♦M«Jti»ii, nh . Y ml- 

j*** ''‘■‘1' 



J*. . ' 


'^Sii’i®*'' . 

. i:j^*^»^iiai g ® » „,■ ;. 


3 C . I:" >^|o iJoi 5 . WO'X t'iii»a0k 9rf 1 ^ ^ fM»th»9iiE^Yq ‘ «mw .., 

JC ' a, ' ' '^, , ” 

«3tt9X ®J:»'OXOTbxii t*V'3^943' to,^; wo-li JiX b»J<irt^. 






niawd ^o 


'„ *11; 


HqAi,ji^<»Tbvd X/ai/nrfti •(»v‘l3';3t>qit9i I**"' 'i 

I, '“■ ' : '.„ffii jjJ ' -■ . '.I'l 


i?; 

■ )H , iiui|f 

t 




»i^- 


tfv 

7<J 


.li 




»'' ' bi8f«79W» ntiifiS, ' 9(lt<lw ,,3'qjS(»,lid,3Ai^ '?9«'if 000fl’^^«j.n«tx«iqq» 'Sfl" 


— iH®' U'»ft.<,v.,^' 


■ r.. , ''^1 

If jv , , "^' , 'li '■■■■ ' ‘ '^S 

^ '.- «»n3i9 O0i,l 



p. ,■«'«’ 


»ri vtia-JuifitiiA' toV' b.JtiiY ■*9'3»w b-^’nibai 




ir 




■ 

j*. *w|ii^ 




9t»j»l34^<Ji>9'?a» bo«^iMiY,oqfO‘|^»W bwf 11,1 wiAtla ■,■'*, 

»»f .i>laYW3 Ylufea'A »«la oi wol> ' " ’ 


■•■>' iv#’- ^ 

bwirol^' 'ffiiv nb'l cl!rf!J«' -wfa avtxf* ^ ... 

.V ,.Jt I, ' ■ » '■ 





i-hSliifBSO^ iL^ ' ^'^''^^i-- V:' [Ji^ ■■' i’lH' jn|' 

u, :'w m x 

■■'n' iftj, , ‘\;\m ?■ V -- ■ *• ■*" 

>A'Wn' in» , jis»Y.Ko.rjBio4<;»i.,bvi;d 








Table 19. Estimated Water and Sediment Yields for Little Sage and Basin Sample Watersheds, 1977-1978 


A 


w 

u 

u 



ON 

4r> 

o 

o 



OS 

ON 



00 


o 

cn 



O' 

0) 

• 

» 

* 

* 

• 

• 

• 

• 

•H • 

■4^ 




<r 

ON 

CN 

in 


•o ® 

(U 

W .H 


U 

>4.1 10 


VM 

.a- 

-tf' 

CSI 

CM 

00 

o 


cn 

O'^ 

vO 

vO 


CO 



CM 

vO 

3 • 

o 

d 

d 

d 






P6 C 


bO 

e 

•H "O 

4J 0) 




3 .C ® 

o 

o 

o 

ja u 01 

CM 

CM 


t4 IJ »- 




U OJ u 

«> 

* 

* 

4J 4J A 



CM 

C ^ 

O 3 

o 



cn 


O 

o 

O 

o 

o 

nO 

CM 

CM 

-.a 

«a 


rv 


00 

00 






CM 

vO 

vO 



cn 



*-4 




6 


e 



0-4 

cn 

m 

cn 

m 

m 

s 


0) 

o 

cn 

CM 

nO 

cn 


cn 


cn 

•H 

•o 


44 









44 

0) 

>H 










CO 

CO 











U 













-o 

0) 

44 

3 

>.1 

V 

Id 

ft.) 

o 

o 

o 

o 

o 

o 

o 

o 

B 

4J 

0) 1 

00 

00 

m 

<a> 


m 



•H 

n 

•H 


f'. 


00 

ON 

ON 

CM 

vO 

44 

oo 

3 

• 

O 

CO 








m 

p«4 


>.1 

01 K4 


00 


00 


00 


CO 

4J A 



PN» 


n* 

r** 



® 01 

On 

ON 

ON 

On 

On 

On 

On 

ON 

3 ?- 



•-* 


*■4 









a 


0) 

e 

C 

•H 


00 

.H 

.H 

a 



« 

« 

5 


w 

5 

a 

(2 

c 

0 01 

01 

£ 

OQ 

01 

•H e 

fH 

u 

M 


4J <0 

4J 

0) 

01 

44 

® z 

4J 

> 

a 

44 

4J 

.H 

Q 

a 

•H 

w 

>J 

.J 

3 

1-3 


111 





112 


centrations at the Lower Basin station ranged from <5 ppm to 1A6 ppm, at 
Upper Basin from <5 ppm to 63 ppm, and from <5 ppm to 38 ppm for Little 
Basin. The relationships between suspended sediment and stream discharge 
for Lower Basin and Little Basin were statistically significant, but the 
relationship for Upper Basin was not (Figures 55-57). The variability 
in sediment concentration with stream flow is partially attributed to a 
seasonal effect, specific storm effects, the presence of cattle, and to 
the hysteresis effect, whereby peak concentrations of suspended sediment 
generally occur prior to peak runoff during the rising stage (Gregory and 
Walling, 1973, pp. 215-219). Annual sediment yields for the Basin stations 
were estimated from respective water yield and sediment concentration data 
(Table 19). The Lower station indicated a yield of 61 tons for 1977, but 
only 33 tons for 1978. Both Upper Basin and Little Basin generated 15 tons 
in 1977, which increased to 33 tons and 35 tons respectively for 1978. 

Hydrochemical Parameters 

The concentration of dissolved solids is inversely related to stream 
discharge so that lower concentrations occur during periods of high runoff, 
while higher concentrations are found during periods of low summer base flow 
(Gunnerson, 1967; Gregory and Walling, 1973, pp . 219-225). Patterns for 
specific ions, especially the ecologically important ones, often vary from 
this generalization (Likens, et al., 1977, pp. 74-76). 

Specific conductance for the Lower Basin station ranged from a low of 
272 ;jmhos to a high of 478 >imhos. Upper Basin from 242 >imhos to 363 umhos, 
and Little Basin from 300 ^mhos to 504 pmhos. The relationships between 
specific conductance and stream discharge for the Basin stations were 
statistically significant except for Upper Basin (Figures 58-60). Variation 
in specific conductance with stream discharge is partially attributed to 





r- 


FIGURE 55. SUSPENDED SEDIMENT VS STREAM DISCHARGE - LOWER BASIN 



STREAM DISCHARGE ;CFS 



FIGURE 56. suspended SEOIHSNI VS SIR- AM OISCNARGE - UPPER bASIN 


I 


I 



STREAM DISCHARGE tCFSi 






FIGURE 57. SOSPENOED SEDIMENT VS STREAM DISCHARGE - EITILE BASIN 


115 


i ♦ ••• 

I 

! i 




i 

I ♦ 


r 


« 4 - 

♦ 


! I 


i 


IT) 

A 

rt 

4 • 


o 

4 • 


O 

4 • 


o 



■i4 


\0 

o 

vH 

tn 




fN 



o 



a 

o 


AO 

«o 





(N 

*r> 

o 

(D 

o 


rM 

n 1 

» 



*0 

o 

• 

• 

• 

• 

• 

• ! 


• 

• 

• 

O 

IT 

fn 

e> 

CN 






9k 

*f», 

fO 

m 

1 




1 1 



' 

1 

w»=> 

s 

p 

e 

N 

D 

£ 

0 

(/> to a 

! 

I 

M 

E 

N 

T 

•• a. o. c 

1 

1 

i 

I 1 
' 1 
i i 




STREAM DISCHARGE :CFS 



FIGURE 58. CONOUCTIVITV VS SIREAS DISCHARGE - LO*ER BASIK 




♦ I 


116 


o 

♦ I 


♦ • 


. 

o 

•4 


er 

-|» 

♦ •• •• 

rs. 

•4 

CD 

r* 

AO 


o 




AC 

c 

9a 

r- 

AC 



o 



r> 

n 


C 



i ^ 


O 



in 

AC 

'T, 

fO 

c 


' Cm j 


• 

• 

• 

• 

• 


# 


• 

• 

o 




AC 

AC i 

9 

ec 

9* 

rA 

o 

•n 

an 


«D 

AT 


1*- 

! V 

i 


AC 

n 

•r 

i 

CO 

1 

rA 

1 

ro 1 

CM 

fA| 

! 1 

1 



; 

1 

1 

1 

1 

00X030M»4>i-4^>* 

1 i i 1 

•• 3 

j 

1 

y rc o w •• 

1 1 

1 1 

1 

i 

1 i 

I 

‘ 1 

1 i 
i i 

1 i 


♦ • 


n 


STREAM DISCHARGE tCFS 



FIGURE 59. CONDUCTlViry vs STREAH DISCHARGE - UPPER BASIH 


L 


4- 


I 

i 


O 

tr 

o 

r. 


□ 





I 


I 


I 


117 



o 

m 




! i 

^ ♦ 

I 

I 

I 

I 

I 

I 

I 

I 

♦ 


i 


'1 

i 

I 

I 

I 

I 

I 

, ♦ 
1 • 

I 

' I 

f 

♦ 

I 

! I 


I 


I 








o> 

CD 


IN 

A 

CD 

'I 


o 

AO 



o 

C/ 

<y* 

r 



:> 

f* 

v 

r) 



o 



IN 

1 » 



to 

O 



C 


IN 

• 

• 

• 


m 


• 

• 

• 

• 1 

I o 

r* 


' «-4 


AT 

9 

cr 

a 


1 s» 


(D 


9 



r- 


IN 

, -O 

1 

i 

1 

IT 

• 

. 

V 

i 

I 

O 3 K Q 

u 

c 

T 

I 3 

V 

1 

•• 9 

i 

1 

X * •• 

1 

IN 

! 

' 

(N 

1 

! 

1 


1 ! 

! 

1 

i 

. i 

i 

i 



IN 

iO 

<N 


CD 

AT) 





STREAM DISCHARGE :CFS: 




FIGURE 60. CONDUCTIVITY VS STREA'I DISCHARGE - LITTLE BASIN 



STREAM DISCHARGE tCFS 



119 


seasonal, and storm hysteresis effects (Gregory and Walling, 1973, pp. 219-225) 
and to the influence of topography. The ranges in ionic concentration for 
specific ions are presented in Table 20. 

Bacteria Levels 

The concentration of fecal and total coliforms in streams draining 
rangeland watersheds is directly related to the number of cattle present, 
their access to the stream, the physical and hydrological characteristics 
of the basin, local weather conditions (Kunkle, 1970; Stephensen and Street, 
1978), and the time of day (Kunkle and Meiman, 1968). Seasonal patterns 
include a spring "flushing" effect during the rising stage (Kunkle and 
Meiman, 1978), with high counts during the low flow summer period, counts 
which often continue for some period after the cattle have been removed 
from the area (Stephensen and Street, 1978). This seasonal pattern may 
briefly be modified by local storms which produce their own "flushing" 
effect, and which may or may not be followed by a short term dilution period. 

The concentrations of fecal coliform for the Basin Creek stations for 
the study period are presented in Table 21. Higher values occurred during 
the grazing season, especially with the known presence of livestock. Maximum 
fecal coliform levels were 490, 1,590 and 106 colonies/ 100 mis respectively 
for each station. Twenty-five percent each of the sample coliform counts 
for Lower and Upper Basin exceeded the 200 colony/ 100 ml limit of the 
Montana Water Quality Criteria. Little Basin had no exceptions. Low values 
were associated with the spring season. 





if’ 





(2SS-e<S •«Tq bnu VTOgfttO) fln«Jiibnar» !•«<>•»»• 

“ ■- -m.. , ^■■/Jfe--^„-.-.- _ . _ . . IJ 




»■, 


ainol nl srfT- .'(rf^*-3|j«q<Wf asntttiDnl «ldi 







anji 8m>l ailllttjaqa 

i"' 

•> . ■» '^\% ^ 
ru^"' ' 




iiRS6fti^« nl Kin7o1^tioij>Xa}0:f'' bna^ lo ffoi1«73i]«aoiRraKa ‘^rfT 

™ ■ J'^ ' !» n --^to — \V 


■■^■nt$v:, ft m-, ®' ' Vfr' ,,,-- 

i»n'jai»iq ' ArfJ, bft'Ui'iSit «1 {wbUs^M 

'-V ■f. i5'fi^,-,i; ; _ es. Tr.rr'lfll ^ pii 


if S'fl^^l; I 


1^ ,£.rr'lffl ^ V •.' ■■ 

Mb «K»»i»r>a 

^ ^ .,W __ jf; kv: ,K^i' “ ' _ 








if ’» - M ' ■'®^ '^'' tin ’^i 

^-f4'»4l3'0 hnB: !0Ti?ii«^,af.4m#)i)*^«nOl;3lt^ ili3©| !Ui3 J6 

^ ., SI ® ,_. .V' ■"» ^ 



l&y .^/? ^ :LJ ^ _ *iP _,' lil 'J 

avtxsJiaq ,fl4in)jf>d4 bm 9X^nuX}\x*^ ,art3 Uia p(^tPI 

, ,, - ^ ^ 

,. i>rrfc'’'sj,j}|jp5lKa?|*3« firtJtaii aoJ^-iqa a 

.^51 sj ^ ^ 

*^oX’’.arf3 solii/b iafiooa'^rixrf'rfilw \,(8irPX ,n»«.l?*M 

. ■ * . 1 ;-- '‘' ^y «»». ^ ..., '■'* 

b'Sivew^’j «#Wid uvai »l 33 #a f<ft 3»3^»*bQl79q amoB lui i^nljnroi^ rfalilw 

JP tt- *•' ' I ^ 

Ij'iuji' htis^vj.J'.Kq' fant)«»»e ot/fT :v(&t0l , jaaKiti bOi»®naafl»»^» i»oi> 

•AU. W"' .- ...'ll ,.« ^ «fcs Jl^! 


’!■: Ill'’ 'ij2 »r 

V ' ' 1 ^ ','"** j, 

(4a etriMr fjiaol yd bf^lilbo» ad 




w ■'" 'IS® *** 

.IjoiiAq ufol JiiXkiV twTtiji'J JTw^fff « b»4foii,ot »d ion ^ i(iww rfoiffw bna,' , laalTo 


aiKAitieie fiatiVD' irf.j laaai 'to awotiaitO'iartoa’artT 

I ' ' 


''tiJ^' f 






- \ ' i® ' la ^ 

y ■ 


b!i' 


"''■ ^ 'I* ■' '. .' ' ^ 

Gb>OD3fi'i»/ii'^d't'lwyi|a'l;'t>9qa» ..nohao^ sntaFjnru .uda ''''' 

*!. .t,_ S,,, ' „, ‘ F' ’. •■ , ,„. ,, 

JiWI»,«}isa<> dJJro O0i \a»taaiJqi8i dOX j bna OP^ ^ i ,0PA 9a»v atavail anoilibia ifaool * ; "V 


, ;. ''"x ‘ r"- - ^■’ ■ 'x '"■% * ^ 

qfial^o '/l'aiiS» '3Er«p#qfi(‘^;t3-y34jnM#T '.d«}X'3»3tt itiaem loi 

: 'lii. '.2',,. _® ;v' ' fij : .r 


ill ’'jii ' bos ''“^rf3 UM a%v«)Jl' loS ^ 

■■ ’T,i ' „ ' ' ^ 

wjJtil b#li' 9ia:3 

■■•- ‘" Sjt ,r, ■ 'v" '%" ‘ ' :.<J _ .1 itf. '“■■ 


>l 


Si 


if Si" i": 

IS- y3it»uip tJjftW »«ai4ita< ^ 

■ffl'" *v 


X " ’'“i ’■ 

goJtiqa »d3 ifJtw bajalaoaf*. »«t*w 

- (' .k. A( ' 





120 


Table 20 Ranges in Hydrochemical Parameters for Basin Creek, 1977 - 1978. 


Lower Basin Upper Basin Little Basin 


pH 

7.89 - 

Alkalinity (CaCO^) (rag/1) 

139 - 


Specific Conductance (umbos) 

272 - 

Total Dissolved Solids (mg/1) 

177 - 

Ca 

(mg/1) 

(28) - 

Mg 

(mg/1) 

8.8 - 

Na 

(mg/1) 

6.8 - 

K 

(mg/1) 

2.6 - 

HCO 

SO, ^ 
4 

(mg/1) 

165 - 
6 - 

NH, 

(mg/1) 

-^..01 - 

NO* 

+ NO - N (mg/1) 

^.01 - 

-4 

(Ortho) - P (mg/1) 

^ 1 

o 

0 
1— ■ 

1 


8.87 

7.69 - 

8.21 

7.71 

- 8.51 

217 

134 - 

185 

149 

- 230 


478 

242 

- 363 

300 

- 504 

311 

157 

- 236 

183 

- 328 

59 

35 

- 63 

41 

- 63 

15 

4.5 

- 7.8 

11 

- 21 

13 

3.6 

- 7.0 

5.3 

- 15 

6.3 

2.0 

- 4.3 

.96 

- 2.6 

265 

164 

- 226 

172 

- 281 

26 

2 

- 7 

8 

- 34 

.09 

^.01 

- .08 

^.01 

- . 18 

.31 

^ .01 

- (.19) 

4.01 

- .09 

(.120) 

.004 

- (.139) 

T 

- .03 





u,B - l£?a -■■Vij'.t 

oc ' S ’- 

■^‘2... -fe s ' jj 


' 



■ t ' " " •• , 

ww - Wi ' ' 

8 £€ • rat ,,., j^£s ^ 


u 

n * - M 


V8 ,$ - 



<i Vi*) MM) K^ini IftjrtA . 

q|£ ^ ni ■j’l a\&«) a^Jtt*3 biivloiMa id'ioTm 



..« ., a ■ j , < r \ i «», 

a tl ^. 8.1 ’ ' -t "'''^ ( li ) fi ’)’> ^ tH ' 




d ,£, - ie . 

i'as t " 

H - 


Sfc 


t ( A * 0 « s 
, Adi 

-®" Vvl ;, 




I - H .. 8 ,' , ii ' i *''' lik , 

C * f > dTS '^ 


03H 

.oa 


F % 


ai '. - i < S .> ' $ o \ • r '| 3 ,> 

eo .' . jatJ ). > „ *. . ii . 4 *^- ^ 

ACG.. - 't ^ (G£{.) "-''100.k 


r R « 

15 • tow - A , : p « 








121 


Table 21 Fecal Coliform Counts (colonies/ 100 mis) for Basin Creek, 
1977 - 1978. 



