Skip to main content

We're fighting for the future of our library in court. Show your support now!

Full text of "Wind-tunnel investigation of the effects of component build-up on the inlet performance of an 0.05-scale air induction model of the B-70 airplane at Mach numbers from 2.58 to 2.96"

See other formats


WATIOM^iL AERONAUTICS AND SPACE ADMINISTRATION 



NASA MEMO 1-3-59A 

for 

UNITED STATES AIR FORCE 



WIND-TUNKE]j INVESTIGATION OF THE EFFECTS OF COMPONENT 

BUILD-UP ON THE INLET PERFORMANCE OF AN 0.05-SCALE 

AIR INDUCTION MODEL OF THE B-70 AIR]?LANE AT 

MACH NUMBERS FROM 2.58 TO 2.96 

(COORD. NO. AF-AM-163)* 

By Robert U. Hofstetter, Kenneth C. Endicott, 
and Walter E. Isler 



ABSTRACT 



Exiierimental djtta are presented to show some effects of wing, 
fuselage:, and canarcl on the inlet performance and external pressures 
in the -vicinity of 1:he inlet. The comparative effects of several wing 
configuiations on inlet performance are included. 



INDEX HEADINGS 

Air Inlets 1,4.1 

Airplanes - Components in Combination 1,7.1.1 



NASA MEMO 1-3-59A 
for 

UNITED STATES AIR FORCE 



WIND-TUHTIEL INVESTIGATION OF THE EFFECTS OF COMPONENT 
BUILD-IJP ON THE INLET PERFORMANCE OF AN 0.05-SGALE 
AIR INDUCTION MODEL OF THE B-70 AIRPLANE AT 
MACH NUMBERS FROM 2.58 TO 2.96 
(COORD. NO. AF-AM-163)* 

By Robert U. Hofs tetter^ Kenneth C. Endicott, 
and Walter E. Isler 

SUMMARY 

An experimental investigation was made to determine the effects of 
■vring^ fuselage^ and canard on the inlet performance and external pressures 
of an D. 05- scale air induction model of the North American Aviation B-70 
airplane . 

T'Bst observations showed that the addition of the canard increased 
the maicimum inlet pressure recovery by 1.1 percent over that obtained in 
the presence of the fuselage forebody less canard. Lower surface wing 
pressures outboard of the 24-percent semispan location were xniaffected by 
the addition of the canard. 

No significant change in inlet performance was caused by the addition 
of both the fuselage forebody and canard. 

Tvro of the wing configurations (North American Aviation Numbers I72 
and 154 ) had a favorable effect on inlet performance^ while the third 
(Number 1^5) wing affected performance adversely. The Number I72 wing 
generaJ.ly exhibited more positive lower surface pressures than the Ni^m- 
bers l^iU and 1^5 wing configurations . 

INTRODUCTION 

Tt.e North American B-70 airplane is an all-supersonic intercontinental 
bomber designed to cruise at a Mach number of 3 '00. The successful 



9 oa 

t) § o 




operation of the aircraft at this speedy over the range and with the 
loading set forth in reference 1, requires that specific values of engine 
perforiaance be realized. To this end considerable developmental work has 
been done by the contractor on an air induction system which will satisfy 
stipulated engine requirements. The outgrowth of this development program 
has been a twin duct system utilizing two-dimensional-type inlets, and 
combining variable internal geometry with a boundary-layer bleed system. 

At the request of the Air Research and Development Command of the 
United States Air Force an investigation was conducted in the 8- by 7~foot 
test section of the Ames Unitary Plan wind tunnel on an air Induction 
model of the B-70 airplane incorporating the North American Number 172 
inlet version. The purpose of the investigation was to evaluate the 
effects of wing, fuselage, and canard on the inlet performance and on 
pressures external to, but in the region of, the inlet. Evaluation of 
wing ej'fect on inlet performance included a comparative investigation of 
severa], wing confiigurations to determine that which would produce a pres- 
sure f:.eld, behind the leading-edge shock wave, most favorable to the 
attainrient of good inlet performance. The results of this investigation 
are re]5orted hereiii. 



SYMBOLS 



b 
c 
M 
mc 

mo 

P 

Pt 

q. 

^00 



inlet capture area, 0.0933 sq ft 

wing span, ft 

wj.ng chord, ft 

M£,ch number 

m£-ss-flow rate based on free-stream conditions eind inlet capture 
area, slugs/sec 

di.ct mass-flow rate at engine face station, slugs/sec 

st.atic pressure, Ib/sq ft 

total pressure, Ib/sq ft 

d;>-namic pressure, Ib/sq ft 

P-Poo 



pi'essure coefficient. 



loo 



a ai.gle of attack of basic model reference axis, deg 



P angle of sideslip of basic model reference axis^ deg 

X longitudinal "body axis in the vertical plane of symmetry of the 
complete twin-duct system (denoted as the model reference axis 
in figure 1; positive rearward) 

X distance measured along the X axis positive aft of model station 
0.00^ in. 

Y lateral axis perpendicular to the vertical plane of symmetry of 
the compj.ete twin-duct system, positive as shown in figure 1 

y distance measured along the Y axis, in. 

Z vertical axis in the vertical plane of symmetry of the complete 
twin-duct system, positive as shown in figure 1 

z distance measured along the Z axis, in. 



Subscripts 

CO free-stream conditions 

2 c.uct station corresponding to the engine face location 

MODEL 



I'he basic mocLel tested was an 0.05-scale model of the B-70 airplane 
air induction system furnished by Worth American Aviation, Incorporated. 
It consisted, as shown in figures 1 through 3^ of an inlet-afterbody 
combination with ei variable-geometry two-dimensional duct and true-scale 
contours on one side of the model center line. The opposite side of the 
model was unducted and designed so that the flow conditions occurring on 
the ducted side simulated those existing during twin-duct operation. 
Additionally, this offside portion of the model provided exits for the 
b3.eed flow originating at the porous ramp surfaces on the ducted side of 
the model. Mass -flow variation was accomplished by a remotely controlled 
plug as illustrated in figure 2. The model was sting-mounted from the 
wind-tunnel model support strut in an inverted attitude (see fig. 3)« 

The basic inl.et used corresponded to the Worth American Aviation 
Number 172 version. Figures 2 through 7 show pertinent inlet geometry 
for this version, and indicate over-all areas available for the 
application of boundary -layer bleed control. 




VJhen wecig* extens2®ns»vere«e]Kipioiyed»in coniimcticn" <H>i'tek a supporting 
wing configuration (see fig. 8) modification to the external geometry of 
the Number 172 inlet version was possible. The extent of the alterations 
resulting from the use of the wedge extensions is indicated in figures 9 
and 10. Interchangeable segments of the cowl side plate were also used 
to vary the cowl lip angle (see fig. 11 ). 



The boundary-layer bleed capabilities of the Number 172 inlet version 
were determined by the porosity of the plates attached to the areas avail- 
able for bleed control. Variation separately of the porosity of these 
plates^ and the effective porous area., altered the bleed characteristics 
of the inlet. Four boundary-layer bleed configurations were used and are 
tabulated in table I. Since a comparison of the effects of porosity varia- 
tion is desired rather than a detailed evaluation of bleed mass flow, the 
diminution of the net porous plate area caused by the webbing supporting 
the plates is not considered. 

Provision was made for the addition to the basic model of a wing, a 
wing and forebody, and a wing, forebody, and canard. These components 
were also furnished by the contractor. Several wings were tested in 
conjuncition with the basic model to establish which configuration resulted 
in a p:ressure field at the inlet conducive to the best inlet performance. 
The va:rious wings are shown in figure 12, and a photograph of one version 
is presented in fi,gure 13- 

F:-gures l^f and 15 show the configuration consisting of the addition 
to the basic model of a wing plus forebody. Figures l6 and 17 show the 
configuration composed of the basic model and a wing plus forebody and 
canard. 

A summary of all configurations tested is given in table II. 



MODEL COWOEIENT DESIGNATION 



The model component identifying symbols and version nxunber designa- 
tions established by North American Aviation, Inc., have been retained, 
except where noted, and are defined as follows: 

By Number 172 fuselage version. Including a forebody and the afterbody 
portion of the basic model (fig. .15) 



cowl side plate with an 11 cowl lip angle 

(Subscripts 1, 2, 3, and h designate the boundary-layer bleed 
configuration (see table l) used on the side plate.) 




'■■ ^' O CO 



C ' cowl side plate vith an o cowl lip angle 

(Subscrli)ts 1, 2, 3^ and k designate the boundary-layer bleed 
conflgur8.tion (see table l) used on the side, plate. ) 

Ct Number 172 canard version (fig. l6) 

I Number 172 inlet version (schematically shown in fig. k) 

(The first ramp extends from model station -8.6o to -5.8O, and 
the bleed gutter height between the inlet and wing is 0.100 in.) 

I2 Number 1^5 inlet version 

(This is a modification of the Number I72 inlet version obtained 
by extending the first ramp forward to model station -17-^55 by 
means of wedge extension number 1 (fig. lO), used in conjunction 
with the Number 1^5 wing version (figs. 8 and 9)> ) 

14 same as Ig above except the bleed gutter height between wing and 

inlet is increased to G.165 inch 

15 same as 1^ above except wedge extension number 2 (fig. 10 ) is 

used 

Ig same as I2 above except wedge extension number 3 (fig* 10 ) is 
used 

R movable ram]? system of the inlet 

(Subscripts 1, 2, 2>f a-nd k designate the boundary-layer bleed 
configuration (see table I) used on the ramp system.) 

S upper and lower cowl plates 

(Subscripts 1, 2, 3^ and h designate the boundary-layer bleed 
configuration (see table l) used on the plates.) 

Wrp Number I72 wing version (fig. 12) 

Wij DTumber 15^ wing version (fig. 12) 

Wip Number 1^5 wing version (fig. 12) 

TEST PROCEDURE 

Tlie test was conducted in the 8- by 7~foo't test section of the 
Ames Unitary Plan wind tunnel. Pitch runs were made through an angle- 
of -attack range from 0.2° to 4.2° at 0° angle of sideslip. Yaw runs 
were mJide at angles of sideslip of -2.2° to +2.1° at 0° angle of attack, 
and at 1.0° angle of sideslip at 2.2° angle of attack. All data were 
taken at a nominal total pressure of 28o8 poimds per square foot absolute. 

^The sjrmbol used by the contractor for this side-plate configuration is C^ 




S:lnce the inlet was located behind the wing leading edge^ the Mach 
niuriber just ahead of the inlet was less than the free-stream value because 
of the influence of the wing leading-edge shock wave. To provide inlet 
perfornance comparison between configurations involving no component 
additions ahead of the inlet with those which included a wing, the Mach 
mamber schedule listed below was used. 



Free-streiam Mach number 


Free- stream Mach number 


used for basic model 


used for basic model 


with no components 


with a wing version 


ahead of the inlet 


added 


2.880 


2.955 


2.700 


2.799 


2.i^98 


2.578 



Pi'essures existing in the model duct and over the external model 
surface.'S were indicated on multiple tube manometers , and photographically 
recorded. Figures I8 through 21 show static -pressure orifice locations 
on all model components . 

The total pressure existing at the engine face was obtained by 
averaging 26 total-pressure tubes located at the engine face station. 

Tt.e duct mass-flow rate existing at the engine face was determined 
by use of an ISA flow nozzle located downstream of the engine face sta- 
tion. , The flow nozzle was calibrated against a standard ASME orifice 
plate to obtain a correction factor to be applied to the nozzle mass -flow 
measurements . 



Precision of Data 



The uncertainties estimated to exist in the test data are listed 
below : 



Parameter 


Uncertainty 


a 


±0.20° 


P 


±0.20° 


Ptoo 


±3.5 Ib/sq ft 


K. 


±0.005 


I^tg/Ptoo 


±0.002 


P/Ptco 


±0.002 


Ap/q^o 


±0.008 


mo/mc 


±0.003 




o • c • • 



RESULTS 



Results of the present investigation are shown in the form of graphs 
and tal)les. Plots of inlet performance showing effects of alteration of 
the ba!5ic model, as well as the effects of free-stream conditions^ model 
attitude, and wing addition, are presented in figures 22 through 29. No 
inlet jperformance data are given for configurations including the forebody, 
wedge extension nu;^"bers 2 and 3^ alteration of basic bleed gutter height 
between wing and iiolet, and the cowl configuration employing no boundary- 
layer bleed control. This omission is the result of failure of model 
instruiaentation affecting the mass-flow rate measurements obtained during 
tests of the af oreinentioned configurations . Qualitative analysis of inlet 
perfonaance, based on pressure recovery alone, is possible however, and is 
discussed in the following section. 

Pressure coefficient data are presented graphically and in tabiilar 
form (nee figs. 30 through 35) showing representative effects of Mach 
number variation, and component variation on the pressures over the lower 
wing surfaces. Table III is an index to figures 22 through 35. 

External cowl surface pressure ratios are included (tables V and VI ) 
to sho\r the variations resulting from the addition of a wing and forebody 
to the basic model. These data were obtained during runs in which solid 
plates were faired over the cowl bleed areas preventing outflow through 
the co\rl surface. 

Pressure ratios obtained within the duct are also presented in 
tables VII through XV. The data selected for presentation in this report 
have been chosen to illustrate the effects on the internal flow of varia- 
tion oj' free-stream conditions, model attitude, and component variation. 
Table j'.V is an index to tables V through XV. 

Tiie geometry of the subsonic portion of the duct was suitable for 
use in assessing only incremental changes of inlet performance since it 
was known to provide nonuniform flow to the engine. Presentation of 
engine face flow distortion values would, therefore, not be meaningful 
and are not included as part of the results. 