Lower 

Basin 

Upper 

Basin 

Little 

Basin 


1977 

1978 

1977 

1978 

1977 

1978 

April 


— 


— 


— 

May 

<tl 

^2 

< 1 

1 


^2 

June 

7(?) 

20 

A(?) 

2 

2(?) 

6 

July 

120(?) 

27 

83(?) 

lbl(?) 

2(?) 

106(?) 

August 

24* 

15(?) 

245(?) 

1260* 

7(?) 

30(?) 

September 

490* 

307(?) 

22(?) 

1590* 

6(?) 

43(?) 

October 

230* 


68* 


2(?) 


November 

8* 


25(?) 


^2(?) 



* Stock visually present. 
(?) Stock presence uncertain. 




-•■fl '.m 








4>f!»O70 niBuS ^(b 1» f' 'tS.' BtagT 

3 1 !® , M .J%-. ftlP I , .*'■ t tiff 






MST' 

. 'W!?! 

nl*K« 

wt't n^^'" 

— 1 - ’ ' . ^- 

• 'i- ' 

.r --' ® 

k?E!® 


3 






i ' . 

tL '^Tis'woJ 


mi 


: 4 .: ' 






T', » 


i> 


■ Pi!'" 






■ # ■* .■^^^ . 


r 


ii .1. . 


.'' ? 1; 


^(T:3fd0f <r>f^ 




Jfv 










.« 


a4iA«i«A 


3>' 


.i[fljfiv'.i:„ I'l 
r-i': .-. fi^ ''4^ 




'. ■ , 


•oojfj (/Hot *0«A?®*”i?i'«m»»<i»;ii 


<T)S^ 


!> 






,#'■ 'It 




*OCS' tjj|||r-'y-i.»dnj.>^ 




*8 










ElLs^^f i v;XiA^,lv ' '■'♦ 

.wlnJiiiiortM JttnaJS (t) 


i'? 








isVo . .. 

FvVfJ 


&'-1 


;'■ 'i^ * ;.;■ , 


'jg.', ''.'t,* ' I!"4I 


' 


I," 


. :■,• V .. 


‘b'-r rW'! 
'..; "f'- 

Jf^C .'■; ■ ■ 




""'I I.. 4^'.; 

kA''-’-i!',;'../ r„.! wi 

i:.,v'l 

Bl ,"' Si ' -'%.■ . •• -''‘ ,-*"*.■'1 

L:,'5^;- " lS2r' . '”J 


." " 'ir 


.r: 


l'-'” 










* iWl, "li 1 

/■aV;'" 






122 


Comments 

Basin Creek, especially the middle portion, is a very gentle, high 
elevation, dryland basin. This suite of environmental conditions may 
retard the normal annual flushing effect encountered in other environments. 
Thus, neither suspended sediment concentration nor conductivity was strongly 
correlated with stream discharge within the general basin. In addition, 
there is some indication that livestock influenced sediment concentrations 
on several occasions. Because of the limited number of samples taken and 
the nature of the hydrochemical parameters evaluated, relationships between 
the water quality characteristics of Basin Creek and the Montana Water 
Quality Criteria cannot be addressed. 



£SJ 

* a ”IB * , _ ^ Ju wSSttEf^i . T •* 2; 

ajrt9iuK>D, 

ifglrt .oJjr»j»8 Nr^9v * tl^^ciolitoij »lbbl« 9^ 0 IftI 94^9 .itNiiD nl»i;5 

'COW aaoiJlbno9 Xii^rrdaujotJtvrvs 1o siltirti «.blT . bViiaX^ib ,nol3av*lir? 

q n Q ^ 

^ ** i? 

• ajnaoiaoTivfis ladJciiil bAitJumoon# 33»1H galdBUll b*sfiiai ; 




YX|noi:^a «8w yiXvJtaaubnoo ,)on noi387 3it»9n09„:]i?fiiy;ifui b^b^liua ladil'm ,»«rtT 

^ '<‘fVAV . . .’fit- 

i«T .1? , ''■’"??> -S- iT'Ts '‘W".:: ' ' '■^‘ t 

,o<>l3ltfbB nJ .n£88d Xi&TfMlsf »d3 0td3Jbir^9|t38d9i|iXb ow^iis d3lv b938i»iti09 

anoi3«i3n9dno9 trnswlb** b«9/i:»unnl 9l903B«vilj3^3 noUfraibdl mqom *i dtMfs 

, -fli. Xk ’H!. 


>J 


1' 


jj' 




a 




J* :-1 




bon dAifii) lo. Tdtfayf' lwili»lX'»rf3 ^8f»oX«8330 I«i9v»a no ^ 




Ifi^^iii^ooYbyd 'tv m-ttUBO ada 

E. ’ ■ >'■' ’'v.V l,?l "■'" "Wi*' . ‘ ■ -i* 'TEt: '-.‘i.n 








r,t =5 '/J?, ry,-.'.- . ..'UAl 

^idjRW 8n8:tnoH odJ bn* jittalD nX^ufi 1o yjllftt/p 9*3*w s»da 

■'■^" a,' , 

I .h»8«9i&bfi 9<J >omw3> et^oatiD <aiX«op 




123 


LITERATURE CITED 


Aldridge, R. 1976. The Measurement of Rainfall at Ground Level. Journal 
of Hydrology (N.Z.) 15(l):35-40. 

American Public Health Association and others. 1976. Standard Methods for 

the Examination of Water and Wastewater. 14th Edition. American Public 
Health Association; Washington, D.C. 1193pp. 

Aubertin, G.M. 1974. Problems and Techniques in Sampling Water for Analysis 
pp. 1-9. j[r]i: White, E.H. (Ed.) The Use of Small Watersheds in Deter- 
mining Effects of Forest Land Use on Water Quality. Department of 
Forestry, University of Kentucky, 106pp. 

Brown, E. , M.W. Skougstad, and M.J. Fishman. 1970. Methods for Collection 
and Analysis of Water Samples for Dissolved Materials and Gases. Tech- 
niques of Water-Resources Investigations of the United States Geological 
Survey. Book 5, Chapter Al. 160pp. 

Buchanan, T.J. and W.P. Somers. 1968. Stage Measurements at Gaging Stations 
Techniques of Water-Resources Investigations of the United States 
Geological Survey. Book 3, Chapter A7, 28pp. 

Carter, R.W. and J. Davidian. 1968. General Procedure for Gaging Streams. 
Techniques of Water-Resources Investigations of the United States 
Geological Survey. Book 3, Chapter A6. 13pp. 

Environmental Protection Agency. 1976. Methods for Chemical Analysis of 
Waters and Wastes. EPA-625-/6-74-003a 298pp. 

Federal Water Pollution Control Act Ammendments of 1972. 1972. 70 Stat. 

498; 84 Stat. 91, 33 USC 1151. 

Geldreich, E.E. 1966. Sanitary Significance of Fecal Conforms in the 

Environment. Federal Water Pollution Control Ad. Cincinnati. 122pp. 

Geldreich, Edwin E. 1975. Handbook for Evaluating Water Bacteriological 

Laboratories, 2nd ed. U.S. Environmental Protection Agency. Cincinnati 
196pp. 

Gregory, K.S. and D.E. Walling. 1973. Drainage Basin: Form and Process. 
John Wiley and Sons, New York. 456 pp. 

Gunnerson, C.G. 1967. Streamflow and Quality in the Columbia River Basin. 
Proceedings: American Society Civil Engineers, Journal of Sanitary 

Engineering Division. 39:1-16. 

Guy, H.P. and V.W. Norman. 1970. Field Methods for Measurement of Fluvial 
Sediment. Techniques of Water-Resources Investigations of the United 
States Geological Survey. Book 3, Chapter C2. 59pp. 



124 


Kunkle, S.H. 1970. Sources and Transport of Bacterial Indicators in 
Rural Streams. Proceedings: Interdisciplinary Aspects of Water- 
shed Management. Bozeman, Montana. pp. 105-132. 

Kunkle, S.H. and J.R. Meiman. 1968. Sampling Bacteria in a Mountain 
Stream. Hydrology Papers No. 28. Colorado State University. 

27pp. 

Likens, G.E., F.H. Bormann, R.S. Pierce, J.S. Eaton, and N.M. Johnson. 

1977. Biogeochemistry of a Forested Ecosystem. Spr inger-Verlag, 

New York. 146pp. 

Millipore Corp. 1975a. Total Coliform Analysis. Application Bulletin 
AB311. Bedford, Mass. 8pp. 

Millipore Corp. 1975b. Fedal Coliform Analysis. Application Bulletin 
AB313. Bedford, Mass. 8pp. 

Orion Research Inc. 1974. Instruction Manual. Ammonia Electrode Model 
95-10. Orion Research Inc., Cambridge, Mass. 24pp. 

Pfankuch, D.H. 1975. Stream Reach Inventory and Channel Stability Evalua- 
tion. USDA Forest Service/Northern Region. 26pp. 

Snyder, G.G., H.F. Haupt, and G.H. Bilt, Jr. 1975. Clearcutting and Burning 
Slash Alter Quality of Stream Water in Northern Idaho. USDA Forest 
Service Research Paper INT-168, 34pp. 

Stephenson, G.R. and L.V. Street. 1978. Bacterial Variations in Streams from 
a Southwest Idaho Rangeland Watershed. J. Environ. Qual. 7:1 pp. 150-157. 

Stringer, E.T. 1972. Techniques of Climatology, W.H. Freeman and Company, 

San Francisco. 539pp. 

World Meteorological Organization. 1969. Guide to Meteorological Instrument 
and Observing Practices. 3rd ed. WMO-No. 8. T.P. 3. World Meteoro- 
logical Organization, Geneva. 




' 4 ' 




it 






BASIC DATA RECORD 


125 


I 


4 


ifs o 

CN| m 


O O w 

»A 

O 


nA o 

fM 


O 

nO ^ 
•A rsi O 
ro <>• 


(M CO 




. O rs. 
O 


lA 

O 

O 


V 


V 



0 
^ CO 

01 
sC ^ 


tn «J 4> 
ir> «B (0 
C G 


v 

u 

o 

u 

(/> 


X 

u 

ffl 

0^ 

0^ 

s 

(0 

V 

u 

C/) 


o 
r-i o 
^ C>4 


^ m 

vO (0 tt 

o O 


« 

»A lA 


f»4 

A* 

Ol ^ 


(N 

O 

O' O O 


00 00 
m <A 


vo oooiAoo a^«>j<AOtA<n i 

as<M IV 
^ cn CM ^ 


V V 


^ O <A ^ 

^ cn ^ ^ r> 

lA ^ 


OO 'O 
ri 


m ^ 

<A ^ 
<A CM 


CM O 
^ CA 
CM 
lA 


^ lA r>^ NO 
NO ^ <A 


a 


00 cn 
CM ^ 
CA C-l 


CM lA 
r*» 

ON lA CM 


O 

lA 


ON *-» 
CM 2 
w 


00 O ^ 00 
cA 

CM 


O 

CA O <A ON — < 


O O 
CM CA 


-4 


.. c 
e O : 
O -H 

f-( 4J 
4J (0 

(0 u 
4J O 

CO pJ 


O NO 
CA CA 


CM lA 
NO fA 
CA CM 








U 

0) 











U 

00 


« 









CO 

ce 




iJ 







c 

00 


o 


C 







•H 



u 


9 








■U 




O 







NM 

a 


*0 


u 

lA O 

«0 *0 NO 

<r 



CA iA 

O 

a 


4> 

4) 


CM CA 

CA CA ^ 

CA 

CM 


nO CA 




> 

pH 

o 

CM 





CA CM 

to 

NM 


Q 



O ^ 






00 

o 


6 

O 








c 


41 


c 








•M 

e 

pH 

CO 

o 

CO 







iJ 

o 


(8 

pH 

9 







4J 

•H 

O 


U 

0 







0) 

U 

fH 


O 

IM 







(0 

CO 

u 

C 

« 

<V 

CA 


U 






H 

o 

9 

B 

CM 

» 

6) 

CM 




pH 


pH 

O' 

9 


e 

C 




<0 

(8 


4J 


G 

On 







4i 

0 

«8 

4) 








4J 

OO 



3 

0 







•H 

c 

4» 

CO 

pH 

O 







e 

1-^ 

O 


<8 

H 







M 


eg 

1 

> 



I 


I 


H "O 
O 
I > 


e w 


U 4i 

« 3 


CQ <0 

» > 


0) 

00 

«B 

u O 

c 

(0 4-» 
ij n 
(A 0^ 

c u 
o 


^ 0 ) 
o 

s: • 

OO 6 

ss 


o 

u 

« 

(J 


•o 

C ^ 0) 

0 ^ 0 ) c o 

00 60 *H H £ 

4) 

•J 


60 

4» O 
>N C 


OcS 

^ (J 
< c/3 


O <S 

« 00 (4 u o 
U £ Z 0 ^ 9 C V 3 


a. 
Z I 

o 

fAC 

o *-• 

Z k« 

o 


<r CM ^ 

X o o 
z z cu 


E a 

o o 

B o a o 

hri b w 

O ^ O c 

vm (A iw CO ft> 

•H GO 

^ ^ V 

o c o c w 

(J 0 u o o. 

p-( O O 

(0 u <0 o u 

4J w o O 

O « 4J 

H bk. CO 


/ 


ice - Station was Iced so that sample variable was not obtainable 


< 


BASIC DATA RECORD 


126 


4. 



1 

oc 

O *0 
rA 4> 
O > 

S 

U-( 

« CQ 
u u 
(/) (/) 

« « 
« 


o in 00 Oi NO 

€n cn m cn 

<**> 

Os ^ 


« 

« 

dtf lA 


fA 

O sC ^ 

^ OO ^ 0^0 


00 


^ tn r** 

m o ON 
^ 


nO nO 'O 

m ^ 00 ni 


^ GO 

c 


es O ^ CM lA 

CM O <*«* <r lA <n 

cn 
os ^ 


’O- 1^ 

CM CM 


»n 

V 


o ^ 

CA •-< 
cn CM 


>> 


trs *-4 


CM iA iA 00 O 

cn iA ^ iA ^ 


OO ^ 


O 
CM <A 


00 <A <A fA 
vO O 


^ (A CM 


lA O' 00 

iA ^ ON CM 




O O 

CA 


O' iA 00 ^ O' 

CM «-< nO lA iA «0 

^ CA 


« 

O CM 
CA CA 


A' 


CM 

CM 


o 

nO cA ^ 

00 00 O O 


iA 


fl0*-^00O fl0CAcAONO-«0 I 
nO O O ^ ^ O' CM I 

CA CM ^ 


iA iA >% 


CA iA 
— -O 
CM 


Os ^ U 4J 
iA iA « GO 
0 0 


CM nO iA 

CA ^ 


QO <r 
O' O' 
CM •-< 


c 


lA 


-f* 


« 

4J 

u 

(« 


co 

U) 




GO 


.. <0 

•• C 01 

c o 

O •H 
•M 4J U 
4^ (0 0) 
CO U W 
Ai O CO 

c/) 3 


V 

Wl 

3 


K e 



•H CO CO fO 
(0 » » » 












— o -• 












u 


^ X 






e 






01 


60 6 00 






•H 





B 

y 


£35 





eu 


CO 




a 

(0 







Z 1 

c 

iM 


01 


a 

u 







1 ^ 

o 

u 


00 



<0 


«A 





o 


w** 


« 



X 


o 





<AC 

u 



AJ 


w 

u 







O 

(0 

01 

u 

c» 

*o 

c 



< 





Z b 

4J 

oc 

c 


01 

01 



u 





o 



<0 

u 

•o 

E 

9 








a 

<0 

4i 

CO 

c 

•»4 

u 






r> 


•p4 

X 

m 

01 

01 

•o 

•H 


^ CO 




o 

(M ^ 

U 

u 

c: 

u 

Cl 

01 

a 

X 

•-3 U p 

<0 

60 

<0 

u o 

X o o 


«s 


o 

CO 

(0 

01 

Cu 

< CO P 

c^ 

X 

z 

US X CO 

Z Z Cu 

u 




3 


X 













u 









E B 

o o 

BOBO 

U «-« W 4 J 

O o c 

«M GO qb ly 

y <f >4 01 00 

^ ^ ^ .H y 


^ o ^ O 

CO U CO u u 

4J w y o 

O 01 ^ 

H b. CO 




4 


BASIC DATA RECORD 


127 


4 


00 O 00 00 

<M O 


^ «A 
^ O 


a 


IT >0 

sc 


O O 
CM m 
CO 
sD 


M 

vO 


a» 

o 


o 

CM CM 

tN. ^ f>. o o o 


CD 

vO sO 

CM 


tn 


GO^CMr*^ «-»av«nO 00 «A 

m •«.» m 

^ CM *-4 ^ 


o 

CM 


CM 

V 


c 



JZ 

o 

cc 

•V 

QC 

6 

(0 

(y 

V) 