DISCUSSION 



The following discussion does not include an analysis of all the 
data contained herein, but merely summarizes the significant findings of 
the im'estigation relating to the over-all effects of component addition 
on inlet performance . - ' 



Tlie four inlet bleed configurations tested are compared in figure 22. 
Bleed <:onfiguration k was used in subsequent evaluations of the incremental 
effects of component addition or alteration. (The scope of the investiga- 
tion d:ld not include developmental refinements of the bleed system, and 
bleed configuration h is not to be construed as necessarily optimum. ) 



Variation of inlet performance caused by the addition of the various 
wing versions to the basic model is shown in figure 26. For the model 
attitude and stream conditions noted in the figure, the Wrp and W^p wings 
had nesirly the same effect on perfonnance - favorable, except near optimum 
operati.ng conditions where a loss of 2.7 percent in pressure recovery 



occurreid. The addition of the 
inlet e,dversely. 



Wt wing to the basic model affected the 



Kg significant difference in optimum inlet performance for the basic 
model -with the Wrp wing as compared to the basic model plus the Wt„ 
wing wa.s noted for variations in Mach number and angle of attack (see 
figs. 27 and 28). 

Presentation of inlet performance data showing the effect of the. 
canard and the foreibody was precluded by model instrumentation failure 
affecting mass flow measurements. Qualitatively, however, these effects 
were indicated by pressure recovery data observed during the test. In 
comparative runs, where the only variable was the canard, it was found 
that maximum inlet pressure recovery for the canard-on configuration was 
1.1 peroent_ higher than in the case of the canard-off configuration. 
Comparative runs between configurations with and without the forebody- 
canard combination showed no significant change in peak inlet pressure 
recovery. 

For the stream conditions and model attitudes shown in figures 30, 
31, and 32, the W^ wing had generally more positive lower surface 
pressures outboard of the 19-percent b/2 spanwise station than the 
Wy and Wip wings. 



The; addition of forebody and canard to the Wi3iIR4C4S4 configuration 
(fig. 3!)) increased the lower surface wing pressures slightly at the 
50-percent b/2 and 4o-percent b/2 spanwise locations. Ko effect was 
appareni; at the 30-percent b/2, 2i4-percent b/2, or 19-percent b/2 
locations. The addition of the canard (fig. 3^ had no effect on 
pressures outboard of the 24-percent b/2 location. 



Ames Res.earch Center 

National Aeronautics and Space Administration 
Moffett Field, Calif., Nov, 3^ 1958 




REFERENCE 



1. Aiion.: Weapon System 110-A, AF33(600)-3l801. Rep. No. WA-5T-39^-l> 
North American Aviation^ Inc. 



• •• 



• • • (?•• p o*« ce 

' » ^ C C CO 

• 1500 COS on 

• • • ..* i. 



TABLE I.- BI^EEI; COMFIGURATIONS 



Configuration 1 



Bleed plate 
location 



Third 
ramp 



Bleed plate luet porous 



porosity, 
percent 



8 



area, sq. in. 



13'^ 



Cowl 
side plate 



Cowl top 

and 
■bottom 
plates 



3i 



2i+.21 



8 



26.17 



-L 



Bleed plate geometry, 
dimensions in Inches 



l*-»V.te- 



3.05 



U-2.8O-J 



Fourth j 


8 


8.54 


ramp 




; 


Fifth 


8 


16.28 


ramp 







3.05 



5>3h 



3.05 





Note: Unshaded areas indicate portions of bleed plates through which 
bleed flow may occur. 'I 0*^ 




org 
»a e 




Configuration 2 



Bleed plate ;EJ^ea plate ^^^ ^^^^^^ 



T 



location J JSS"^ ^ 



area., sq. in . ; 



Bleed plate geometry, 
dimensions in inches 



Third 
ramp 



8 



* — 4A2 • 



6.93 



T 

3-05 




4.__,^ 



»e.85- 



,08 



2.30 



-.78 



.^0 l»2.80-* 
J. 



Fourth 


8 • 


ramp 




. Fifth 


A 


ramp 




Cowl 




elde plate 


3i 


Cowl top 




and 


.8 


bottom 


plates 






21.12 



2.30 



Note: Unshaded areas indicate portions of hleed plates through which 
bleed flow may occur. 

11< 





•• oot oo 
C 



TABLE I.- BLEED COMFIGURATIONS ■ Continued 



Configuration 3 



Bleed plate I ^^® Jjg J^?:*® i Net porous ! 
location [ percent iarea, sq.ln. ; 



Third 
ramp 



8 



Fotirth 
ramp 



8 



Fifth 
ramp 



8 



I Cowl 
iside plate 



Cowl top 

and 

hottom 

plates 



8 



9.03 



5.16 



12.38 



20.52 



23.69 



Bleed plate geometry, 
dimensions in inches 



— 4.42 




1-2.86 H i; 

-2. 80. 




Note: Unshsxied areas indicate portions of bleed plates through which 
hleed flow may occur . -| «^ 




O ?? 

C 



* * -** • i. 



TABLE I.- BLEED CONFIGURATIONS- Concluded 



Configuration 4 



Bleed plate 3leed plate Ijjet porous j 
: location ; leycljt*^' ;area,6<i to. I 



Bleed plate geometry, 
dimensions in inches 



Third 
ramp 



3* 



13.i^8 



Same as 
Configuration 1 



~^- 



Fourth 
ramp 



3i 



8.5^ 



Same as 
Configuration 1 



Fifth 
ramp 



16.28 



Same as 
Config\iration 1 



Cowl 
side plate 



3i 



2k. 62 



Same as 
Configuration 1 



Cowl top 

and 
bottom 
plates 



3h 



26.17 



Same as 
Configuration 1 



13< 







TABLE II.- SUMMARY LISTING OF C0IJFI3UIIATI0NS TESTED 



A 



Configuration 
designation 


Basic model inlet details 


Wing 
version 


Forebody 
version 


Canard 
version 


Tnlet 
version 


Covllip 
a^e,deg 


Bleed 
conf ig . 


Wing -inlet "bleed 
gutter, ht., in. 


Wedge ext. 
config. 


IRCS 


172 


11 


Ifolieed 


0.100 










IRiCiSi 


172 


11 


1 


.100 










IR2C2S2 


■ 172 


11 


2 


.100 










IR3C3S3 


172 


11 


3 


,100 








1 


IR4C4S4 


172 


11 


h 


.100 








* 
1 


IR4C'4S4 


172 


8 


h 


.100 








1 
i 
1 


^^IR4C4S4 


172 


U 


h 


.100 




172 




1 

« 


WT2IR4C4S4 


172 


A 


h 


.100 




I5U 




• 
• 


¥T3l2R4C4S4 


U5 


11 


k 


.100 


1 


li^5 




- "-51 

* 


WrpBrlRCS 


172 


11 


HbMeea 


.100 




172 


172 


ff 

• 


WtBtIR4C«4S4 


172 


8 
u 


h 


.100 




172 


172 


• 


WrpBjCr|iIR4C4S4 


172 


k 


.100 




172 


172 


s- 


Wr[iBrjiC(jiIR4C'4S4 


172 


8 


k 


.100 




172 


172 


172 


WT2I4R4C4S4 


172 


U 


h 


.165 




15if 






¥T3l5R4C4S4 


11+5 


11 


h 


.100 


2 


145 






^^3leR4C4S4 


li^5 


11 


h 


.100 


3 


11+5 







3 ,i ^ .5 
• ; J) o o o 



TABLE III . - INDEX TO GRAPHICAL DATA 



Subject 


Configuration 


Figure 


Pressure recovery^ 
bleed effect 


IRiCiSi, IR2C2S2 

^3*^3^3^ IR4C4S4 


22 


Pressure recovery, 
Mach number effect 


IR4C4S4 


23 


Pressure recovery, 
covl lip angle effect 


IR4C4S4 
IR4C'4S4 


2h 


Pressure recovery, 
attitude effect 


IR4C4S4 


25 


Pressure recovery, 
wing effect 


IR4C4S4 
Wr]iIR4C4S4 
WT2IR4C4S4 

WT3IR4C4S4 


26 


Pressure recovery, 
angle -of -attack effect 
at three Mach numbers 


WrrIR4C4S4 


27 


Pressure recovery, 
angle -of -attack effect 
at three Mach numbers 


WT2IR4C4S4 


28 


Pressure recovery, 
angle -o:?- attack effect 


WT3I2R4C4S4 


29 


Wing pressure coefficients, 

comparison of wing types for 

various angles of attack 


WriiIR4C4S4 

WT2IR4C4S4 
WT3IR4C4S4 


30, 31, 32 


Wing pressure coefficients, 
Mach number effect 


WTIR4C4S4 


33 


Wing pressure coefficients, 
canard effect 


WrpBTCTlR4C ' 4S4 
WtBtIR4C'4S4 


3h 


Wing pressure coefficients, 
forebody and canard effect 


WriiIR4C4S4 
WTBTCr[iIR4C4S4 


35 



15< 




TABLE IV.- IKDEX TO TABULATED DATA 



SulDJect 


Configuration 


Table 


Bleed configurations 


All 


I 


List of configurations tested 


All 


II 


External cowl pressure ratios 


IRCS 


V 


External cowl pressure ratios 


WtBtIRCS 


VI 


Internal duct pressure ratios, 
shoving effect of 
bleed configuration 


IRiCiSi 
IRgCgSg 
IR3C3S3 
11x40404 


VII 


Internal duct pressure ratios, 
shoving effect of Mach nvunber 


IR4C4S4 


VIII 


Internal duct pressure ratios, 

showing effect of 

wing adc^itions 


IR4C4S4 

WrpIR4C4S4 

¥t^IR4C4S4 

Wt^IR4C4S4 
3 


IX 


Internal duct pressure ratios, 

shoving effect of 
variation of covl lip angle 


IR4C4Q4 
IR4C'4S4 


X 


Internal duct pressure ratios, 

showing effect of 

variations of model attitude 


iii^C^o^ 


XI 


Internal duct pressure ratios, 

showing effect of 

wing, forebody, and canard 


XR4C4b4 


XII 


Internal duct pressure ratios, 
showing effect of the canard 


WrpBTCrpIR4C ' 4S4 
Wr|TBriiIR4C'4S4 


XIII 


Internal duct pressure ratios, 

showing effect of variation 

in "bleed gutter height 


WT2IR4C4S4 
¥T2l4R4C4S4 


XIV 


Internal duct pressure ratios, 

showing effect of 

the wedge extensions 


WT3I2R4C4S4 
%3l5R4C4S4 
WT3I6R4C4S4 


XV 



16< 



« 9 « « « « 



TABLE v.- EXTERNAL SURFACE -PRESSURE RATIOS FOR THE IRCS 
COHFIGURATION AT OPTIMUM INLET PRESSURE RECOVERY 





(a) H. 