01 

w 

<C 

01 

> 

b 

9 

CO 


vO iTt 


^ m 

»o 


c^ o 
m ^ 


^ O Ds 

-« c^ %0 

CM 


^ O 

\0 

CM •-• 


o^ O O' r** O 

O *A «o ^ 

vO O 

CM 


00 00 o 

cn fO r*» 

c*> >o 


00 «A 
O CO 
CM -M 


c: 


NO O' 4J 4J 
NO ^ CD Q 
C 6 


^ ^ lA 

ON O' 


CA ^ 
00 00 
CM ^ 


c 


^ tn lA 

^ CA CA 

O 

NA ^ 


CA 00 ^ 

00 ON CA 


NA CM 
ON On 
CM 


a 


On 

O CM CM 

O -O O O O 


00 'O o 

CM CA CA *0 

On 

^ 4A 


00 4-» 

On 41 ON 

« 


OONAr^O -^OcA*^iAO 
-*o 00 ^ ^ •-• 

^ CM ^ ^ 


lA 

CM 


CM 

c 


nO nO CM 







o 


rA «A <0 

CA 



Mb 

sfl' 












































pN. 00 

O 


^ -b r«% 

CM 



CM 

00 


CM 



r- •-• 

o 


x >*» '4- 

CA 



Mb 

Mb 


pb 



On ^ 

CA 












o 

•b 




































lA 













OC 













CD 







































H 

00 



















C 







ON 






•H 






CO 




o 




bs 




6 

CM 




bu 




(0 




CL 





w' 

/MS 


c 

Nb 


D 


a 






X 

C 

o 

U 


00 



CD 




41 

2 

-H 

sH 



€9 




b 



b 

£ 

8 

b 



b 



• • 

« 



D 


'w' 

« 

41 

b 

tt 

•o 

c 

C 

41 



b 



b 

OC 

C 


41 

41 

0 

>- 



fC 

b b 

b 

•b 

b 

<0 

b 

TJ 

8 

•H 




b 

41 41 

41 

CL 

ce 

b 

0) 

C 

•b 

b 

b 



41 

b b b 

b 

•H 

X 

0) 

41 

41 

•D 

(Q 

41 

41 

Oil 


•b <0 nj 

<« 

u 

u 

c 

b 

a 

41 

U 

b 

b 

B 


m 3 » 

> 

41 

m 

•H 

U 

(0 

(A 

O 

(Q 

<0 


41 



b 




o 



3 

O 

hI 

H 



Ou 

Q 



10 



OOf^CMCA OOn^CAOOiA 
^ ^ O 'O ^ 00 CM 

^ CA CM ^ 


O NA 

-H ^ ON 

. On «0 • • 

OOiACMt-i CMnO^OcMnD 
>0 CA CM nA ^ O CM 

^ CM 


CM NA 

O -* 


lA 
On lA 
^ O O 


^ O -< 
^ X 
OO 8 00 

sss 


0^ 

X ^ u 
CW < M 


o -a 

00 <0 u o 

r Z 0^ X (y^ 


fr. 
Z I 
I 

o 

nc 

O 

Z b 

o 


CM ^ 

X o o 

Z Z Cu 


b oH 

01 8 


e 


o o 

B O g O ^ 

O 0 c 

(M 0) NM n 41 

41 'b 41 CO 

-H ^ 41 

O C O C b 

u o o o a 

^ O ^ O 

(0 U 4 U U 

4 J W tl W 0 

o 41 b 

H u. CO 


/ 


% 




I 



I 


BASIC DATA RECORD 


128 


4 



i 


cs 




o S 


o 

o 


•-H ir» 

9 ^ 


^ 9 » 
CM m 


00 O 9N ^ ^ 

•n m cn « 4 ' 

^ cn CM 


CO go 
CM 




O fO 
CO >» 

00 
CM 


9 ^ 

O 


so 

9 * ^ ^ 

00 CO O O O 


O CO O 9s 

•-^ CO ««ap so ^ 
fO 

00 ^ 


O 00 
CO lA 


00CM»A^ lACOCOOcOsO 

CO ^yiAco ^ o**<M 

CO CM ^ 


O 

^ CM >s 

o 


00 

CM 


9 ^ 
CM r*- 


CM CO 

o o o 


00 O CM 9s r** 

O vO •4' SA *9 

CO 

h*.. ^ 


00 so 

»A 9s 


CO OOOCMCM ^O^COO^OCO 

CM sOn^CM '4'-^ 9seM 

^ CO CM 


CM 

9 s 


V = 


OS 


sO lA 




.. <0 

••CO) 

d o > 


*j to ^ 
to u <-» 
O to 
cn nJ 3 


O lA 
sO *4 SA <4 


4 
00 sA 


a>| <u\ 

^ 6 
tp "H I 

oIhI 


K C 
to 

6 6 


U iJ 4-1 W 


O 00 
CM O 
CO CM 


US 
X ^ 
a. < 


0U 

z I 

' o 

COC 

C w 
Z u 
O 


o o 
e o E o 

U ^ U 4.4 

o o e 

0 ) M-i 0 ) 41 

•H 0 ) •«-> 0 ) 09 

^ ^ ^ ^ 0 ) 


^ O 
eo u u 
O o 

4 » 4 J 


/ 


4 


BASIC DATA RECORD 


129 


<s 

o 


00 

QO 


00 





4 


i/> O nO »A 

O sC JA 

^ o 

^ O 


r^»-»AiA N 4 ?r-<AOaOiA ^ 
fM ^r\ ^ ^ co«^V 

^ <A 


V 


r« 



fA O 
^ rA 



^ CM 
. lA 


CO (0 

c c 






»A '•O 
eg 



o 

fN. 


0 \ •— I 9 ^ ^ *-4 

»A CA 


•4- »A 
<N lA 


»A 

o 


eg 

OP 

Ov 00 


vO ooovr^cA a>^<AO'^r^ I 
I— « lACN-^ CJN-^I 

^ CN eg ^ 



CO 


^0 OO 9^ 

^ fA CA eA lA fA 


00 <A vO eg 

1 ^ o.^ pm eg ^ 

eA eg 


eg wA 

^ O 
lA ^ 


On eg o eg 4J 

tA *A CA 00 

e 


lA 00 
^ eg 


CA 


»A 

eg ^ 
CA eg 


eg »A 
r>. ^ ^ 
On »A 


vD <-* 4 J 
^ 00 QO 

c a 


O n6 O O 

00 ^ 00 *-< *^ 0 O<Af-< 0 OUA 

eg nO •9' *9 

^ eg ^ ^ 


I j 
I 1 


O 4A 00 

eg eg eA 

9N 
-H O 


CA CD 

^ ^ CA 


00 9v 
sO CA 

CA eg 


lA lA eg vo -9 

eg ^ CA CA %3- CA 

O 
O ^ 


^ u 
^ 9) 
Q 


lA 

V 


rs. eg 

»A CA 
CA <s 


^ eg 
A* eg 



CO •• 


.. (0 
•• c u 
c o >* 


w (Q a> 

flj U 
4-» O CO 
c/) nJ 3 


00 CO 

c c 


(Q (9 (0 

3 » > 



(0 


u 

Q> 


Oi a 


6 

a. 

a 


•91 C 

OJ Q) 


— O'-* 

OO e 00 

S3S 


Ui ifi 

X »J o o 

a. < CO H 


O -J- 

<9 00 CQ CJ O 
U £ z ^ X CO 


cu 
Z I 
I ^ 

o 

O *- 

Z w 

o 

*gj ^ 

eg 

X o o 
z z a. 


« CO 

U ^ «-H 

6 e 


o o 
e o E o 

O O C 

w-i 00 OO <v 

•H 01 QO 

^ ^ ^ ^ 0) 

o c O C 

u o u o a 

<-• O •-• 0 ^ 

(9 U « O U 


/ 


( 




* 


BASIC DATA RECORD 


130 


I 


4 


JZ 

u 

(0 

V 

oc 




U 

(0 

a 


s 

CO 

0) 

u 

u 

(/) 


>s 

0) 

> 

u 

3 

(/) 


O' 


o 

O' 


00 

CM O 
O 0^0 


O iTt (M NO 00 ^ 

m -4^ fO fO 


O' ^ 


y 


r- ^ nO CO 
40 O' O' 
^ CM ^ 


lA tO ^ CO 
4A ^ 00 CM 


O ^ 

c 


O' 

CM 


CM O nO O' lA CM 

CM <A CA CA 4A fO 

O 

O' ^ 


\0 o 

•-* cA y 


O ^ 
CA rM 
CA CM 


c 


'O 


*-4 lA 

O O' O ^ 


CM lA cm 

CA ^ «0 lA CA 

O 
oo ^ 


00 ^ O' 
*-» CM 


00 CM NO 
NO O O' 
*-4 CA ^ 


^ ^ 4A O 4A CM 
»A ^ O CM 

CM 


V 


H 


CM CM 

c 


t/i 


(0 

• •CO 

c o 

O -H 

f-t 4^ U 
4J (Q o 
(0 U w 


O' o 

CM O 
^ CM 
r>* ^ 


CA O 

O 


nO 4A NO *4^ 


'O 00 'O 00 
lA >0 4A CA 


6 6 w 

w W (Q 


U 4-» iJ U 

*t-» <0 to <0 

to 3 5 > 


<0 o 
C lx 
o 


O' 

o 


CM 
'O •^ 

o o 


CM ^ O O O 
4A O CM 


4A 4A 
00 OO 
CM 


X _] 

cu < 


ou 
Z I 
I .-N 

o 

(AC 
C 4-» 
z u 

O 


o < 

(Q 00 (Q U O 
CJ Z z OtC X (/) 


CM 

V 


o o 

6 0 6 0 

u u 

o ^ o ^ c 

0) NM 00 H) 

•»4 4> <«-t 0) CO 

f-4 >^4 i>4 •*•< 

O C O C 
u O U 0 Q. 

o ^ O 

4 U (0 U U 

4-» w cj w o 

o 0 ^ w 

H U. c/3 


/ 


a 


BASIC DATA RECORD 


131 


4 




00 O 
CM n 


^ O r** 
^ ^ ^ 


O 

A 


00 00 
CO 


CM 


O ON 


c 


0) 

u 

o 

u 

t/5 


m 


00 



O u-» 

CM ^ 

^o 


<n 

cn 


^ sO sO nO O 
\0 ^ m 


00 00 
CM m 


^ 
O O 


rN cD(AO\ao 

i/N iA >0 oO 

CM ^ ^ 



00 NO C^ 

^ m <n 


'JO ^ 


00 tA 00 

»A r^ »A 

^ CM 


lA O' 
*«■ lA 
CM ^ 


C 


o 

o 


ON O 

o 

'O 00 


m ^ so 

»A *0 CA 


>0 hC 
'O >o 
A< <M 


lA 

OO 

»A 


O ^ 
ON CM 


c 


<r o 
o 

vD <0 


O' »A 

iA '*9' 


(0 O 

c c 


>0 fA 

sO r«> 


CA 


lA ON 

rv 

CM ^ 


G 


O CM O nA CM 

O CA ^ GO CM O O 


CO O *0 O' 

Ch CM CA CA 

O' lA 
lA ^ 


(A 4J 
0) 
OB 


00 GOO'O'O O'O'CAOOOO 

•o MT r^ cA CO 

CM ^ 


•O ^ 

^ V = 


CM O 
i-* O 
*A 


00 O 
A. ^ «A 
ON 

^ o 


S)CA 


.. nj 

• •CO) 

c o > 

O •H 


0^1 0^ 

4^ e 

<0 •H 

OH 


CM A. N© ^ 
CA CA CA 


A. O >0 lA 
lA CA 


K C 

<0 ♦iM 
6 6 


m <0 (0 

> » > 


'O A> 
CM 


A* 00 A» CA 
^ O' ON 
^ CM ^ 


CA CA CM O ON 


CM 

s^:8 


'A 

=:2g 


A.OOCM'O iAiA^OflO'O 
A- CA lA ^ ^ CM 

^ CA CM CM 


. to /-s 
O — 
X ^ 
) B 06 

35 


O P 
(/) H 


0« 
Z I 
I ^ 

o 

•AC 

O 

z u 


0-9 CN ^ 

(OBOeO UO XOO 

tjzzsiCxcn zza< 


o 

B O 


o 

E2 


O — • O Jt 

oci eo o f« U U 

w y w o 

o V w 

H 






BASIC DATA RECORD 


132 


4 



GO 

CD 


O 


*-4 C«l ^ 

o o o 


ir>o cn vOO 




cn OO^rMOs 

CM r*^cM 

cn CM ^ 





GO 
' CM 


vO 

ON 


CM 

r* 


M 9 

o o o 


f^ O r* ON m rs. 

^ o cn cn »A cn 


O 9 ^ 
CM fn 


^ r^moovO vOcMcnOf^xO 
CM rN.CM 

*-t fn <M 


cn ^ 

CM ^ >N 




o m 
o <n 


cn 


.. (9 

••CO) 

c o > 
o •H 
1 -t w w 
u (0 
(0 u w 

w o (0 
^ 3 


CO lA 

r- f-4 


vo tn 


cjN in Os 

m m <n 


^ «o ^ r^ 
in * 4 * in cn 


ON 

<n no 


cn 

m 


0)1 o> 
B 

<9 1 

OlH 


00 00 O GO 
m CM o 
cn CM 


sc in 
o 
cn CM 


^ cn o cn CM 

^ ON CM 


bk 






a 




a 

a 






s 

NM 


a 


a 

k4 




K 

c 

0 

U 


00 



a 

a 



a 


•IH 



a 



X 





B 

u 



4J 


u 

u 

3 



w 

''-X 

a 

a 

4J 

a 

•o 

C 


u 





AJ 

oc 

c 


a 

a 


a 


u 

u 

Wt 


»M 

a 

u 

•o 

e 

a 



V 


a 

o. 

a 


a 

c 


u 

0) 



u 

*J 


j= 

a 

a 

a 

*3 



•H 

a 

a 

a 

u 

u 

c 

u 

a 

a 

e 

6^ 

a 


» 


a 

a 


u 

a 

a 

a 

V 





b> 

•r4 



3 


JZ 

H 





Oi 

o 



CO 


u 


x-s « ^ 

— o 
•««- j: ^ 
00 e 00 

SSS 


U. in 


a. •< 


o ^ 

<9 00 <9 U O 
U £ Z ^ X C/) 


Z I 
I ^ 

o 
<nc 
O iJ 
Z lx 

o 

V« W 


X o o 

Z Z cu 


o 

o c 

•M a 9 ) 
<H a a 
^ -H 0 ) 

o c >-> 
(j o a 

^ O 
a u u 
y w O 
0 ) w 

bu CO 


/ 




BASIC DATA RECORD 


133 


4 


u 

o 

u 

V) 

u 

(Q 

0) 

6 

<0 

0) 

4J 

(A 


>c 

IT 


CO 


<M ^ 
O 
'O ^ 


0) 

(C 

o 

Q> 

> 

u 

3 

(/) 


fn m 
^ •>3* 


^ o m 

nO *A ro 


SA ^ o.^ ^ 

m ^ ^ fO 


^ CO 

<s ^ 


p^i 

•-H 0*^0 

O sO o o 

. av • • • 

ooooOO iA^*or>*as I 

^ «— CM I 

^ CM <M 


f^ Cs| 

»n m 
00 


CO 

-» O 
cn CM 


i 


^ oo 


m 

^ m o c^ 


^ cn CM 
»A fO ^ CO 


in ^ 


CM 


aor^ao9« OcocMO'^r*^^ I H 
sO CO ^ O CM I 

^ CO CM CM 


CM CM 

V ^ 


CO CM 


>c^cMCM ^CM m 

^ ^ <o co ^ 

^ CO 

in 


lO ^ 

m CO 

CO CM 


^ o 


CM m 


in ^ CM 
m CO ••tf CO 


^ CM o\ 

CM 


m ^ 


m ^ 
m CO 
CO CM 


in 


CO CO 

o o >o 00 


C^ CM o 
^ O 

c^ m 


<-l NO 4J 4J 

in CO CD <D 

c c 


oocM-^*^ f^ON^O^r^ i I I 
^ OH o in CO I I I 

-H CO CM ^ 


O O 


'O in m 

CM ^ 

^ 


H 


tA 


^ CM 
CM CO 


0) (U 

u u 


CM <4^ V « 
CO CO O U 




(Q 

.. C2 V 

c o >- 

O h4 

1-4 w kl 
U tQ 0^ 
(C U i-t 
4J Q (C 
^ 3 


a» 0^ c) 

U iJ W 
iH CO <0 «D 
(0 » » 


w w « 
4J 

U krf 


4) 

CD 

« 

4J 

W • 

64 £ 

<0 4 ^ 

4H to 

to <y 

C w 

u 


a» 


CO 


CM CH. 
i4 CO 
*4 CM 


CO CO 
-4 CM 


^ CO ^ 
^ O -H 

X 

60 S 60 

535 


U w 
X o p 
0 * < (/) H 


o ia 
<0 60 (0 u o 

U Z Z 6^ X V) 


Pu 
Z I 
I ^ 

o 
coc 
O 4-» 
z w 
o 

US w 


X o o 

Z Z Cu 


6 


o o 

E2 E2 . 

O o c 

« tM CO 01 
0> 0/ 09 

^ ^ .H a» 


^ o ^ 0 

fO U CO CJ u 

W W t> W o 

O 0^ W 

H C/) 


/ 


4 


BASIC DATA RECORD 


f, 

(■ 


13A 



00 CM 
^ CM 


00 

lA ^ 4n ^ o 

O sO 0^0 


O O CM CM m CM 

fO <A cn 


O' ^ 


CM GOnOiAO vOtACMO^O 

(A iAaoiAr*>«^ 

•-I CA CM ^ 


V V ® 


O 00 
CM <A 


CM O nO nO 00 'O 

CM CA CA <A CA 




lA 

V 


lA CA 
O >0 
CM 


3 


CM « 
CM CA 


0> •-» 

CA nO O O 


CM o 'O 00 CM 

(A CA ^ CA lA CA 


00 


O' OOOOnO*^ CA^^CMO-^'CM vJ 

>^00'A 

CA CM CM 


CM <A 

CM CM >> 


00 'O 
CA 00 


lA ‘A 

^ ^c o o 


O' o kA >0 •o 

CM CA vO lA CA 

CM 


lA 

V 


OO^OO'O CACMCMOOCA 
r^. '•4’ sO lA 

CA CM CM 


H 


V 


V 




00 sO 


CA lA vO lA CM 

^ iA *.4 »A CA 




CM 


iA 

CA CM 


C 


OO 





(/) 


.. c 
c o 

O T-* 

•H MJ 
4 m » (0 

(Q U 
4^ O 
CO nJ 


w 

(0 

0) 

> 

u 

0) 

CO 

3 


3 


K C 



CO 

V4 

0) 

a 

e 

V 

H 


^ U 
0) 0) 


^ Vi ^ 










^ o — 












u 


^ X 






c 






0) 


00 e 00 






•H 





/-s 

4i 


3 S3 











B 

CJ 






a 


(D 




a 

CO 







Z 1 

C 



« 


a 

k< 








0 

u 


00 



(0 


<A 





0 

•H 

>-1.' 


(9 



X 


O 





<AC 

w 



4i4 



u 


o 





O 

(0 

0) 

4J 

CO 

■o 

c 








Z w 

4J 

oc 

e 


0) 

01 



CJ 





o 

•H 


(0 

4J 

•3 

e 

<0 







*4 W 

a 

(0 

4iJ 

0) 

c 


u 






CA 



X 

U) 

0^ 

01 

■o 

•H 


u: (o 




C ^4 

>4 (M 

u 

u 

c 

bl 

a 

0) 

B 

X 

^ CJ p 

<0 

00 

(0 

U O 

X o o 

0^ 

0) 

•r4 

u 

0} 

CO 

a> 

a 

< CO H 

u 

£ 

z 

X (O 

z Z a 

u 

•H 



3 


X 








a 

o 



CO 


u 









e 


e 


o o 

S O 6 O 

V- — w — w 

o ^ o ^ c 

iM a vw 00 a» 

^ 4> ^ Oi 09 

^ ^ rH •vH 0) 

o c o c u 

{J O U O Q. 

f-( o I-H o ^ 

(0 o ^ u u 

W <J W O 

O « 4-» 

H bu CO 


/ 


CO 

O 


E 

•H 

H 


U 4^ 4^ U 

•H (0 <0 lO 
(0 3 » > 


» 


■*> 


BASIC DATA RECORD 


135 


4 


I 



00 \r\ 
rsi ^ 

>o ^ 


C' vO 

<n 


«n o 


CS lA lA »A <A 

<A O 'O 

-y CM 


e 



u 

o 

u 

(/) 


X 

U 0 ^ 

(Q W 

a> (9 

o: o 


s 

(0 

a> 

w 

4J 

cn 


>% 

V 

> 

3 

C/) 


o o 

CM O 

CO 

vO mM 


lA sO 
sO <A 


O 9^ 


\r\ ^ %rs ^ 

^ \0 O O O 


4A »A 


00 OOOiAOO fAO<MOtA'»^ 

<A 

^ CA CM CM 


CM 

CA 


M 


a 


sO iA 

^ CM 

vO 


tA CA 
^ CA CA 


9 k 
CM O 
CA CM 


9k 9k 


9k O 9k O U*k 

CA lA <f -9 <A 

s9 9k 


kD k9 


O 

00 

-9 


CM CA 
00 00 
CM 


G 


yQ ^ U U 

lA 3 2 2 

c c 


lA 

lA CA 
CA CM 


00 <9 lA CM 

CM CA CA 

9k vO 
^ lA ^ 


»A 

9k 


kA 

O 


CM 9k -« 
O O O 


V 

CB 


CM r«*OCMkO CM9kCMO-9»A 

^ (*> i/>> O «-« 

CA CM CM 



-4 


CO O 
r*«. ^ <A 


.• <0 
G V 
O 


a>l 0) 

4 -> 6 

flj -H 

OH 


CA O CM 
CA CA *9 CA 


00 *9 kA O 
lA 00 kA 
^ <A CM 


CA >0 

CA CM O 00 ^ 
^ OO lA 


CM k9 

O -* 


»A O 
^ CM 


9 k 

9k 


QJ 0^ 
Ul 4^ U 

f9 «9 

(9 3 » 


OCM«9 A-^tACMOr^kA 
CM r** ^ O nC 

^ ^ CM CM 


m 

kM 0) 

U 00 

<9 


^ o — 

X 

00 e 00 

S3S 


X ^ u p 

a. •< (/) H 


O -a 

<9 00 (0 U O 
U £ Z Od X t/> 


a* 

Z I 

I ^ 

o 

O k-* 

Z 

o 


9 CM 

X o o 

Z Z Cu 


B 

O 

e o 

u ^ 
O 

kM QO 
•H 01 


O -Si 
<9 U 

O O 

0) 4J 

a. c/) 


/ 


\ 


4 $ 


BASIC DATA RECORD 


136 


A 



<r 00 


o 


sO O 


^ <n p 
OOP 


i/*V O 9 > ^ 

^ o m c*> 

^ M 
a\ ^ 


o 


oou^<NO r^<ncsi— 

tr> nO O >0 00 NO 

^ ^ fO ^ 


V 


o 






GO O ^ 00 
<n <• tA CO 


o 

>o 


^ fA 


(S OO 

00 « 4 ‘'^fO COCN^O^AO 
iA lA On ^0 00 nO 

«~l 'O 


^ CM ^ 
O O O 


o 

00 






IS 


<0 

• • c a> 

C 0 >* 
O -H 
•r 4 U M 
4 .i <0 <U 
<0 U 4 ^ 

iJ o «9 

;o nJ 3 


00 O 

-H o 


nO iA 

«A 


CNJ lA ^ O 
nO lA 


•-^ CM On 
iA ^ (A 


^ £ 
flj -H 

OH 


b AJ 
•H <0 

«0 5 


CM O 
CM <*» 


O On 

<A ^ »A 

OOvOOOOO lACMCMOiACM 
lA sO *-4 ^ nO 

^ CM CM 


nO r^ 
CM r*. 
CM 


O 

^ iA 
O O O 


TJ 
4 > 

•o 

C 
0 ) 

^ 0 > 


(A 


2 V 


— o -- 

X 

GO S GO 

SS 5 


<A 

X ^ o p 

04 < ;o H 


CL. 
Z I 

1 4 -^ 


o < 

(0 GO ed U O 
u £ Z ^ X U 3 


X o o 

Z Z CL. 


E e 

o o 

a o E o 

b. -N t <-« w 

O o ^ c 

N.irt OB «M CO V 

•H 0) *H « CO 

^ ^ ^ .H V 

O C O C w 

u 0 u o a 

(9 <J 4 u U 

u W u w o 

O « AJ 

H bu 


/ 


f 






BASIC DATA RECORD 


137 


O 


4 


o no <s ^ 
fs o m »r> <n 

00 

iA ^ 


CM 00 n CM 

CM O nO 

•4' CM 



CM lA 

^ >o 

lA ^ 


m lA ov lA 
vO *A lA cn 


o 

00 CM 


<n ^ xo 

\C CM A* 

•4 CM 


1 

! 



X 

o 

<0 

oc 


q; 

u 

(fl 

Q 


CM O 
^ O 
4A 


s 

(0 

u 

4-» 

CO 


>» 

a> 

> 

u 

3 

CO 


CM 00 ^4 lA 

»A ^ lA <A 


CM lA 

^ C^ sO O 

^ >4 CM 

CA CM 


^ O vO lA CO CM 

CM O ^4 't' CA 

CM 
^4 ^ 


CM 

lA «-• 
»A 


^ o 

CM vx 

• • • ® vl 

00 oor^cMcM O^oOfAsO^ IVI 

^4 CM ^4 » I 

^ CA CM CM 


CM 


<■ O 
CA 
CM 


(0 tt 

e c 


U 00 vx 00 

V »A CA 

« (A CM 


O 00 

A* CM lA CM CA 

^ ^ ^ 

^ CM ^ 


4) 4) 41 CM ^ 

U U U lA 9^ 

•H ^ 1-4 -4 CM 


lA 


O O O ^ 4) 9 

CA O CA CA O O 



CM CM OO 00 

lA iA 9V 

^ CM 


lA O 
CM O 


sO CA 
CA ^ 


sO ^ 

r** CM 

a> 


•• C 4) 
C O >• 
0 •w 


a OB 

c c 


(0 (D 

» > 


O »A 
O CM 
»A CA 


^ O — 
X 

OC B 00 

335 


^ CO 
X o o 

a. < CO H 


o < 

(Q 00 (Q O O 

(j X z X CO 


0- 

Z I 

o 

O 

Z 

o 


«4 <M ^ 

X o o 

Z Z CL. 


B S 

o o 

£2 E 2 . 

O o c 

CO «M 0) 4> 

•..4 a» 4> « 
^ ^ ^ ^ ^ 
O C O C 
cj o u o a. 

pH pH 

pH O pH O 
<0 U <0 U CJ 
4J >.✓ w O 
O 4> LH 

H U. CO 






BASIC DATA RECORD 


138 


4 


as 

Os 


m 


O' lA 
<S ^ 
00 


O O A.* 
tA 


CA 

O <A 

^ ^ os ^ O O 

Os • • • • • 

• coAi 

•^OOOIA CA O^ 

lA rA Cs| fA 

<M 


00 fA 

00 ^ X 


di 

u 

o 

u 

C/) 


00 


u 

<0 

a> 

OS 

a 

<13 

a» 

hi 

4J 

1/3 


0 ) 

w 

<0 

Q 

> 

u 

3 

(/3 


fA O 
fM <A 
CM 
Os ^ 


O C^ CM 
»A tA v© •4’ 


sD nO 
CM CM 


sA CM 
Os CM 
fA 


O 


sO 'O O 

CM <J- ^ 


00 


^ o 
o ^ 


NO 

o 


^ o CM nO oo 

fA fA '4' tA nO 

^ o 

00 CM 


ON 

O 


oo 


CM iA O 
-4“ sA O' 
CM ■4' CM 


O OS sA «A CM ^ . 

CM os -4 V 


nO cm 

>> 


'4 4 * 
*4 4 


<A 

^ 4 

>0 ^O 4 O O 


00 O lA <A OO 00 

CM fA r*^ sO vO 4 

CM 


r-. lA fA 

O CM 
CM lA CA 


O r*** fA iA MO oo I xi 
00 CM fA I ^ 

CA 


4 

f-4 9^ ^ 


o 

4 ^ 


lA O <A vO O *A 

-4 <A A* lA 4 

O 

1**^ rH 


CM O iA 

fA O CM 

4A CA 


S 


4 O 

»A CM r-^ 


O O O 


CA O 
CM O 


r*«* OS 00 4 

lA 4 A 


r-*40CM lAC'^vOiAOa' VJ\/ 
lA^fA r*- CM ^ ▼¥ 

CM lA CA fA 


CM 

V 


00 


3 


O 

»A fA 


CM o CM -H as r*- 

«-4 CA lA sO r**. fA 



CM a» 


O Os 
vO OS 
4 CM 


>4 


c 

o 

> 

c 

CO 

o 



c /3 •• 

.. Q 

•• c dt 
c o >- 
o -H 

•*4 4J kri 

*J fO <u 

(0 U 44 

u O CO 

cn ^ 3 


CA 


O ^ sO 


s§ 


00 lA -4 \C CM r- 

CM —4 4 4 A fA 

— Os 

A ^ 


O 

fA 


GO vO r**. O' 
00 sO <A 
CA CM 


-4 ^ CM cn 00 I w 
lA CM CM I V 

CM 


d) 

Ut 

3 


X c 



0)1 0 )| 
^ £ 
<TJ *4 

gIhI 


<0 

u 

d) 

a 

a 

V 

H 


U U Wi 

0) V 0) 

U 4J 4J W 

•4 flj eg {^J 

cc 5 3 > 


c 

O 


Cl 


u 

d) 

u 

a. 


c 

(0 4J 
44 tf) 
U) 0) 


— o — 

X 

00 a eo 

*S 3>5 


id. c/3 

X u o 

< c/3 H 


Cu 

I 


Z .-s 

• o 

fAC 

O 44 

Z 

o 


O 4 

<0 00 <0 CJ o 

U X Z. id X Vi 


4 <M 4 
ZOO 
Z Z Cu 


4 CM 

V 



u 

fd 

u 

<d 

X 

u 


«c 

u 


fiZ 

o 


o 


o o 

a o a o 

Im U — < 44 

O O c 

sm 0 } «44 go 0 ) 

*4 0 ) *4 a> cn 

^ *4 .4 -4 a> 

o c o c k^ 

cj 0 u o a 

^4 r4 

.4 O o 

<9 cj <q u c^ 

*j w u w O 

O 0) 44 

H U. c /3 


CS 


/ 




BASIC DATA RECORD 


139 


o 
O 
lA OS 


nO 00 tA (S 
^A -.y »A <A 


^0 'O 

>o ^ 


CA 

sO • 


m »A 
tA 00 


ON fA 

^ ^ sO ^ 


lA O 
rsj fA 
00 


»A O r>. r*> 
lA lA lA CA 


«>4 

^ <N 
fA <M 


\0 •-• 
00 «A 
fA <M 


^ (N O 
O O O 


00 fN --4 
(SI ^ sO 
CM ^ CM 


00 CM ® 
CM ^ 

CM 


sO 


OS O 
^ fA 
OS 
<t ^ 


CM Os 
^ lA 


CM vO <A CA 
'4’ •4“ 'O CA 


STi CA 
O yC 
'4- CM 


CM 

CM ^ 


^ lA 


CA CA O' fA 
^ «4' lA CA 




iA O 
00 lA 
(A CM 


c 


CA 


lA O 
<A 
^ Os 


vO O 4J 4J 
CA >4 (0 to 
d d 


^ O O OO 

CM CM O 

CA CM 


d 


00 lA CM O 

CM -4 sO tA 

O' CA 
^ CA ^ 


u O 

01 4* 

m ^ 


O OO 
CM O 
CA CM 


e 


o o 
^ o 
00 


r- O 
CA 

ON CA 

<A 




•• d a> 
d o 
o -H 


<0 U 4J 


o d 

t/) m3 3 


<u a> 

U 4-) 4-> 

1-4 to fO 

CO 2r > 


CA \0 
00 


4 i-* tA 

nO 4 tA CA 


<0 

iJ 

a 

•H 

U 

V 

b 

cm 


O 

ON 


\0 tA NO 
O CM r- 
CM 4 CM 


CM 00 ® CM ^ 
ON CM tA 


p-^ tA O 
O O O 


ON 

4-^0 

•-too 


NO 

NO 


CO 

tA X 


OO CM CM r>* 00 

4 4 00 CM 

CM 4 CM 


tA >> 


0 ■ 
JZ • 
3 S 

.3 


iifi 
X m3 
CU < 


O 4 

d 00 d u o 
u X z u o: ^ 


Op 

z 1 

I ^ 

o 
rye 
O 4-» 
Z U 

o 


4 CM 4 

X o o 

Z Z CL 


o o 

B O E O 

^ u 

o o ^ c 

0 ) iiM cn 0 ) 

m 4 a> '•-4 0^ 0) 

^ ^ ^ ^ 


pH O ^ 0 
d u d u u 

4J W O W O 

O 0) L» 

H Eh C/a 




« 


BASIC DATA RECORD 


140 


00 

^ rsi 


O 

CN O O O 


A 


f»> »A m ^ ^ 

^ ^ ^ ^ \0 ^ 


OS r> m -o cs oo 

(N *A r-» 04 


V 


O 

04 <30 O 

O 

♦r> 


0> 

0\ 


00 

o*. 



vO O 

O 


00 OI 


00 O* iA 

>T 


OI 04 


OI 


»A 00 O O S 


vO 


OO^OiA ^\0no4^0 g 
04OOI vO OI '0^>| 
OI lA <n 04 


O <A 

O 00 3 

o 


i 


1 ) 

o 

u 

1/5 


CO 


X 

u 

<0 

0» 

o£ 

s 

<0 

u 

u 

V5 


a 

iJ 

CO 

O 

>s 

0) 

>• 

3 

(/5 


00 ^ 

00 

o* ^ 


04 <A »A 

0«. *A vO -.y 


OI ^ 
^ *A 


oo 

^ OI 04 

fA O O O O 


\0 OOtAiAOl 00o.>A^00O 

fA «»»a>04 lA 04 ^ 

04 ^ CA OI 


O' 

o 

00 


o 

O 3 


fA 


O- lA 

0>l ^ 

\0 «-*i 


^ ^ ^ 
vD lA ^ 


«4' 