-2.955, 


p=o° 


p = 


=2.799, 

= 0° 


(C) Hx, 


= 2.578, 


13 = 0° 




P/Pt., 


p/ 


Ptoo 


P/Ptoo 


Orifice 


0^0.2° 


a^2.2° 


a^l+.2° 


a^2.2° 


a^l+.2° 


ot=0.2° 


a^2.2° 


a^l+.2° 


number 


















36 


0.091^ 


0.092 


0.116 


0.108 


0.138 


O.II+8 


0.128 


0.132 


36A 


.07^ 


.072 


.095 


.085 


.097 


.101+ 


.096 


.093 


36B 


.053 


.036 


.058 


.06i+ 


.055 


.080 


.078 


.060 


36c 


.o4o 


.038 


.033 


.039 


.031 


.050 


.01+7 


.035 


37 


.038 


.037 


.035 


.0^1 


.038 


.058 


.052 


.01+8 


38 


.Oi+0 


.03^ 


.030 


.039 


.037 


.057 


.056 


.053 


39 


.039 


.OifO 


.oi+o 


.01+5 


.01+6 


.061+ 


.062 


.063 


i^0 


.026 


.028 


.032 


.037 


.oi+o 


.052 


.052 


.055 


hi 


.022 


.022 


.021 


.025 


.026 


.038 


.037 


.037 


k2 


.096 


.100 


.055 


.097 


.07^ 


.113 


.116 


.095 


J+2A 


.070 


.072 


.050 


.066 


.060 


.088 


.081 


.077 


i<-2B 


.oi+5 


.oh6 


.oi+i 


.052 


.05^ 


.075 


.067 


.065 


i^2C 


.Oi+0 


.01+2 


.01+3 


.0I+9 


.052 


.067 


.063 


.066 


^3 


.039 


.oi+i 


.01+2 


.01+6 


.01+9 


.059 


.058 


.060 


kk 


.03^ 


.03^ 


.035 


.039 


.ol+l 


.056 


.054 


.055 


i^5 


.038 


.oii-i 


.oi+o 


.0I+7 


.01+7 


.066 


.066 


.067 


h6 


.030 


.03^ 


.037 


.0I+2 


.01+5 


.058 


.057 


.062 


ki 


.018 


.021 


.023 


.026 


.029 


.039 


.038 


.01+2 


hQ 


.022 


.029 


.031+ 


.037 


.01+2 


.052 


.053 


.058 


h9 


.022 


.027 


.030 


.03^ 


.038 


.0I+8 


.0I+8 


.053 


50 


.028 


.030 


.033 


.039 


.oi+o 


.055 


.055 


.057 


51 


.028 


.030 


.032 


.037 


.039 


.052 


.051 


.051+ 


52 


.027 


.029 


.033 


.036 


.039 


.050 


.050 


.055 


53 


.oi+5 


.0I+9 


.0^5 


.0I+8 


.01+7 


.067 


.056 


.063 


^h 


.032 


.035 


.Olj-0 


.0I+5 


.048 


.061 


.061 


.066 


55 


.031 


.035 





.0I+3 


.01+5 


.060 


.060 


.065 


^6 


.031 


.033 


— 


.Ol+l 


.01+1+ 


.051 


.055 


.059 


57 


.028 


.030 


— 


.037 


.oi+o 


.052 


.052 


.055 


58 


.029 


.032 


— 


.037 


.oi+o 


.050 


.050 


.053 


59 


.030 


.035 


— 


.oi+i 


.052 


.058 


.060 


.069 


60 


.030 


.033 





.Ol+l 


.01+6 


.057 


.058 


.063 


61 


.032 


.035 





.01+3 


.01+7 


.062 


.063 


.065 


62 


.029 


.033 





.ol+l 


.01+1+ 


.055 


.055 


.060 


63 


.028 


.030 





.036 


.ol+l 


.025 


.050 


.053 


61+ 



.028 


.030 





.036 

— — — ^ 


.037 


.0I+9 


.oi+8 


.050 



r?< 




TABLE VI.- EXTERNAL SURFACE -PRESSURE RATIOS FOR THE WqiBtIRCS 
CONFIGURATION AT OPTIMUM IKLET PRESSURE RECOVERY 





(a) Hx. = 2.955, P = 0° 


(b) Ho = 2.578, p = 0° 




p/pt^ 


P/Pt^ 


Orifice 
number 


a = 2.2° 


a = 4.2° 


a =2.2° a -4.2° 


36 


0.107 


0.110 


0.157 


0.161 


36A 


.072 


.084 


.109 


.129 


36B 


.067 


.065 


.117 


.125 


36c 


.Okk 


.050 


.075 


.082 


37 


.051 


.054 


.075 


.079 


38 


.oi+o 


.045 


.061 


.068 


39 


.oi<-8 


.038 


.060 


.067 


ko 


.032 


.035 


.060 


.063 


41 


.070 


.057 


.045 


.050 


k2 


.085 


.103 


.133 


.120 


k2k 


■073 


.076 


.097 


.096 


J+2B 


.060 


.052 


.083 


.089 


i+2C 


.048 


.050 


.065 


.072 


^3 


.0^3 


.052 


.067 


.077 


kk 


• OifO 


.044 


.063 


.063 


i^5 


.035 


• 039 


.060 


.069 


k6 


.031 


.035 


.055 


.061 


hi 


.023 


.027 


.04l 


.046 


k8 


.029 


.034 


.050 


.057 


k9 


.029 


.032 


.048 


.054 


50 


.033 


.037 


.055 


.063 


51 


.029 


.033 


.050 


.055 


52 


.030 


.034 


.050 


.056 


53 


.046 


.053 


.065 


■ 079 


^h 


.037 


.o4o 


.065 


.070 


55 


.035 


.o4o 


.067 


.073 


56 


.035 


.038 


.056 


.063 


57 


.030 


.033 


.052 


.057 


58 


.030 


.033 


.049 


.055 


59 


.033 


.036 


.057 


.064 


60 


.032 


.035 


.057 


.062 


61 


.037 


.039 


.069 


.075 


62 


.034 


.038 


.057 


.062 


63 


.030 


.033 


.051 


.056 


6h 


.029 


.031 


.048 


.053 



18< 



TABLE VII.- INTERNAL DUCT SURFACE-PKESSURE RATIOS AT OPTIMUM INLET PRESSURE RECOVERY FOR TEE BASIC 
MODEL EMPLOYING FOUR DIFFERENT BOUNDARY-LAYER BLEED CONFIGURATIONS; K^ = 2.88, a = 0.2°;, p = 0° 



I 



S 



Orifice 
number 


^/Pt^ 


Orifice 
number 


p/pt 




















IR3_CiS3_ 


XJa^ ^ 2 2 


IRgC^^a 


XR^C^Q^ 




IRiCiSi 


-^■^2^2 2 


'^^3^3^ 3 


IR4C4S4 


65 


0.056 


0.057 


0.055 


0.057 


91 


0.210 


0.216 


0.223 


0.229 


66 


.071 


.071 


.069 


.ori 


92 


.676 


.378 


.306 


.420 


67 


.093 


.095 


.091 


.077 


93 


• 364 


.362 


.369 


.476 


68 


.096 


.098 


.094 


.097 


9^ 


.363 


.509 


.360 


.488 


69 


.052 


.053 


.052 


.053 


95 


.366 


.595 


.535 


.602 


70 


.053 


.055 


.052 


.055 


96 


.628 


.614 


.750 


.729 


71 


.052 


.054 


.052 


.054 


97 


.615 


.606 


.600 


.663 


72 


.068 


.068 


.067 


.069 


98 


.616 


.591 


.600 


.653 


73 


.069 


.070 


.069 


.070 


99 


.648 


.603 


.612 


.670 


7^ 


.095 


.091 


.095 


.088 


100 


.680 


.625 


.643 


.717 


75 


.121 


.123 


.135 


.132 


101 


.646 


.573 


.612 


.651 


76 


.267 


.222 


.243 


.273 


102 


.834 


.731 


.795 


.820 


77 


.221 


.173 


.239 


.346 


103 


.856 


.744 


.822 


.845 


78 


.308 


.293 


.322 


.269 


104 


.864 


.731 


.830 


.854 


79 


.280 


.425 


.321 


.421 


105 


.869 


.729 


.834 


.858 


80 


.500 


.533 


.543 


.496 


106 


.870 


.728 


.835 


.859 


81 


.625 


.570 


.595 


■.582 


107 


.244 


.303 


.253 


.167 


82 


.653 


.579 


.632 


.619 


108 


.121 


.168 


.123 


.220 


83 


.795 


.663 


.747 


.771 


109 


.11? 


.235 


.123 


.188 


.84 


.831 


.728 


.792 


.693 


110 


.074 


.211 


.073 


.085 


85 


.853 


.761 


.820 


.844 


111 


.873 


.784 


.837 


.863 


86 


.864 


.773 


.830 


.854 


112 


.287 


.300 


.295 


.073 


87 


.869 


.777 


.833 


.857 


113 


.044 


.108 


.042 


.046 


88 


.873 


.784 


.837 


.864 


114 


.097 


.255 


.081 


.082 


89 


.137 


.135 


.134 


.133 


115 


.203 


.449 


.169 


.126 


90 


.167 


.165 


.166 


.163 


116 


.871 


.780 


• 835 


.860 



TABLE VIII.- INTERNAL DUCT SURFACE -PRESSURE RATIOS AT OPTIMUM INLET PRESSURE RECOVERY FOR THE BASIC 

MODEL AT FOUR DIFFERENT MACH NUMBERS; a = 0.2°, (3 = 0° 











IR4C4S4 configuration 








Orifice 

number 


P/Pteo 


Orifice 
number 


^/Ptoo 




M=o = 2.^98 


M)o = 2.700 


Mx =2.880 


M=o= 2.955 


Moo= 2.498 


H>o = 2.700 


M«,= 2.880 


Mx. = 2.955 




65 


0.103 


0.07^ 


0.057 


0.050 


91 


0.271 


0.223 


0.229 


0.213 




66 


.^^6 


.088 


.071 


.063 


92 


.330 


.341 


.420 


.411 




67 


.126 


■ .108 


.077 


.085 


93 


.258 


.287 


.476 


.389 




68 


.125 


.109 


.097 


.089 


94 


.276 


.373 


.488 


.422 




69 


.091 


.068 


^053 


.048 


95 


.278 


.512 


.602 


.391 




70 


.092 


.069 


.055 


.048 


96 


.639 


.661 


.729 


.501 




71 


.091 


.068 


.05*+ 


.048 


97 


.672 


.634 


.663 


.486 




72 


.113 


.086 


.069 


.061 


98 


.683 


.642 


.653 


.415 


<iMi 


73 


.118 


.088 


.070 


.063 


99 


.701 


.662 


.670 


.394 


■ 


7^ 


.113 


.098 


.088 


.081 


100 


.739 


.710 


.717 


.636 


■ 


75 


.076 


.061 


.132 ' 