04 


OI (A 
^ fA 
lA fA 


>s 


fA lA 


CA 

O 


^ ^ lA 
O O O 


ON uA 04 O OH »“< 

^ r-4 lA lA lA 

o 

^ OI 


OI ^ 


lA 

04 


OO 'O fA ^ 
^ CA 00 
04 •4- 04 


00 0» 'X ^ C' CO 
00 04 lA 

OI 


V V 


o a> 
o >s 

CA 

NO 


iA lA 


fA O ^ 04 O CM 

^ O NO UA nO 


NO CM 


^ ^ GO On O 

CM NO 

fA CM 




CO O ^ O* OI (A 

fA O*. lA nO ^ 

NO GO 


CA 


^ 4A 
sO CA 
CA CM 




4- 


CO 

e 0) 
o >- 


04 O 

o 

NO 00 


NO O 
CM O 
»A 
lA ^ 


^ B 

*0 M 

Q H 


OI lA 

nA -nJ 


CM ®N 


O* On 




X C 

<0 -H 

6 6 


05 

c nm a> 

o u 00 

.H w' « 


« 
4> 

U U ><-4 


CO <0 flj 

^ » 


0) 


U 05 

c 

fO 4J 
4J (/5 
tf) 01 
C U 


CM ON 
lA CM 
CA CM 


WA 

CO 


00 ^ 
o o o 


CO uA 
00 00 
CM 


-H O — 

X 

OO e DO 

sss 


CO 

X .J o p 

ft- < V5 H 


O < 

<0 DO (Q U O 

o s: z X CO 


ft- 
Z I 
I ^ 
o 
r-X 
O w 
Z W 

o 


OI 

X o o 

Z Z ft. 


o o 

8 O S O 

^ U 4J 

O O c 

iM (0 «w CO <v 

(y •w V CA 

^ ^ ^ ^ 01 

OCOCk- 
U O U O CL 

rH 

^ o — ' O 

(0 U u u 

ij w o o 

O 01 W 

H ft< cn 


/ 


^ ; 


4 


BASIC DATA RECORD 


141 


A 


<N r-» 

Os »A 0^ ^ O O 


00 O «>4' sO 

<N O CO 



<0 00 


o« cooso^ r^'^rv.cMoO'O I 
<^4 r>» CO »r> j 

^ ^ (M ^ ^ 


CN| CM 

V 



sO O ^ 

i/> so <o 


cs ^ 

<o m es 

<N 


<o fN. 

rx* 

CM ^ 


O 

o 

CO 


X 

u 

«0 

<u 

OC 

s 

CO 

0 ) 

u 

u 

CO 


0 ) 

AJ 

<0 

Q 

>s 

Q> 

> 

U 

o 

CO 


<M »0 

m 
m ^ 


O O O CM 

ir> m CO 


fXk ^ 


^ m 


oo 

fxx. 


o «o 

O OS 
CO ^ 


CM O OS sO xO 

O ^ ^ -O CO 

in 00 


r-* 

CM 


CM 

xO »A 

CM 


00 


to >o 

OS CO lA O 


^ lA Os vA ^ CM 

CM xO CO ^ CO 

o 


r«..^iAco x^coOcosOo* 
»-< O CO CM ^ CO 
^ CM ^ ^ 


I 

I 


Ot 


rx*. lA CM xO Os CM 

hx. ^ CO cO CO CO 

OS ^ 

^ Xl®' 


m 


CM rxx 
rx-x CM 
CM ^ 


CO 

Os 


O O O so I CM 

CO CO cO CO I CO 

CO 



xO »A x» 

CO rx* 

<0 CM 


-A 


c 


o 


> 

3 

c 

O 

(0 


o 

OO 



l-l 


(d 

w 

f-M 

o 

CJ 

•-H 



0) 

H 


lA O 
CM CO 
lA 
O ^ 


<0 

• • C (U 

c o >- 
o xH 


sO Os rxx CM 
CO CO xi^ co 


O (0 

c a 


X c 

<0 -H 
6 6 


00 Os 
CO 
CO CM 


^ 0 ) ^ 

^ o -• 

xx^ JS 
00 S 00 

5 35 


^ (/) 
X «J u o 
CL < (/) H 


O xj 

<Q 00 n) U O 

u z: z X 00 


I 

2 ^ 
* o 

fOC 

o 

z ^ 
o 


xj CM < 

X o o 
z z a. 


B 6 

o o 
a o e o 

U ^ V- — < 
O Xx^ O 'x, 

4^ QD SM 
•44 0) -4 


o c o 

U O C-) 


c 
01 
0 ) 0 ) 


O G. 

rH O ^ 0 -ac 

(0 U 4 u o 

u w o O 

o V Li 

H (l (/) 


/ 












vflW. 








1“ 






■’% 








''.-.4' '-J 




2*J 

*' 7^-' '“ ' ’■ ' SlC 

T^^^aiSr*. 


f *ip# 




f . {.' 


E,-rs .. 


«*»«?•» 


■y?a 


W*J 




.’>1 Sf 




ffl 








i^ 


4 


& ^ 










f- 

' 'tti f 


m 




W 


1% -KW 




,R 




teiQgi^ ’■ a. ® ■ >:■ ^ 

H.. 


N 




^r ZZm 

• ^ * 

-kMA^ 


>''1 ‘.■.■v». 

■ ■ 




® 1.2 


D 

■t.’ 


i 


X - - SfK* gs 

'i' ..#: 


%\ 


■»".iTr 


^V.'r 


ra 




'j!^:n 




'Smi‘ 

ifj* . >>■ ijij 


r 'i.:; 


'<•.■1,] 


I u 








. . ., ''\tL«=-'-fl' 

-M ■■■—-'■ 


.?; ‘'vw.i .-'• 




)M' 


'-;5£/;i»‘ 




Ir' VVui. 




• ?5?::^l 


maK 


t-Aiy,. 








W/J 




!r'W>' 


-K.ill 





Station: U pper Clark Canvon Stream Reach Score: 109 

Location: S T IQs R 9W 

Water Year: iq77 Survey Date: 8/13/76 


142 


4 


\r\ ir\ o 

00 GO 


yo 

in 00 

m m o 


On m in h** 

CM <f m 

nO 

On -* 


(M 00^009^ -^NOoocMinoi 

O cn rx. ^ -O 
CM m CM CM 


>» 


On m 
NO CO 


mo OS 00 CM 

CM o m m in m 

^ O 

On ^ 


00 O O 

^ O N« 

CM 


>v 


m 

flO NO 


GO xO 

CM O O CM O 


pH m 00 no m CM 

m ^ ^ •4' »n xo 

^ ON 

GO 


o ooos^^ ONsosCcMinr*'* . . 
CM onxxON^-^m V 

CM m CM CM 


CD 

O 


nD cm 


CM 

O m in 

On go On *^0 


CO o CM m 

CM o r-x in m xo 


fXx .H 


m 


o fxxfMin^ ^inm-^flOND i 
no f-» m m nd rH in i 

CM cn CM CM 


tn CM 

CO ^ 


x4 nD 


in in ON so X.J ^ 

^ in x4 m x4 

^ ON 

O 


CM nD 00 On 

CM nD cn 

cn CM 


>v 


x4 rxx 


00 O 


o 

nD 

o o o 


mo CM m m 

CM o nx m NO x{r 

NO 

NO 


CM GO 


CM 

CM 


oocMinr^ ininincMr^-4 . 

O On in nO ^ *4 V 

CM m CM CM 


CM 

V 


00 

o 


On rM 


CM O CM m fxx sO 

^ m so m m m 

^ m 

nO -h 


cn fxx 00 

CM 


CM xO 
nx CM 

m x» 


K C 



07 

4J 

<0 

a 


V 

B 

H 


07 

H 


U 

07 

4J 

fO 


u 

07 

imi 

<0 


^ n 
o — 

X 

00 B 00 

SSS 


CO 

u a 

CO H 


m 

O 4 

to 00 <0 o o 

u z: z 0 ^ X cn 


0N, 

Z I 

I ^ 

o 
me 
o 4.^ 

Z u 

o 

4 


4 CM xj 

X o o 
z z d. 


07 B 6 

o o 

g 2 g 2 

e o o ' 

X 


o o 

(0 u to O 

4 ^ w t 7 w 

O 07 

H U. 


c 

07 

CO 

07 

u 

o. 


u 

o 

t/^ 


ea 


9 


I 


* 


e 


♦ 


« 


BASIC DATA RECORD 


U3 


o 

00 

\n ^ 


lA 


tA O 

«S O 


lA <n o cs 

*A «A <A 


GO 00 
lA iA 


sO r*^' 

fM 

fM — • 


^ 

^ fo 


<M 

CM 


00 00 
«A nO 
CM ^ 


00 

00 


^ >0 CM 
iA CA 


^ lA CM sO ^ 
Os OS 
•-» CM «-4 


r> 


O 


^ CM lA 
O O O 


CM I 

vO I 


O' tA 
-4 0\ 
^ 00 


m •-< \o CM 

•«4* ^ cA 


CA 

O 

CA 


^ O 
^ CA 
vO 


Ov lA 

-tf- <A (A 


00 

Ov ^ 

CM ^ 


lA lA 
^ 00 


O' vO CA 
CA CA *0 CA 


CA 

^ 4A 


CM 

O O' 

CA 


00 Ov O 
r*- CM CA 
O' CM 
^ CA ^ 


O O' 
yC <A 


O 00 

c d 


O O' 
yO 'O 
CM — < 


O »A 

'O 


O 

o 

O' ^ 

^ o 


A- 


4) 

Q 'O 

a 
D 


.. CQ 

.. c V 
c o >- 

o •H 

(0 0) 

(0 U 4J 

o to 

cn ,J] 3 


4)1 0) 
U s 

to pH 

q|h 


CO 'O <*4^ 
(A CA *0 CA 


vO ^ vO >0 
CA 


r*^ O 
CD 00 
CA CM 


P^ CA CM »A 
^ O' »A 
CM CA CM 


00 O' ^ CD lA 

PN. ^ CM 

CM 


00 

w4 

o o o 


CA O cA 

— -O' o 


^ 'C O' ^ O tA 
\C ^ yO 


K C 0 

co 

e B w 

W w to 

iJ 

tNi ^ •H 


tO (0 (0 

3 3 > 


00 w 


^ W 
O — 

'ob *§ "ob 

53-5 


O 00 

u ^ 

B B 


u w o < 

.Jup < 000(0 uo 

<C/3H UZZ^XlO 


CU 
Z I 
1 

o 

fAC 
O W 
Z u 

o 


zoo 

Z Z 


o o 

BOBO 

k< ^ 4^ 

O ^ O c 

(M 00 (M 00 4) 

•H (V iM 0) n 

^ ^ ^ ^ 

ococv- 
u o o o a 

-H 0 ^ O -si 

(0 U (0 u u 


# 



BASIC DATA RECORD 


144 


^ irt m 

<n<M ^ >o O O O 


4 


mo ^ *A I O 

^ m ^ I 




•^CM 


oo m CO 

OD <M ^ 


^ <M 


r-* 1/^ m <N 'O 
m .-• (S 
r4 




O ^ 

3 

f>4 


sC O 

^ o 

^ O' 

CO m 


m ^ I CM 

^ ^ I 


w^co 




lA O' *A 

CM O O 


^CM CM 

m 


OO'OCM^ rs.iAtA^r^fM 
00 CM xr\ ^ CM 

CM CM 


8 


O 


.. m 

(U ^ 

O 00 

u 
KA 



(0 4> 

^ > 

u 3 

C/) CO 


CM o vO m 
m ^o 


00 

^CM 


A 


o 

o 


cs. ssl 


OO’^O'O a0>CtACMO>0 
^ ^ nO ^ 'O 

CM «0 CM CM 


O r- 
m 00 >s 
m 

CM 


cMm 


rs. m m CM O' 

CM >o »A nO ro 

^ 00 

sO ^ 


^ O' 
^ 'O 
^ CM 


3 


OOO 


'C 
m CM 

CM O' OOO 


O' o CM nO O' 

•-< O ^ oO 1/^ c^ 


'O CM 


00 cn o m 

O' 'O CM 

^ cn CM 


'O 'O cr> pt 40 . 

»0 CO V 

CM 


O 

o 

-o 

cn 


O' 

c 


Oco 


CO o CO ^ ->0 o 

•>4 CO nO CO ><0 *0 

^ O' 

^o ^ 


^ ^00 

CM O O' 

CO ^ 


a 


•oco 


® O CO lO CO p^ 

co lO so «o 

sO 


sO 'C 
00 00 
CM 


c 




o 

O '6 


•• c 
c o 


4^ <0 

<0 O 
4-( O CO 
CO »-] 3 


CM O 
^ O 
'A so 


sC o 

CM CO 
^ CO 
40 


CM p^ CO ^ 
lO oO iO CO 


B W 


u M u 
a> i> Q> 


•H Cfl <0 Cfl 
CO » 3 > 


O O' 
^ vD 
CM 


00 vO 
CM CM ^ 
^ CM pH 


sO 

CM O 
O pH O 


rM m CO pH <o CO 
CO pH 40 


»0 pH 

p-4 

lO 


tfj ^ 

-• o p- 
^ 

00 e 00 

sss 


u: c/) 

X pj u a 
a, < cn H 


o < 

(Q 00 CB CJ O 
U £ z 0 ^ X ^ 


Cu 

I 

z ^ 
* o 
«oc 

O i-» 
Z w 

o 


CM ^ 

X o o 
z z & 


e 8 

o o 

8 0 8 0 

u P-t U pp 4.) 

o — ^ O c 

0) SM go 0) 

<P4 « ‘H 0) CD 

^ ^ ^ ^ ^ 

o c o c w 

u O U O 3> 

pH ^ 
pH O pH O 
<0 U <0 u u 

W W y ’W' 0 

O V 4J 

H U. CO 


f 


i 




BASIC DATA RECORD 


145 


[ 


4 - 


vC 

r- 




OO iA 

^ OO 
»/> ^ 


0) 

u 

o 

o 


u 

n) 

oc: 

e 

CO 

4> 

u 

u 

(O 


(0 

>v 

Q> 

> 

U 

9 

CO 


4A 
CM ^ 

in 


00 

CO 

m 04 CM • 

m cn O 


so 

40 


m o ^ CM 

m in so cn 


m 

V 


o 

V 


Os 

sn 

O Os vO o o 

'.T oor^mm cN*ocosnooo I,, 

sO -o-^Ofn CM 00 ^ iv 

^ ^ cs -H 


o 


^ 00 
O OS 

cn ^ 


•4- 


m 

-o 

• m 

CM O 00 ^ CM O • 

^ ^ so vo so <n ^ . 

sD V 

in 


CO 


«n 

Os Os 
CM pH 


cn 

CM o 


CM in 
m GO 


00 w u 
*0 n <D 
6 d 


o 


V 


in 

so 


m <n 

<n lA 
CM pH 


in 


O cn 

o in s^ o 


^ m o Os 4) 0) 4-t 

CM pH in cn u y e» 

-H tM iM C 

<0 *H 


V 


cn oooooom ocncM«o^cM i i 
m -^<nincM cm ^cm I I 

^ CM ^ pH 


^ in 00 CM V 0 ) 

^ ^ cn cn o u 

O ***«» CM •H ^ 

pH ^ pH 


V 


cn 

m 


00 
CM ^ 
CM pH 


O o 
cn cn 
cn 



O CM 0) 0) 
cn cn y o 


O pH 

pH 

<n 


m 

sO 




c 

o :» 
> o 
c 

d 


so m m 

f>* CM pH 
OS ^ nO 
pH O pH 


•iO sO sO CM 
m cn so <n 


-H 00 

^ r-^ 

CM 


M 

U 

cQ 


(A 

O 


H rn. 
O' 



•• c 
c o 
o •H 


4J (0 

(0 o 
4H O 

CO pj 


<0 

>- 

Id 

y 

(0 

3 


K C 



y 0) 
^ B 


<0 *H 

O H 


(0 

u 

01 

a 

a 

« 

H 


u t-i 
Q> y 

U 4J 
•H flS 

(0 3 » 




to 




/-N «) PH 

0 -H 


c 






y 


GC e eb 











PH 

y 


E A. S 





a 






B 

y 









n 




a 

<0 








c 

Sl^ 


01 


a 

y 








o 

y 


00 



to 


<n 





o 

•p^ 

W' 


to 



J= 


o 





fnc 






y 

U 


u 





O y 

<0 

V 

y 

00 

•o 

c 



to 





z y 

AJ 

u 

C 



y 

i-H 


u 





o 

•H 

Id 

to 

y 

-o 

E 

<0 







^ W 

a 

B5 


CT) 

c 


y 








•H 

j: 

CO 

y 

y 

TJ 

nH 


(A 




O 

^ CM 

y 

y 

c 


a 

y 

a 

X 

pJ U O 

to 

00 

<0 

u o 

X o o 

a; 

00 

•H 

y 

(A 

CA 

y 

a 

< V) H 

u 

z 

z 

X (A 

z z a 

u 

»H 



9 


X 








a 

O 



(/) 


CJ 









B 


e 


o o 

BOBO 

W PP U pp 4 H 

O ^ O c 

«*p cB SM (0 y 

•H a> 'ph Oi CD 

^ ^ ^ ^ 

O C O C »p 

u o u o a 

pH 

^ o pH O -Si 

(Q u CO u y 

4 j w y w o 

O y H> 

H U. (A 




t 




« 


BASIC DATA RECORD 


U6 




Ch O 
c>i O 


oo O 

m lA CO 




CO O 
CM O 


00 0> CO CM 
^ CO CO 


o 


QO O 

O O CO 
^ CM 


O CM 00 lA CM c^ 
CM CM CM CM 


I I 
I I 


H 3 


(M 00 

^ CM 


CM 

<o 


as 

^ ^ lA 

<o ^ O O O 


^ lA 00 O I 

fO ^ lA I CO 

o^ 

00 ^ 


S 


CO 


00 CM 00 
O >0 

CM CM 


\3 00 CM ^ \i 

^ ^ lA *-< ’ 

CM 


O 

CM 

CM 


3 


<o 


o 

00 so 

^ CM O O 


GO O 
CM CO 


CM ^ 

r*^ so 


V 


00 lA CM ^ 
O 'O 
CM '4’ CM 


r** NO CM r* c^ CM . I 
^ lA CM I 
CM 


O 

o 

o 


o 

3 

a* 


^ o 


28 

o 


"O sO Os Os O 
nO lA CO 


V 


CM 

CO 


o 

lA 
»A CO 


3 


-f* 


c 

3 


o 

ON 


>» 



c 



<0 

OC 


C3 



M 

CO 


U 

o 


to 

^4 


rH 



U 

H 

f>. 