.045 


101 


.681 


.650 


.651 


.613 


■ 


76 


.086 


.158 


•273 


.254 


102 


.815 , 


.815 


.820 


.796 


^ 


77 


.136 


.174 


• 3^6 


.076 


103 


.835 


.838 


.845 


.824 


fO 


78 


.318 


.304 


.269 


.252 


104 


.846 


.849 


.854 


.832 


o 


79 


.335 


.286 


.421 


.376 


105 


.855 


.856 


.858 


.837 


A 


80 


.269 


.i+30 


M6 


.364 


106 


.859 


.860 


.859 


.839 




81 


.617 


.58U 


.582 


.371 


107 


.265 


.251 


.167 


.139 




82 


.662 


.630 


.619 


.573 


108 


.325 


.336 


.220 


.151 




83 


.772 


.768 


•771 


.739 


109 


.533 


.521 


.188 


.118 




81^ 


.810 


.810 


.693 


.791 


no 


.620 


.589 


.085 


.061 




85 


.827 


.835 


.844 


.824 


ni 


.862 


.863 


.863 


.842 




86 


.8ii5 


.850 


.854 


.833 


112 


.277 


.314 


.073 


.043 




87 


.856 


.856 


.857 


.836 


113 


.308 


.362 


.046 


.038 




88 


.865 


.863 


.864' 


.842 


n4 


.550 


.507 


■ .082 


.038 




89 


.134 


• 133 


.133 


.129 


115 


.606 


.595 


.126 


.055 




90 


.166 


.174 


.163 


.155 


116 


.859 


.860 


.860 


.839 



• ; 3 5 

• JO.) .a 



* * « 

I 



©23! 



* 1? -> 4 

*0 3<| 



TABLE IX.- IWTEEWAL DUCT SUFtFACE-PKESSURE RATIOS AT OPTIMUM IKLET PRESSURE RECOVERY FOR THE BASIC 



MODEL AT M^ = 2.88, AM) THE BASIC MODEL PLUS WING ADDITIONS AT N^ = 2.955; a 



0.2°, 



p = 0' 





Orifice 
number 


P/Pt^ 


Orifice 
number 


^/Pt^ 




XJA4.C/4.O4 


WTrR4C4S4 


WT2IR4C4S4 


WT3IR4C4S4 


IR4C4S4 


Wr[iIR4C4S4 


WT2IR4C4S4 


WT3IR4C4S4 




65 


0.057 


o.oi+9 


0.051 


0.056 


91 


0.229 


0.194 


0.195 


0.P2P 




66 


.071 


,062 


.063 




92 


.1+20 


.1+16 




.4o7 




67 


• 077 


.o8ii- 


.088 


.089 


93 


.i+76 


.396 


.389 


.392 




68 


.097 


.772 


.kih 


M^ 


9h 


.1+88 


.1+12 


.1+21 


.420 




69 


.053 


.okk 


.oi+8 


.061+ 


95 


.602 


.539 


.i+36 


.533 




70 


.055 


.oh6 


.050 


.061+ 


96 


.729 


.707 


.69k 


.711 




71 


.054 


.oh6 


.01+9 


.061+ 


91 


.663 


.705 


.657 


.603 




72 


.069 


.060 


.063 


.061+ 


98 


.653 


.611+ 


.61+0 


.587 




73 


.070 


.062 


.065 


.061+ 


99 


.670 


.637 


.660 


.610 




1^ 


.088 


.770 


.083 


.076 


100 


»717 


.680 


.707 


.621 


■ 


75 


.132 


,782 


.01+8 


.061+ 


101 


.651 


.627 


.61+5 


.595 


■ 


76 


.273 


.263 


.259 


.279 


102 


.820 ■ 


.798 


.696 


.790 


■ 


77 


.3^6 


.308 


.220 


.308 


103 


.8^5 


.836 


.835 


.815 


w 


78 


.269 


.236 


.256 


.21+1+ 


IOI+ 


.851+ 


.837 


.81+3 


.823 


^ & 


79 


.ij-21 


.377 


.21+6 


.379 


105 


.858 


.843 


.81+8 


.826 


^5 


80 


.h96 


M^ 


.501 


.k69 


106 


.859 


.81+9 


.851 


.831 


81 


.582 


.556 


.601 


.533 


107 


.167 


.11+6 


.134 


.089 


82 


.619 


.609 


.630 


.578 


108 


.220 


.731 


.156 


.114 




83 


.771 


.750 


.763 


.739 


109 


.188 


.782 


.126 


.024 




81+ 


.693 


.794 


.807 


.668 


TIO 


.085 


.066 


.078 


,068 




85 


.dkk 


.822 


.833 


.816 


m 


.863 


.81+9 


.853 


.834 




86 


.8^k 


.838 


.81+5 


.823 


11? 


.073 


.038 


.158 


.143 




87 


.857 


.81+5 


.81+8 


.825 


113 


.01+6 


.038 


.045 


.039 




88 


.86i|- 


.851 


.853 


.833 


11I+ 


.082 


.037 


.150 


.122 




89 


.133 


.11+8 


.138 


.126 


115 


.126 


.053 


.156 


,122 




90 


.163 


.165 


.161 


.Ikk 


116 


.860 


.81+6 


.850 


.831 



t 3 :j o 
I -0 .; J o 




TAEiLE X.- INTEMAL DUCT SURFACE -PRESSIHE RA.TIOS AT OPTIMUM INLET 
PRESSURE RECOVERY FOR THE BASIC MODEL EMPLOYING CONSTANT 
INTERNAL DUCT GEOMETRY AND VARYING COWL LIP ANGLES; N^=2.88o, 
a = 0.2°, p =0° 