M 


r> 

U 


Os 

O 



E«4 

NO 


M 

C/l 

.. 


.. c a> 
c o >- 
o *H 

•W 4 J u 
4J <0 a> 
<0 U w 
AJ o (0 
CO hJ 3 


CO O 
CM CO 

>o 

\0 


CM O 

^ o 

NO 
NO ^ 


•-< CM CO CM 
00 C^ lA 


W AJ W AJ 


lA 

V 


0 ) u 
u c 


as 

nO 

CM 


<U *0 

oj 01 

(A (D 
<^1 


o 

^ ^ ^ 
oo o 


CO o o 

CO O ON 
CM NO CO 


CO CO 
»A CO 
«0 CM 


'.y OO nO C^ ^ CO 
nO iA ^ CM 
CO 


o — 

JZ 

D e 00 
. 3 ® 


X »J 

a« < 


o < 
n) 00 <0 u o 

O £ Z ^ X C/) 


0 . 

I 

z 

• o 
coc 
O W 

z u 
o 


<r CM ^ 

X o o 
z z o. 


B 


B 


o o 
e o e o 

u W ^ W 

o ^ o c 

vtM to nm 4 B 0 ) 

•H 0 ) 00 

^ ^ ^ ^ 0 ) 

O C O C U 

(J O U O CL 

— « o •-• o jc 

(0 CJ (Q tJ u 

w w o O 

o 01 w 

H bb* CO 


» 






BASIC DATA RECORD 


147 


4 


^ sO 


4/^ m fs 

^ 

00 
«A ^ 


<N 


O 

o 

in 


00 00 

n4 


C 




<n O 
^ m 
in 




-00 m <n o 

^ ^ in cn 


r> in sO 

m in 

cs 


c 


0) 

hi 

o 

u 

(/) 


X 

u 

<Q 

a> 

0^ 

S 

<0 

hi 

w 

CO 


0) 

hi 

to 

Q 


u 

3 

C/3 


in o 

CM CO 


o 

r** ^ O <M O 

in «.» m cn 


-4’ 

<n 


00 

^ 

^ cn O O O 

in r^vXOCM 

^ m 00 00 CM m oo 

CO ^ CM ^ ^ 


O I 

m I o 

CM 


r^ 00 

tn ^ 


O' o CO 00 in CM o 

^ o -4^ <n ^ en 

o\ 

•4* ^ 


<M ^00 

00 00 

CM CM ^ 


c 


^ o 



>0 hi 

^ CO <i0 QB 

C C 


00 

CM 

d 


o 

-4' 


CM O 
CM 


a 


•o 

« 

> 


in m 
^ '9- 
«9 CO 


ON *9 V hi 

m ro o O 0 

•tM ^ C 


cn in 00 

NO O 9i 

<n 


•O 

C 

o 


c 



00 ON O 
CM O 
ON <n 

cn 


^ ^ a> 

NO m o 


0 

u 


'O in o 

CM p-i 


C 


CM 

<n 


On 


O 
NO m 

cn -9 o o o 


O O ^ CM CM CM O 

•-« O cn cn in <n 



r«* in O 

00 ^ 
•-• cn CM 


<n 00 »9 'O <n in 
in >9 p^ ^ 
CM 


V 


o 

00 


in 

NO >» 


« 

9 O 

CM ^ 


m o 


o o o 


% 


O 
p-^ m 

On ^ PM 

pM O ^ 


9 n* CM O 

in <n 9 cn 


v 


On 

CM 


00 in o <n 

O CM 
CM 9 CM 


<n CO 00 O 

in tn in 

CM 


in 


>» 


4 - 


u 

« 


CO 

o 


H 00 


<0 

..CO) 

c: o >- 
o -H 

•Pi hi U 
hi (0 <U 
<0 U hi 

hi o (Q 

C/3 pj 3 


C^i <U 

hi g 
CQ •H 

oIh 


K e 

g-g 


u hi 
•M CO 

CO 5 


(0 <0 

3 > 


c 

o 


a 

u 

0) 

irf 

Ou 


01 

00 

« 


e 

a 

a 


hi tt 

c 

<0 hi 
hi « 

n V 

c u 


^ m ^ 

-I O -M 

X ^ 

oo e 00 

535 


pj u p 

< t/3 H 


0n< 
Z I 
I ^ 

o 
<nc 
O hi 
Z hi 

o 

9 ^ 


O 9 

<0 00 <0 o o 

u z: z z c /3 


X o 
z z 


£ e 

o o 

s o e o 

hi pH U PM hi 

O 'H. o ^ c 

«*p tt iM a V 

•H 4) <*4 a» « 

^ ^ ^ ^ 4) 

O C O C 

u O U O o. 

^ pM 

pM O i-^ O 

<9 O 0) U CJ 

ij w y w o 

O 0> hi 

H bu C/3 


t 



BASIC DATA RECORD 


148 


O ^ 


\r\ 

^ r> GO 
O O O 




O 
^ m 
00 


nO ^ V, 

<f<ruC 


CM 


Ov 


GO ro ^ 

«s <s 

^ C^ <N 


X 

m rs, •-• 


V 


0 

3 

CO 

01 


>> 

0 ) 

> 

3 

CO 


9 ^ 

Cs| 


<n fM § 
^ O 


^o O 
o 
o 

00 CM 


00 O 


5 s 

•o *0 


GO r»* 

^ ^ 

^ O CM 


CM ^ ^ <9 9^ fM 
fO ^ 


sO 


00 

•-^ CM X 

o o o 


^ x ^ 
^uu 
•o tJ 


X 


X O ^ 

sj <M 

CM r> CM 


t/^ o X (A X 

<A \0 
CM 


O 3 


o 

o 


9 ^ 

X 


r^ O 
CM CA 
^ X 
X ^ 


CM O X <M 
X X X fA 


cn CA 
•-* O 
cn CM 


\n 

o 


Os ^ 

mm o o o 


9s O fO m ^ o 

c^ '■o -9 X cn 


X CM 


X X X X 
CM m X 


m ^ ^ ^ 9s 
<n CM m 


V 


o 

o 

'9 

CM 


X 

CM 3 


X O 

•9 cn 


cA m X m *9 os o 

•=^ ^ X m X CO 

o 

X CM 


«0 O 

CM CO m 

CM ^ 


3 


O 

O 


O 

CO 


X m 
-9 
X r** 


rv CO m ^ O 
X X *9 


o mo 

CM ^ *9 

CM ^ 


>» 


o 

^ X 


CM o 
O 
X 


CO X X ^ O 
X m m CO 


O os 9v 

CO os CM 


G 


0 




m 

O CM 


o 




to 

.. e 
c o 

O 

^ 4J 
4^ <0 

fC u 

W o 

CO ^ 


u 

<0 

01 

>- 


u 

o 


X o 

CM O 
-9 
m •-« 


X cO ji 1 1 
^ <r 

to CD 


0» 

3 


K e 


Ui 

0 ) 



Wi 

Oi 

4^ 

«3 


01 

4^ 

<0 

> 




X 

m 




m X X 
X ^ 


X c 
0) 0) 
•o e 
CM 
a>'-o 

D4 a> 

I" 


0 — 
X B X 

SS 3 ^ 


X t/) 
X ^ u o 
a. < (/) H 


Os 

CM *9 X 
O O O 


Os CO m CM CM m 

^ ^ O 


Ou 
Z I 
I 

o 

O *-* 
z u 
o 


0-9 9 CM 9 

fOXtO UO XOO 
UZZXXtn ZZCL 


o 

o 


CO 


c 


6 


6 


o o 

BOBO 

0*^0'^ 
Uri 0 ) QO 

•w 01 'H 0 ) 

•H rH •H 

o c o c 
u o o o 

^ O 'H o 

(0 U o u 


c 

o 

o 

0» 

w 

a 

u 


o 

4 J 

X 


» 




BASIC DATA RECORD 


149 


m St ON 


4 


^ O -S sO 

CM m lA ^ *o m 
O 
lA 


CO lA vO 

»A <s 

^ fS 


00 lA 

00 



oH lA 

o 

lA 


iA 00 »A 
•.t CA »A CA 


^ flO CM 

00 ^ 

^ CM 


O 

u 

t/i 

u 

<0 

oc 

B 

(0 

u 

u 

cn 


00 


0) 

u 

<0 

o 

0) 

> 

u 

9 

CO 


^ o 

fA 
»A O 


^ CM ^ 
»0 tA CA 


Cl 

o 

d 


Cl 

CM 


lA 

V 


»A CA 

O 

^ CM 


•-« lA 


Cl ^ 

GO OO 00 Cl ^ 


O 

CM CA 


•4^ ^ 


CM O CM 
»A ^ lA CA 


^ CA 


lA 


r^cAoocA 4’r^Cir^<A>o I * 

00 lA CA -4 CA I I 

^ CA CM CM 


CA 


«4 O CM 4J 4J 

^ O CA CA 80 tt 

^ iA C C 

>4 •H ^ 


U «4 

0) 

flO 


lA 

lO CA 
CA CM 


vO O 00 CM 

CM O CM CA 

Cl ^ CM 

^ r«4 •-s 


^ CM lA 

^ Cl lA 

CA CM 


O O 
CA O 
Cl 

^ o 


Cl CM 
pH CA 


CA Cl 
00 «4 
CA CM 


O 
CM O 
^ O 
O ^ 


l6 pH 

CM 
Cl ^ 

p-« Cl 




«e 

..CO) 

c o >- 
o -H 
•H u u 

4.> <0 0) 

CO U 

4J o (0 

CO 3 


lA -4 
CA CM 


8 4> 


u u u ^ 
-pH (0 flj CO 
(0 ^ ) 


4.i to 
to 0) 
c w 

«H y 


e 

T3 8 

c 
y 
aJ 41 


CO ^ 

^ o — 
00 6 00 
335 


^ CA 

X pj CJ O <0 

cu < (A H U 


O < 

00 (Q U O 
£ Z 0^ X CA 


OU 
Z I 
I ^ 

o 

CAC 
O ^ 
Z 

o 


4 CM 4 

X o o 
z z a. 


E 8 

o o 

a o E o 

krt ^ U p« 4J 

O O c 

IM 0) IM CO v 

«p 4 01 •p^ 4^ O 

^ ^ rH •#>« 0) 

O C O C M 

u 0 u o a 

pH pH 

pS o ^ O -si 

to y (0 u y 

4J w y w o 

O 0) 4J 

H U. CA 


f 


\ 


# 


«l 


4 


BASIC DATA RECORD 


130 




r*- O 
<S O 


s 

O ^ >0 
vO lA ^ 


O 00 -• 
CD O O O 


oo^r^fA Q0^c4*^ oono 
CM ^ lA — < O 

^ <A es «s 


3 



CM 

00 


^4 vO ^ 0> O 
^ »A <A 


O 

CM 


Os fA 
lA m 
CA CM 


3 


»A 

9^ CM »A 


fA 

CM O' O 
CM O O O 


Ov O »A 00 ^D ^ O 

CM CA »A ^ vO ^ 

O 

OO ^ 


O 

CM 


OOCMCAnO r^9vCM«^CMvO 
00 (A ^ »A — < CM 

— < CA CM CM 


O 


o 

tA 3 


'O- 

»A CM 


lA 

9v 


CM nC 


CM 

O O 


nD lA ^ CM 9« sO 

CM ^ 4A *A ^ 

O 


9^ 

9v 


CO <A 9» 
9^ iA CM 
^ CA CM 


O 9^ ^ ^ lA I 

sO ^ ^ I 

CM 


O 

CM 

<A 


00 

00 >S 

lA 


*-« 00 


CM O 
^ O 
^ 00 
O 


GO OO CM *4* O 
lA *4 


lA CM 

lA CM 

CA CM 




9 ^ 00 

9s CM 9v 


CM 9 


o o o 


CA O 
CM CA 
9S 
so O 


00 *4 sO cA « 

sO (A sO «4 CD 

e 


9s lA O 

9s rs. 
^ ^ CM 


CO 9s CM lA CA lA .< Vi 

sA ^ *4 V V 

CM 


O 

CA 


O 

9s >s 
CA 


-f- 


<Q 

.. C « 
C O >- 
O A 


sC 
sO A 


00 O 
CM <A 

O 
sA A 


CA 9 »4 sO 
«4 PA lA (A 


« 0) 01 

U 4^ U 

A *0 <5 

(0 3 » > 


O 

CA 


<4 sO 
9 sA 
PA CM 


CM 

00 

O CO 00 
•A CM 
CM »4 CM 


^ 9 ^ ^ sO 00 
vO •A 4A 
CM 


cn ^ 
C U 
A y 


C 

o 
•9 B 
C 
y 
ai y 


X J 
CU < 


O -3 

<0 00 <0 CJ o 

u z: z :a^ X (o 


X 
Z I 
I ^ 

o 

O A 
Z A 

o 


CM < 

X o o 

Z Z Cu 


o o 

s o e o 

A ^ A ^ A 

o o ^ c 

vm as «M <0 0> 

A a> A y CO 

^ ^ ^ ^ y 

O C O C A 

u O O O Ci. 

^ A 

^ o A O -atf 

(0 u (0 u u 

w y o 

o 0) A 

H (A tn 


» 



BASIC DATA RECORD 


151 


4 


nO 00 

^ CN 




s 


*n f>i 


O' IN O' o 

lA 1^ 


*A 

CN 


OO 00 <A 
^ IN 
^ ro CN 


O r*** O m r> lA 

O 



sO 




»o 


O lA 
^ *4^ 
CN 
»A ^ 


I 

1 1 


01 

u 

O 

u 

(/) 


X 

<0 

0) 

oo 

s 

19 

9> 

U 

4J 


4J 

<9 

O 

>N 

a> 

> 

i-t 

3 

CO 


^ 4A 
4 
lA CN 


O 

CN 


^ vO ^ O 

iA *4 »A CA 


4* ^ 

lA »A CA 


lA 

OO CA 


9s 

CN 


»A 

<A 


00 9 ^ 
n9 iA 
lA CN 


CA CN 


O 


a 


CN CA 


O 


CN 

^ sO CN 
CA O O O 


sO lA 
CN -4 
^ CA 


•4 CN vO • 

tA *4 lA CA tt 

O 


fs. O O 
9^ r* -4 


O OS CA CO CA 
^ CA 
CN 


O 

o 

CN 


I 


I C 


lA 

CN 00 lA 


9s tA »A CN O 4 O 

wM ^ lA 4 lA CA 

^ CN 
4 ^ 


lA CA vO 

^ sO CA 

CA CN 


e 


so 

sO CA 00 


CN «A Os Os 00 4 O 
4 CA CA CA 
CA 
4 ^ 


CA CN CN 

CN 4 CN 

CA CN 


c 


CO 4 O 
CA 

os 4 CN 


Os 00 iJ 
CA CA OJ to 

c o 


U 4 

i) CN 

m 


CN CN 
4 CN 
CA CN 


C 




oc 


4A lA 
4 

Os ^ ^ 

^ o ^ 


00 lA 00 CN 
4 CA 4 CA 


4 sC O 4 
sO 4 »A CA 


A- 


CO 


(0 

••CO 

e o > 
o 

•H V4 

W to 0 ^ 

(0 U 4-* 

Q <9 
CO fj 3 


10 

0) 

a -H 


K C 

(9 

6 e 


<9 to (9 
(0 3 » » 


4 ^ ^ 


OJ u 
ofi e 


tA 

O CN 

OOCAiA^ O^4f*^00lA 
sX CN ^ p*<fc ^ 9s 

CA CN -N 


lA 

00 


sC 

Os Os O 

o o o 


CA 

CA 4 — < 

O -t O 


00 SA 00 

^ (A -iN 
CA CN 


00 OS 4 sA lA 

lA «-M O 


<A 

4 


C5C 

00 S 90 

sss 


^ cn O < 

<000(9 UO 

u£z:^X(/) 


Z I 
I ^ 

o 

CAC 
O ^ 
z u 
O 

•« 

4 PN 4 

ZOO 

z z a< 


B S 

o o 

e o e o 

U ^ U iJ 

o o c 

OE) 0 V 

•H 01 ••-< 9) 0 

^ ^ ^ ^ 4) 

O C O C U 

u o o o a 

^ O -* O JC 

« U 0 u u 

4J w o w o 

O « 

H te* 


? 