Orifice 


P/Ptoo 


Orifice 


P/ 


^t^ 


number 






nuniber 








Jj\^O^iD^ 


IR4C'4S4 




IR4C4S4 


^40*484 


65 


0.057 


0.055 


91 


0.229 


0.289 


ee 


.071 


.070 


92 


.1+20 


.330 


67 


.077 


.092 


93 


.1+76 


.171+ 


68 


.097 


.095 


9k 


.1+88 


.1+15 


69 


.053 


.052 


95 


.602 


.1+1+3 


70 


.055 


.103 


96 


.729 


.575 


71 


.05^ 


.103 


97 


.663 


.623 


72 


.069 


.067 


98 


.653 


.651+ 


73 


.070 


.070 


99 


.670 


.671+ 


Ik 


.088 


.087 


100 


.717 


.689 


75 


.132 


.01+9 


101 


.651 


.711 


76 


.273 


.313 


102 


.820 


.817 


77 


.3^6 


.175 


103 


.81+5 


.81+1+ 


78 


.269 


.232 


101+ 


.851+ 


.857 


79 


.i^2l 


.330 


105 


.858 


.857 


80 


.I196 


.501+ 


106 


.859 


.860 


81 


.582 


.590 


107 


.167 


.168 


82 


.619 


.631+ 


108 


.220 


.226 


83 


.771 


.769 


109 


.188 


.208 


Qk 


.693 


.811+ 


110 


.085 


.100 


85 


.81+1+ 


.81+2 


111 


.863 


.862 


86 


.851+ 


.853 


112 


.073 


.056 


87 


.857 


.857 


113 


.0I+6 


.ohk 


88 


.861+ 


.863 


Tll+ 


.082 


.039 


89 


.133 


.16.1+ 


115 


.126 


.115 


90 


.163 


.ll+O 


116 


.860 


.860 



2Z< 




TA:5LE XI.- INTERNAL DUCT SURFACE -PRESSURE RATIOS AT OPTIMUM INLET 
PR13SSURE REC0V:ERY for the BASIC MODEL AT THREE ATTITUDES; M^=2.880 







IR 


4C4S4 configuration 










P/Pt 








p/p+ 




Orifr.ce 
number 




^00 




Orifice 
number 




^00 




a=0.2° 


a = 2.2° 


a- 0.2° 


a=0.2° 


a = 2.2° 


a = 0.2° 




p=o° 


(3 = 0° 


P = 2.2° 




p = o° 


p = o° 


p=2.2° 


65 


0.057 


0.050 


0.066 


91 


0.229 


0.212 


o.?n 


66 


.071 


.06k 


.080 


92 


.if 20 


.430 


.337 


67 


.077 


.089 


.101 


93 


.hie 


.396 


.318 


68 


.097 


.097 


.105 


9k 


.488 


.452 


.^39 


69 


.053 


.052 


.062 


95 


.602 


.570 


.428 


70 


.055 


.053 


.063 


96 


.729 


.700 


.451 


71 


.05^ 


.0i^9 


.062 


91 


.663 


.622 


.509 


72 


.069 


.065 


.078 


98 


.653 


.623 


.632 


73 


.070 


.066 


.080 


99 


.670 


.6ij-2 


.631 


Ih 


.088 


.088 


.091 


100 


.717 


.692 


.693 


75 


.132 


.oh9 


.0i^8 


101 


.651 


.620 


.646 


76 


.273 


.276 


.243 


102 


.820 


.800 


.8o4 


77 


.3^6 


.336 


.192 


103 


.8if5 


.830 


.831 


78 


.269 


.252 


.286 


io4 


.Q^k 


.8i^-3 


.842 


79 


.U21 


Mh 


.256 


105 


.858 


.850 


.849 


60 


.496 


.^^70 


.273 


106 


.859 


.856 


.657 


81 


.582 


.5^3 


.579 


107 


.167 


.193 


.310. 


82 


.619 


.599 


.609 


108 


.220 


.209 


.304 


83 


.771 


.7^5 


.756 


109 


.188 


0I75 


.361 


m 


.693 


.796 


.800 


110 


.085 


.078 


.267 


85 


.Qkk 


.825 


.826 


111 


.863 


.858 


.854 


86 


.Q^h 


.8I13 


.8i^2 


n? 


.073 


.093 


.330 


87 


.857 


.851 


.8i^9 


113 


.0h6 


.okQ 


.252 


88 


.861^- 


.858 


.856 


iii^ 


.082 


.102 


.444 


89 


.133 


.137 


.133 


115 


.126 


.141 


.532 


90 


.163 


.161^ 


.173 


116 


.860 


.855 


.852 



23< 



n 5 g 



B1> 9 




TAI5LE XII.- IN'EERMAL DUCT SURFACE -PRESSURE RATIOS AT OPTIMUM IKLET 
PRESSURE RECOVERY FOR THE BASIC MODEL AT IV^ = 2.880, AND THE 
BASIC MODEL PLUS AWING, FOREBODY, AND CANARD AT M^„ = 2-955; 
a = 2.2°, p = 0° 



Orifice 
number 


pM., 


Orifice 
number 


^/^t^ 


IR4C4S4 


WrpBrpCrpIR4C4S4 


XR^O^b^ 


¥rpBrpC5.IR4C4S4 


65 


0.050 


0.055 


91 


0.212 


0.209 


66 


.061^ 


.072 


92 


.430 


.560 


61 


.089 


.093 


93 


.396 


.527 


68 


.097 


.099 


9^ 


.ii52 


.528 


69 


.052 


.05^ 


95 


.570 


.528 


70 


.053 


.056 


96 


.700 


.585 


71 


.oii-9 


.059 


91 


.622 


.508 


72 


.065 


.072 


98 


.623 


M9 


73 


.066 


.076 


99 


.61^2 


M9 


7^ 


.088 


.091 


100 


.692 


M6 


75 


.oJ+9 


.0i^6 


101 


. .620 


.333 


76 


.276 


.295 


102 


.800 


.768 


77 


.336 


.317 


103 


.830 


.798 


78 


.252 


.h6-i 


lOi^ 


.8i^3 


.809 


79 


Mh 


M'^ 


105 


.850 


.816 


30 


.ij-70 


.375 


106 


.856 


.821 


31 


.5^3 


.407 


107 


.193 


.174 


32 


.599 


.338 


108 


.209 


.117 


33 


.7^5 


.IQk 


109 


.175 


.099 


Bij- 


.796 


.739 


110 


.078 


,ohk 


35 


.825 


.792 


111 


.858 


.823 


86 


.8i<-3 


.813 


112 


.093 


.oi^3 


37 


.851 


.819 


113 


.Oit8 


.0^3 


88 


.858 


.823 


lli^ 


.102 


.oif-3 


89 


.137 


,li^9 


115 


.liH 


.05*^ 


90 


.164 


.196 


116 


.855 


.818 



24< 




TAB]J1 XIII.- IWZERWAL DUCT SURFACE-PEESSUEE RATIOS AT OPTIMUM INLET 
].5RESSURE RECOVERY FOR THE BASIC MODEL WITH A WING, FOREBODY, MD 
CANARD, AND WITH AWING MD FOREBODY; M^ = 2.955, a = 2.2°, p = 0° 