BASIC DATA RECORD 


152 


A 


— o 


fn ^ 

«A 




fo m 
tA lA ^ 


00 00 00 9^ 
^ vO m 
CA <M 


o 

>o 

00 fA 00 nC 
^ CM 
<A CM 


O 

00 -4 r^ O 'C 


O O O 

V V 


lA r*- i/> CM 

^ • O 

CM 


O 

O 

o 

00 


o 

o 

<A 

*9 

CM 


^ 9v 

A* 


O O >9 
\0 >0 >0 «9 


o 

lA ^ 


^ CA 

o o o 


00 0^ 

»A ^ O 
^ CA CM 


00 r^ CM 00 00 CM 
CA 00 


o 

o 


CM O <s 

<A sO 


rs. O 
CM O 
— 'O 
sO ^ 


CA ^ <A O 

r^ ^ <9 


CA CM CM 

sO <9 CM 

CA CM 


9 


CM 

9* CA 


O 

»A 


-9 

CM 

O O O 


9^ lA •-* O CA ^ O 

^ vO >C *9 


NO ^ 


CM 

lA 


00 CM CM O 
lA 9» 9» 
CM 


O CA lA CA lA 
^ 00 


V V 


O 

o ^ a 

00 

r*- 


O 


ON 

nO cm 


•9 0 rok nO nO CA O 

O lA lA nO *9 

O 

nC cm 


CM «A 00 

CA O On 

CA ^ 


9 


4 - 






00 O 

o 

NO CM 


o 

CA O 
^ 00 
lA ^ 


NO CA *9 CM 
>0 nA nO «9 


NO O O ON 
^ »A nO CA 


CO 

.. c a» 
c o >• 
o •H 

•r4 U U 
4J (0 0) 

(0 o ^ 
U o (9 
^ :k 


D, CQ (Q (0 


(0 > » » 


o 

o 


lA 

O 


ON 

CM 


O 

CA 


0) 

00 

<9 

4i 

W QD 

C 

(9 u 
0> 

(0 01 

C U 

•A U 


c 

9) 
ol a> 


lA ^ 
^9 CM 
CA CM 


CA O 
CM 

CA CM 


^ O *- 

00 e 00 

S33 


^ K/) 

^ U O 
< to H 


O 9 

C9 00 (9 tJ O 

U X SK X t/i 


z ^ 

' 0 
cAC 
O *-► 
Z ^ 

o 


9 CM 9 
ZOO 

z z a. 


o o 

g2 g® . 

o o ^ c 

vm (A 00 V 
•A OJ 0^ OD 
^ ^ ^ ^ 0) 
O C O C ki 

u o u o a. 
^ •-< 
rH 0 O 
<9 U e9 U U 

4J W U N-»' o 

O V *-f 
H 


f 





BASIC DATA RECORD 


153 




4 


O ^ sO iO 

fS vO lA 

fM 

m 


iA vO •A 

<A <A OO 



lA vD vO 
»A ^ <A 


^ 00 

lA ^ 

fA 


i 

! 


a> 

o 

u 

f/i 


x: 

u 

♦0 

a» 

pc 

6 

(0 

0) 

u 

u 

w 


u 

CO 

Q 

>v 

► 

Ui 

0 

(/) 


^ o 

<A 
lA CM 


\r\ o ^ >o 

»A lA 'O <A 


CM 

lA ^ 

^ cA vO 

^ (A ^ 

^ CM 


^ O 

CM O 


O' 

•o cA lA <A 


CO ^ GOtACh'^tACO 

^ O' 'O 

CM MT CM CM 


SO 


O O ^ 4 J 

O CA *0 ® (D 

00 c e 

•O *H •H 


CM sO 

0) ^ 

m ^ 


o ^ 

CM 
CA fM 


vO O iA CM 

CM (A CM <A 

O' CM 
^ CM ^ 


V 0) 
U U 


•*0 

o 


lA CA 
CA 00 
^ CM 


O O CM 

CA CA CM CA 




lA SO 
CM 

•*0 CM 


r** lA CA ^ sO ^ 

CM ^ CA sO CA 

CA 

O ^ 


O' 


00 CA 
lA CA 
CA CM 


sO ^ 
r^. CM 
O' 

^ os 


4~ 


.. <Q 

..CO 

c o >- 

O •H 
t-< w u 
w (0 « 
<Q U 
4J O CD 
(/) nJ 3 


<U| IV 

4J E 

CD -H 

oIh 


a n 
c c 


K C 


U k 4 U •»1 


(D (D 

» » 


C 

V 

•o e 
c 

V 

Ol 0 ) 


X ^ 

fiu < 


o < 

CD 00 CD U O 
U X Z ^ X t/3 


a< 
z I 

I 

o 

fAC 

O u 

z u 
o 


fM ^ 

X o o 

Z Z cu 


tt D 

^ rH 

S B 

O O 

E 2 g 2 . 

O O c 
«M 00 SM CO (V 

««H 0 ) 0 ) 

^ .H 4» 


^ O ^ O 
to U ^0 V V 

4 J W o O 

o w 

H u. u) 


f 



BASIC DATA RECORD 


15A 


4 



m 00 <M r» 

C4 - »/*> aA »/^ 

00 


ir» 

V 


»A OS r- 

CM O O O 

• . . 4n O' • • 

cOONOir^ r»*oo^»nsO I 

m ^ ^ I 

oi ^ 


O O 
-« O' >» 

l/^ 



00 O m ^ 


00 00 


lA 

M 


00 ^ 
00 

01 — • 




00 CM 

vO CO ^ 


•4* O 

o o o 


O' lA m '4' CA 

cs ^ 'O »A 

^ CM 
00 ^ 


lA 

V 


OOvOiAiA Ov-a-O^tACMOO 
>^•-4 0 >» •-• CO 

^ <A CM *-4 


>4 


CO 

CA CM >^ 


fcA 

CM 


00 

lA 


CM 00 


8 


vO O tA 00 00 

CM O vO »A 1^ ^ 

CA 


OOCOCMCM nO'^O'CA'OOO I VI N/ 

>3'r^*4“ NO iv^ 

<A CM 




O 

CM 3 


O' 

^ OO 


CM O 
^ fA 


CA •-• On m 
sO PN. ^ 




CM 00 9n 

^ sO <A 

CA CM 


3 


lA 

rv On 


CA o 
CM O 

nO ^ 


On CM NA lA 


o 

00 •iH CM 

^ ^ o o 

oo^qono •*3“NyaN^aNO 
<A CM CM 


A~ 


i 




••CO) 

c o >- 

O •H 

>«>H U k< 
4^ (0 a> 
(9 U A-* 

iJ O (Q 

V) •-] 3 


CA O 
^ O 
^ ON 
yC -4 


CO *A 
CM 

CM 
»A ^ 


A- lA O 00 
lA 00 CA 


nC 00 CA 
nJ 'ij* nO CA 


iA /-V 

ch ^ 


CM CM 


X c 

<9 "H 

e B 


oo 9 n 

nO CA 
CA CM 


00 vO r«* -4 CO CA 

^ ^ ON m ^ ^ 

CM CM 


88 


V V 


o < 

(0 0€ (Q U O 

u £ z :X z CO 


Z 1 

I 

o 

r-)C 
O w 
Z 


• 4 ^ CM 

ZOO 

z z a. 


6 e 

o o 

B o e o 

k4 ^ U 4^ 

O o c 

Um 0) NM tt 01 

^ Oi *H 01 cn 

^ ^ ^ ^ 0) 

O C O G ^ 

U O U O CL 

-4 *0 ^ *0 

ro u < u U 

4J w t> O 

O « 

H 




BASIC DATA RECORD 


155 




r*«. 

oo ^ r 4 

Q0C0>O OOO 


vO kTl <N ^ r> 
1/^ m 
as 
m •-< 


00 

cs 


oor^roo ^ooxor^-^r^ vi 
'O cs -< >» O ▼ 'J 

^ cn CM cs 





ON 


o o 
^ o 

CM 
m i-i 


O ^ CM CM 

vo r> 


r4 


»0 
ON NTi 
f^ CM 


c 


a> 

u 

o 

u 

to 


£ 

O 

<0 

ai 


at 

AJ 

<0 

a 


^ u*> 
m CM 


e 

to 

a> 

u 

AJ 

CO 


>s 

0) 

> 

u 

3 

CO 


CM O iA CM 
cA ^ tr» CO 


00 

^c 

sP CO 

CO iO CO 

CO CM 




to 

ON 


ON 

On --H O 
»A O <0 O 


o 


vO to 
CM ^ 


r^ vO CM 
*0 uo CO 


CM CM O' 

ON 


r***-^Oco On'OOnacoo 
^CM rv kA.-M 

CM CM cm 


O I 

O I G 

sO 
ON 


Nd CM 
CM ON 


^ lA ^ CM 
»A »A CO 




O CO 
CM r*»* 
•O CM 


e 


CO 


CM O NA CO lA CM 

fO «0 »A <0 

CM 


4A CM €0 

«p 
•9^ CM 


c 


I 

ON 

CO 


00 <r na 
^ 

On «0 ^ 


On CO 
CO CO 


(0 (0 

c c 


W o 

0) CM 

CO 


GO 

^ O 
CO CM 


G 




*J Q to 
CO .J 3 


CO ^ ON 
^ CO ^ CO 


o 

On \0 


tA O 
r*» ^ 

On ON 

^ O *-• 


^ '-N C 

K C O 

(Q ^ "H 

B £ w 

w W 


o 

O CO 

OOOnOnA On^QOiACM'O 
^ O On nA • 00 

CO 


ON 

00 


f*** O 
OOO 


OO 

vD CO O 
O O 


— ' O CM 
nA O 
i-< CO CM 


O •— » O' nA •^5' nO 
iA 00 


C 

a> 

•O 6 

c 
at 
Oi 0) 


X 

cu < 


o -a 

<0 00 (0 o o 

cj £ z X c/) 


pu 
Z I 

I y-K 

o 

<oc 

O 

z ^ 
o 


ns- CM 
X O O 
Z Z Ou 


o o 

— • CO >v 


o o 
o e o 

>>rf ^ 4J 

o — c 

n N^ CO at 

0) <*-• at 00 

^ ^ ^ 4j 

c o c w 

o u o a 


t 



BASIC DATA RECORD 


156 


4 


^ o 



vO fS 
^ ^ 


<>4 OS 


Ol 

o o o 


<n 


cs 00Or^»A vi 

^ r> CM ^ 


o 

o 

sO 


r*. 



0) 

u 

o 

u 

(/) 


XL 

u 

<0 

0^ 

Oi 

a 

to 

Q> 

U 

iJ 

iA 


Qi 

u 

<0 

a 

>> 

Q) 

> 

u 

o 

(/) 


-J* o 

sO 

00 ^ 


^ CM ^ 00 
tn iA r> 


O O 


-1^0 

O iA o o o 


^ CM 


CO^Os^ CM^COCMsOCM vl *.i 
lAOsOs sOCM^V 

»-4 CM ^ ^ 


o 

sO 

CM 


•A CM 

Os sO 


CM ^ 


^ ^ ^ 
o o o 


Os o ^ 00 iA Os 

^ cA nO -o 

00 


COOCMCO OO'OCOCAOO'O 
^ 00 <f CM — « lA CM 

CA CM w pm 


O 

O 

CM 

CM 


CM C 


00 


O ^ ^ cA 

CM CA r*- sO r«* -o 

»A 

so •-< 


•“< rA 


^ 00 
»A CM 
CA CM 


c 


lA lA 


'O 


CM ^ 


sO 

— « CM 

o o o 


Os »A 



vO •-* 


P-4 Os 00 Mf 
vO iA sO ^ 


CA 

CM 


OOuAOOr^ «O-^a0CMCOlA Vi I 

SO-^O ^ On^VM 

CA CM ^ 


o 

o 

CM 

r«* 


O 

CM c 


00 CA 


•o o 

CA 
^ Os 
sO ^ 


>0 O CM CA 

sO so r** -»o 


•-< lA O 

CM 


CA CA 

^ o 

CA CM 


C 


-4 


•* c a» 
c o >* 
o •H 


00 lA 
\0 ^ 


^ o 

CA O 


*0 «A O OS 
<0 »A r»* CA 


00 CA Os 
^ nJ- sO CA 


CA o 
CA 


Os O 
CM CA 


O 

'O- 


a>| Q> 

*^\ a 

<0 •t^ 

OIH 


vA CM 
CM ^ 
CA CM 


CM Os 
CM O 
CA CM 


O 

U 

<0 

o 


O <1 
(0 00 <0 u o 
u z: z ^ X (/3 


cu 
Z I 
I 

o 

CAC 

O 

Z U 

o 


ZOO 
z Z CU 


o o 
B o a o 

O ^ O c 

vw CO sm (0 (V 

•H oi •H a< CO 

•H ^ QJ 

o c o c ^ 

o O U O Q. 

r-t o ^ O 

to U 09 U U 

w u w o 

O 4J 

Hbs.cn 


t 



BASIC DATA RECORD 


157 


4 


<o o 


CN ^ 


Ch 

d 


o 
o • 


4A ^ 


Op 

fO fA 

O vO tA 9» O O 


'»'0<NO <7»iAiAC>400r>» I*/ 

^ O' I ▼ 

^ <S4 ^ ..4 


V 


V 


vO 

fA 


I 


I 

j 



^ lA 
CM ^ 


lA — i 


O <A iA 
lA -«4‘ »A <A 


lA 

Ni 


4) 

>-• 00 
O 
U 
CO 



e ^ 

CQ 0) 

0 ) > 

Ut Ut 

u O 

(O CO 


CM 

CM ^ 
lA rA 


fA ^ 

CM ^ 
CM 


lA 
00 CO 
CM ^ 


O O »A 


1 


O %0 CM ^O o 
^ CA 


lA »A 

V 


lA 
\0 C»* 
CM ^ 




O ON 

On On cm <A ^ 


^ lA lA CA ^ *0 4J 
CM •O 'O 'O <A 00 

— "O c 

^ •H 


f^^CMO CO^^cA^vO I'^l 
fA nO r>» CA nO 1 I 

•H CM ^ 


00 >0 O 
^ O 
ON ^ >0 
^ ^ ^ 


O Q 
C C 


ON 

« 

CD 


CM A.- 
^ lA 
CM ^ 


«o 


O O fA CM 

fA CA CM «A 

^ ON 

^ O 


O 00 
CM O 
CA CM 


C»» lA ^ -O »A -O 

CM fA CA lA <A 


O i 

9^ V 


CM fA 

^ O 

fA CM 


-f- 




ON ^ 
•H ON 


0 
■H 
« 

5 ' f^ 
J o 

111 


.. (0 
.. c a> 
d o >- 
o -H 

•*4 4i u* 
4^ (0 0^ 
<0 CJ 4 -» 
4^ O Q 
CO 3 


OB CO 

O C 


0) 4) 

4J W 
•t^ flj (fl 

CO 3 » 


— O -• 
JS 

00 a 00 

335 


J u 
< (O 


O 'T 

(0 00 cQ U O 
U X Z ^ X CO 


Oi 

Z I 

' 

CAC 
O 4J 
Z u 

o 


<N n3- 

X o o 

Z Z fiu 


CD 

a 

o 
a o 

u ^ 
O 

0 ) 

•H 04 
•--4 

o c 

CJ 0 


o 
B o 


pH O 
« u u 
y w o 


I 


<i 








BASIC DATA RECORD 


158 


A 


vO 




a> 

u 

o 

u 

t/i 

JZ 

u 

flj 

a> 

o: 

Q 

ro 

0 ) 

u 

4J 

CO 


a> 

AJ 

0 

>s 

01 
> 
u 

3 

CO 


r-* O 

CM O 

r«* 


>o 

00 


o 

O ^ cn Vi) 
vO »/^ 



M 


o 

00 00 

OO O On O O O 


oovofof**. cor*»r«*f*>CM<n 
\0 O ^ 'O o 

^ cn <si 


CM 


CM 

CM 3 


m 

00 CM CM 


r>* O -5' lA ^ O 

^ O iA ^ 

ON 


CM <A CA 

o 

cA CM 


>s 


CM 


00 

^ O' ON 

CM 00 lA nO O O O 


O' O r««* O nO CA 

CM CA »A »A »0 *0 


CO'OfAr>. CMr^'X)<A»A- 4 ' 

rx> o ON >0 

^ tA CM 


lA nA 
O' 'O 3 
^ CM 


NO 

r* CM CM 


ON 

ON nO «0 ^ ^ 


vC O 
CM CA 


CA OO nO 
(A lA vO 




CA r-cMCAr** OsOiACAO''^ I 

CM O O' NO O I 

^ CA ^ CM 


CM 

lA 


CA 

tX) 3 


CA 


oc 

00 <A 


CM O 
^ CA 
ON 
r- O 


CM O -*0 lA O 

NO »A nO -O A 

/\ 


m 

ON 0 ^ 

cs 


4 - 


oc 

K 

^On 


.. <0 

C V 

o > 


AJ (0 Q> 
(0 U AJ 

A-» o <0 
CO .-1 3 


CA O 
CM CA 
O 
NO — i 


00 CA lA 
sO tA vO *0 


at at 
U A«t AJ 
CO 

rt 3 J 


•-i ^ CA 


00 
<0 
Ai 
Ait CO 

c 

AJ 
A^ Cfl 
CO a; 

c u 

•H o 


o 

o 

00 O' lA ^ 
nD CM 
^ CA CM 


CM CA 
^ O 
CA CM 


^ ^ 00 
o o o 


CM nO lA CM c^ CA 
kA O 

CM 


^ ta ^ 

^ o — 

X ^ 
eo S 00 

5 S 3 


O 

<0 oc flJ o o 

U £ Z ^ X (/) 


0U 

Z I 
I ^ 
o 

<AC 
O W 

z u 
o 

uO w 
-y CM -.J 

X o o 
z z x 


e S B o 

Arf • Ait 

O 0 c 

tM go tArf go 01 

•H a» T-< at 00 

^ .H ^ <H at 

o c o c u 

u o u o a 

CO U (« u o 

AJ w CJ O 

o at A^ 

H bu CO 


I 



BASIC DATA RECORD 




159 


so o 

oi O 
^ 00 
m ^ 


CO'O sTk sO 

lA 


r' 4 r> O fA 

lA <A 


lA 

lA O 


rMsO CO »A 
CA <A fA 


00 


O 

CM 


NO O 

<M 


NO >0 

Al 


00 00 


o o § 


00 

sO 


lA ^ rA CM O c>4 


*A <>4 

>0 

CM 


^o 

CS ^ 


vO O 
<M fA 


O*-! N© 
^ fA 


GO O 
CM CA 


r^»-^oooo nOia^cmoca 
•nJ* lA vO 
^ 


o 

CM 


fA 9s 


0> O sOOs (A CM O 

•-^ O ^cA ^ CA 




tn o 

^ >0 sO 

CM 


e 


O fA CM 


CM O rJ 

(A CACA CA 

o 


r-* CA »A CA 

^ r- 

A4 ^ 


6 


•4* 


GO CA 

A*. ^ 

Os ^ Os 

^ O 


fs^sO 

cACA 


CO <n 
c a 


4J O 

« CM 

tt 


<0 kA 
CM ^ 


fl 


m 

CA CM CA 


o 

Ov 


lA 

00 O CM 

^ ^ -o o o 


CA O CM*^ P^ fA O 

^ fA ^CA ^ fA 

O 



P»-» 


P^ ^ 
-O sO P^ 
<M ^ 


ID nO sD fA CM CA 
lA P^ 


r^ lA 

CA CM 3 


O 

CO CA 


9s 

sO 


CO O 


00 OV S 

o o o 


r-^ lA O 

O 

CN CO 

*i^ o ^ 


P^nO cm O 

iA«^ lA 


CA 

V 


A* 00 »A CM 
^ ^ ^ 
^ CM 


^ vD fA ^ 
lA GO 


fA CO 

9 sO >% 


3 

p^ 


00 




a 

CM 





<0 



9 

fO 

H 

00 



P«^ 

u 


9s 

Q> 



a 



a 

CA 


3 




•• c 

G O 

o 


W iJ w 
•H «o 
« 5 


CO «0 

» > 


4 J 00 

c 

(0 ^ 


kl 

o 

AJ 

u 

(0 

u 

(0 

x: 

L> 


<0 

u 


e 

a> 

j: 

CJ 



00 e 00 

333 


o 

u 

< 

u 


X kJ (-) 

Oh < (/) 


e 


Ou 
Z I 
I ^ 

o 

CAC 

o ^ 
z u> 
o 

*« W 


O •*» CM 

(9OOC0 UO XOO 
u X Z ^ X to Z Z CL 


O 00 

e e 

o o 

8 o e o 

o O c 

WiH (B UiH 00 <V 

•H 01 'H 0 ) CO 

..H ^ f-H <^4 0 ) 

O C O C kH 

u O U 0 o. 

^ o O 

f9 U 9 O U 

4i w u O 

O 0) 

H f** to 


/ 


% 


4 


% 


BASIC DATA RECORD 


160 


4 


§ 


m O 


<s 

fO ^ <M 
O O 


r-^ 


iA 


fn ^ CM 

'4'- vO <A 


cA cocs^'d' *A>o>o^iAin 
vO lA ^ (N 00 

•-4 CA <M «-* 


O 

O 

cA 

fA 


O 

o >> 
%r\ 


0) 

o 

u 

(A 


00 


x: 

u 

«TJ 

0) 

QC 

B 

(D 

0) 

u 

xn 


4) 

AJ 

<0 

o 

>> 

0) 

> 

3 

V5 


^ lA 

fA 
CO ^ 


«A 00 O 

O O O 

lA ^ vO ^ 


»A 

CM 


lA fA 

sD (A O O O 


f*^ 

lA 


OO^fAvO lAsDiAfAvOfA , 
00 <A <M V 

^ <A <M CM 


O 

fA 

CM 


O 

^ >s 

CM 


fA O fA 

CM OO O O 


CM 

CM 4A ^ 

\0 o\ ^ O O 


CT> »A 

— yO 


CM a\ lA so o 

sO kA sD 


CA 

<N 


00 eA ^ O 
r- lA CA 
CA CM 


O »A <A CM lA 

tA ^ 

CM 


O 

O ^O 3 

CM 

CM 


sO 

r** O c^ 


O c^ CM CM O 

CM fA sO lA sO ^ 

vO 


CM Os o 

fA CA CM 

<A CM 


c 


^ ^ <r 


r- 

O 


CM 

CM OS 

O — • CM O O O 


Os lA Os lA r*^ CA O 

^ 4A »A lA 

sO 

sO 


CA 


CO <A 00 ^ 
sO Os ^ 
^ CM ^ 


r>«. lA CM 00 fA 

"•i* Os 


O CM 
C- C 

CM 

CO 


fA 

tA fA ^ 


^ O lA fA CM O 

^ fA lA sO ^ 

00 
sO ^ 


CM CM 

CA 


Os 
Os 00 
CM ^ 


c 


A- 




(0 

..CO) 

c o >- 

O -H 

w ro a> 
(0 U w 
4i o C8 
c/3 3 


GO SA 

■"N,* 

sO o 


^ lA 
CA ^ 
sA 
sA 


X C 

<0 •H 

S 6 


lA 

O 


Os O ^ Os 
lA SA sO fA 


OS »A lA 
fA ^ lA fA 


CM sO 
CM CM 


00 c** 

OO CO 
CM ^ 


CM 

CM 


O — 
^ X 
CO 8 00 

sss 


^ x/i 
X ^ u p 
cu < V) H 


O -a 
<0 00 <0 u o 
U X Z ^ X x/i 


o« 
z A 
* o 

CAC 
O ^ 
Z W 
O 
MJ 

CM 

X o o 
z z a. 


o o 

2 g2 ^ 

^ o c 

CO SM 00 0) 
0) •H CD 
•H ^ •H V 
C O C M 

0 u o o. 


U 4 } CJ C^ 


/ 


I 








BASIC DATA RECORD 


161 


tn »-« 


4 


o fN. n m rx. 

O lA vO r> 

••xs. oo 

sO ^ 


CX4 «A 

V 


O 

vO Os 


fx% 


rx> O 


rx* 

>D 


sD 


00 O 
(S o 

<N 
»A ^ 


nO rx. »/> 

^ m 


QOOxtoO I 

r*»0<N nO<s<^ oo<m I 

pNi io m CM 


V 

u 

o 

u 

Vi 


£ 

0 

CQ 

01 
OC 

B 

<9 

V 

u 

tJ 

Vi 


0) 

iJ 

« 

Q 

0) 

> 

V4 

o 

Vi 


^ o 

<M O 
^ CM 
Vi ^ 


<t G ^ 

iTS Vi \0 


V\ Os 

<t CM 


00 oo 


^ tA \0 Vi V\ 

*-» x^ -tf’ CA 


lA ^ 


OH lA 
<A 00 
xO^ CM 


x9^ O 


OOO^^x ^ lA 

XX,.. O sO lA lA CA 

lA CM 


fx* lA 

O ^o 

x^^ CM 


CM O 


o >o 

CM CA 00 O 


^ lA 00 ^ x^" CM 

CM •“« iA CA 

lA 

•y PM 


•M VS 


00 CM cx* in rx. nO lA 
9V O xfl* 

^ CM 


x^ CA I 
CA <A I 
CM 


I 

I 


Vi 


Cx, 

Os 


O «A U 
CA x4> n (0 

C C 


^ 

0) CM 

O 


O fx^ 

00 x9> 

^ CM 




<0 

.. c 01 

c o >* 

O xrt 


o o 

CA O 

'x,. O 


^0 rx, lA 
fx, CM ^ 
Os x^ CM 
^ O 


K C 
to ^ 
B B 


•H to <0 « 

« :» » » 


0) 0) 
u u 


O vO O « 
CA CA y u 


CA 

CM 


c 
01 
•o e 
c 

01 
aj 01 


00 OO 

CM 


sc hJ 
a < 


O xd 

<0 00 (Q U O 
cj £ z oc: X cn 


a. 

I 

z ^ 

• o 

<AC 

O W 
Z Ui 

o 


eM -3^ 

X o o 
z z a 


0 o 

B O g 2 ^ 

O XXx O xx^ C 

Vt-I 0) SM CO 01 

01 01 CO 


^ o O 

<0 y <0 u y 

U x-' u ^ o 

O 01 4,1 

H a CO 


✓ 




BASIC DATA RECORD 


162 


4 





o\ 


sO o 

m CO o o O 


1^0 O CN 00 

<M so m in 



m 

V 


00 m m o 

sO m sD CM 


o oo 

^ CM 


^ <n CM 


CM 


NO 

>v 


::8 


CO ^ 
^ sO ^ 


CM m 

V 


o 
in <n 
cn CM 


>» 


m ^ 

00 CM m 


CM OD 

Ov ^ O O 


ON o r*»» cn cn cn 

CM o m m ^ 

CM 

00 


n 

V 


oooNOOr^ ^a0'O^cM«-H 
^ O n r** <n 

^ <n CM 


H 




n.. 

O 


CD 00 

O 


^ <n 
o o 


NO O 
CM O 
^ CM 


On O 

m in r*» m 


in 

>/ 


00 <N 00 
00 00 ^ 
cn CM 


^ ps. ^ ^ QN ^ I 

m ^ CM cn I ^ 

CM 


V V ^ 




^ w 
QB cn 
ta 
PQ 

0) 


H 


.. to 

.. c a» 
c o >- 
o ■»-» 

>f-4 AJ 

W (Q U 

(0 u «-> 

4-1 O (0 

cn ^ :x 


CM O 
^ cn 
^ o 


cn o 

CM O 


m 00 

>0 in p^ <f 


CM ^ CM CO 

>o n«. ■»» 


4^ 1> 0) 

Ul 4.1 4J 

•H <0 <0 <0 

(Q ^ » 


cn 

CM 


^o -» 
in cn 
cn CM 


oO’Nj’ino ON\or^*-»ino 

00 -H p^ ^ CM CM 

^ CM CM 


so 

*«4 P-4 O 

o o o 

N/ V ' 


^ CO 

— o — 

J= 

00 e 00 

sss 


^ CO O < 

XpJUO <000(0 uo 

a-<(OH uzrz^xto 


* o 
rtf 
O 4J 
z ^ 
o 

<M 

X o o 
z z a. 


o o 

g 2 E 2 4^ 

o ^ o ^ c 

0) 1*4 00 Q> 

•p4 01 •*-! 01 00 

^ ^ ^ -H a> 

o c o c ^ 

u o u o a. 

r*4 pH 

^ O •H O 

<0 U (0 u u 

u W tj O 

o V 4J 

H Ch CO 


/ 




BASIC DATA RECORD 


163 


sO (A 

00 
in ^ 


O lA 

o 

lA ^ 


<t O 


lA m 
•*.^ lA vO fA 


00 ^ CO ^ 
00 ^ 
cA CM 


lA iA ^ 

^ (N ^ 

CM 


lA 

00 


vC rs. ^ (A 

-4’ <A lA fA 


O >0 

'4' lA 


CM 

lA CM 

CA CM 


vO Os 

CM Os 


lA O 

00 m 

<A CM 


s£> O 
CM cA 
CM 


<A (A -4 CM 
^ ^ lA CA 


00 00 
^ sC 


CM 

o o o 


cN o m ^ 00 

lA O ON ^ 

^ CA 


CA \0 


Os O »A f-» CM CM 

CA ««4 *4 »A CA 

O 
*4 ^ 


^ ^4 


lA O 
4^ CM 


C 


^ CM 


<s O 00 CA CM 

^ CA CA CA lA CA 


-4 ^ 


CM »A CA 

CM 


CM Os 
CM O 
CA CM 


c 


so 


00 ^ »A 
^ 
^ O 


Os 

CA CA 


CO (0 

c c 


4 J c^ 

0) 
o 


o ^ 

CA •H 
CA CM 


o 


O QO 9^ 

00 00 <4 O O 


CA O CM CA r- CM 

-H o -4 CA <4 <A 



O 

<A 


^CACM G O' sO ^ Os ^ 

4 O’-* O CA 

^ CA CN CM 


H 


Os 


CM 



00 Os 


lA 

00 


CM lA 


CA O' O 

o o o 


Os ^ OO 

^ o ^ 


iA vC CA CA 
lA 4 m CA 


CA 


lA 

V 


lA lA 4 ON O C^ 

nO r**. 4 »A CM 

^ (A CN 


-• O 
O CA 
CM 


CM CM 

3 


00 




c 

•H 

tt 

CO 

n 

0) 




c 

o 


OO 

u 

CO 



CO •• 
.. fl3 

C 01 
O >> 

u W 
(0 Oi 
U 4-> 

O CO 

:z 


Qj a> 

W E 


fO •H 

o H 


W| M u 

oi HI a> 

U iJ 4^ 4J 

CO CO fO 

CO 5 3 5 


c 

o 


u 

0> 

a- 


0 ) 

00 


0 ) 


0 ) 

V 

u 

u 


o 


6 

c. 

a 


— o — 

-C 'N. 

00 fl QO 

SS 3 ^ 


^ CO 
X J u o 
cu < CO H 


Ou 

=f ^ 

' o 

<AC 

o ^ 
z >-• 
o 

4 ^ 
rA 

0 4 4 C>4 4 

COOOCO OO xoo 
cj2 :z:a^xco zza. 



u 

<0 

u 

cc 

JZ 

CJ 


o 

22 E 
0*^0 
09 <44 
^ 4» ^ 


O 

o 


00 

(U 


CkO CO CJ <0 u 


c 

a> 

0) 

a; 

u 

o. 


CJ 

o 

CO 


Cfi 






i 

i 




( 

t' 


BASIC DATA RECORD 


164 


■/- 


nO 


O 
^ <n 


-p-« ^ m 00 

'O 


0 ) 

u 

o 

u 

t /5 


jC 

o 

fO 

a> 

02 

B 

*0 

a> 

u 

u 

CO 


0 ) 

u 

«0 

o 

>* 

a> 

> 

u 

o 

CO 


o 
^ o 

»A 

00 *-< 


O O o\ 

m vO »>*■ 


»n 

-< <S — * o 

r>.r^ ^ OO'© OOO 


fS cs 


OOOOQOiO OOvOsOCMOOO 
tn O vO 00 

^ C4 




O 

O ^ C 


00 


lA 


00 

sO 00 O 

On OOO 


^ OOCOOrO 0Mlv.vOO^*-* 

<N r^cMf^iA^ 

^ OI fM 


o 

o 

<A 


o 

CA 3 


O 

OO r4 


O 

GO (A 

CA ^ O O 


OnO .-•fSONO •-«fO 

*-H fA nO nO r** 



QO r**~ 

00 ‘A '■ 5 ' «-• 

^ <A CS 


C^ ^ 
O cn 
CM 


O 

O 

00 

lA 


NO 

O 3 


O CM 


lA ON CA 1 ^ !"• 

CM nO nO nO 

nO ^ 


fA ^ 


CM 00 
00 ^ 
CA CM 


c 


o o 




• 4 * 

— « ^ <A 
6A CA O O O 


On lA fA »A 

^ ^ nO CA NO ' 4 ‘ 

VO 
vO ^ 


O 

CM 


OOf^iA COOnCn^nOiA 
00 -H CM 

— * CA CM CM 


V Nj 


O NO 
CA c 

lA 

ON 


tA 00 


*^1A lACAOv^ CO 

•>H nO nO N^ '• 9 ’ 

^ 00 
NO 


CM lA 
^ CA 
CA AC 


6 


4 - 



02 


c 

to 



<A 


ca 



(0 



CO 

H 

CO 

01 





ON 

u 


f-H 

4J 






•-3 

to 

>-• 



(D 


e 

01 

C 

0 

>- 

O 

«H 


•H 

4J 

U 

AJ 

03 

0) 

(0 

U 

4J 

*J 

Q 

(9 

CO 


3 


00 O 
CA 
NO O 


^ lA 
CA 

NO 

lA 


^ CM 00 

nO iA vO CA 


lA O CM A. 
•a* NA NO CA 


NO O 
CM 


ON On 
CA CA 


ON ON 
ON U-i 
CA CM 


CA On 
00 

CA CM 


^ oo ^ 
^ 0 -• 
X 

oo a 00 

£35 


o 

u 

10 

u 

U 1/3 

X ^ u o 

Oi < C/D H 


04 

z A 

' o 

CAC 
O 4-* 
Z k4 

o 


o -y CM < 
00 (0 U O X o o 

z:zti 2 X (/3 zzfx 


e 


o o 

8 0 0 0 

Wi u — • 4 -» 

O O C 

(M CO nm CO <y 

'H 01 01 00 

^ ^ ^ ^ 0) 

O C O C V4 

u o cj o a 

^ o *-» o ^ 

0} U <9 U U 

4 J w <j w o 

o 01 4 J 

H U. CO 


/ 




‘i 


0 




I 


k 





( 


< 

t 


4 


i