Orifice 

number 


P/Pt., 


Orifice 
nimber 


I^/^t«, 


WtBtCtIR^C'^S^ 


W-pBrpIR^C'^S^ 


WrjiBr]iCrrIR4C'4S4 


Wr£BrrIR4C'4S4 


s^ 


0.057 


0.023 


91 


0.259 


0.253 


66 


.072 


.059 


92 


.320 


.319 


67 


.092 


.082 


93 


.370 


.326 


68 


.098 


.093 


9h 


.389 


.353 


69 


.055 


.050 


95 


.416 


.426 


70 


.057 


.051 


96 


.lj-71 


.571 


71 


.060 


.050 


91 


.58ij- 


.595 


72 


.072 


.062 


98 


.627 


.630 


73 


.170 


.203 


99 


.6h6 


.649 


Ih 


.090 


.083 


100 


.661 


.662 


75 


.01^8 


.051 


101 


.556 


.536 


76 


.308 


.297 


102 


.799 


.796 


77 


.273 


.165 


103 


.82ij- 


.820 


78 


.293 


.205 


lOi^ 


.832 


.805 


79 


.313 


.312 


105 


.841 


.837 


80 


.1^19 


.i^95 


106 


.739 


.698 


81 


.566 


.577 


107 


.668 


.667 


82 


.616 


.619 


108 


.155 


.164 


83 


.752 


.7^9 


109 


.806 


.173 


81^ 


.77^^ 


.1^5 


110 


.078 


.084 


85 


.816 


.702 


111 


.848 


.843 


86 


.820 


.81^0 


112 


.043 


.04i 


87 


.81^-1 


.837 


113 


.047 


.047 


88 


.81^9 


.812 


\\\ 


.051 


.061 


89 


.173 


.163 


115 


.102 


.096 


90 


.153 


.139 


116 


.844 


.842 



25< 




TABLE XIV.- IIi(TEMAL DUCT SURFACE-PRESSURE RATIOS AT OPTIMUM INLET 
PRESSURE RECOVEIRY FOR THE BASIC MODEL PLUS A WING CONFIGURATION, 
USING TWO BLEED GUTTER HEIGHTS BETWEEN THE WING MD INLETj 
^ = 2.955, a = 0.2°, p = 0° 



Orifice 
numoer 


^/Pt^ 


Orifice 
mamber 


^/^t^ 


WT2IR4C4S4 


%2l4R4C4S4 


WT2IR4C4S4 


WT2I4R4C4S4 


6;? 


0.053 


0.051 


91 


0.261 


0.195 


6(5 


.065 


.063 


92 


.360 


.023 


61 


.088 


.088 


93 


.351 


.389 


68 


.093 


.411^- 


9^ 


.516 


.kZL 


69 


.043 


.okQ 


9^ 


.588 


M6 


70 


.050 


.050 


96 


.532 


.69\ 


?:- 


.Oi^9 


.0J<-9 


91 


.601 


.657 


72 


.063 


.063 


98 


.621 


.640 


73 


.065 


.065 


99 


.651 


.660 


1^'r 


.081 


.083 


100 


.687 


.707 


T^ 


.138 


.0l<.8 


101 


.557 


.645 


16 


.268 


.259 


102 


.700 


.696 


77 


.320 


.220 


103 


.673 


.835 


78 


.259 


.256 


10i<- 


.663 


.843 


19 


.i^26 


.21^6 


105 


.658 


»848 


80 


.507 


.501 


106 


.673 


.851 


81 


.58i^ 


.601 


107 


.160 


.134 


82 


.611. 


.630 


108 


.200 


.156 


8-. 


.754 


.763 


109 


.099 


.126 


Qk 


.781 


.807 


110 


.150 


.078 


Ql' 


.829 


.833 


111 


.850 


.853 


86 


,eh2 


.8i<-5 


112 


.130 


.158 


87 


.660 


.8i^8 


113 


.0l<-2 


.045 


88 


.850 


.853 


lll^ 


.121 


.150 


89 


.139 


.138 


115 


.139 


.156 


90 


.li^2 


.161 


116 


.8i^7 


.850 



26< 




TABLE XV.- IlilTERWAL DUCT SUEFACE-HRESSURE RATIOS AT OPTIMUM lULET PRESSURE RECOVERY FOR THE BASIC 
MODEL-PLUS -WING COHFIGURATIOIT EMPLOYING CONSTABT INTERNAL DUCT GEOMETRY AND THREE WEDGE 



I 

A 



Tpvrnmvra TrvTT qtta-dcg . 



'■'00 



— o riKei 



} y 



Orifice 
munber 


P/Pt«, 


Orifice 

niuriber 


^/Pt,, 


WT3I2R4C4S4 


WT3I5R4C4S4 


%3l©R4C4S4 


WT3I2R4C4S4 


WT3I5R4C4S4 


WT3I6R4C4S4 


65 


0.056 


n n^^ 


c\ n^^ 


m 


r\ 000 


0.249 


0.275 


\^ • •^y-' 


V ©^^w 


y-'- 


\j ,i~i-i- 


ee 


.066 


.068 


.067 


92 


.407 


.455 


.454 


67 


.089 


.092 


.091 


93 


.392 


.378 


.441 


eQ 


A35 


.091 


.088 


9"^ 


.420 


.459 


.491 


69 


.o6it 


.066 


.066 


95 . 


.533 


.437 


.458 


70 


.061^ 


.067 


.066 


9e 


.711 


.382 


.456 


71 


.061^ 


.066 


.066 


91 


.603 


.454 


.447 


72 


.061^ 


.066 


.066 


98 


.587 


.427 


.418 


73 


.06i^ 


.066 


.066 


99 


.610 


.550 


.531 


7it 


.076 


.083 


.080 


100 


.621 


.630 


.627 


75 


.06I1- 


.127 


.136 


101 


.595 


.518 


.496 


76 


.279 


.293 


.289 


102 


.790 


.732 


.772 


77 


.308 


.307 


.339 


103 


.815 


.801 


.802 


78 


.2>^ 


.249 


.294 


104 


.823 


.815 


.813 


79 


.379 


.362 


.380 


105 


.826 


.822 


.8?1 


80 


M9 


.355 


.369 


106 


.831 


.793 


.657 


81 


.533 


.410 


.413 


107 


.089 


.137 


.145 


82 


.578 


.552 


.545 


108 


.114 


.155 


.172 


83 


.739 


.708 


.709 


109 


.024 


.093 


.104 


84 


.668 


.747 


.747 


no 


.068 


.123 


.128 


85 


.816 


.801 


.801 


m 


.834 


.829 


.828 


86 


.823 


.815 


.800 


IIP 


.143 


.069 


.064 


87 


.825 


.8?1 


.818 


113 


.039 


.037 


.038 


88 


.833 


.828 


.828 


114 


.1?? 


.o4i 


.038 


89 


.T?6 


.\\h 


.131 


115 


.122 


.057 


.082 


•90 


.Ikk 


.166 


.153 


116 


.831 


.824 


.823 




Diotieiisloss In incbes 
Ho scale 



RefePMice axis 




Model shovn in sn 
inverted position 



«p T O O -,> 

«■: o .i 



Relative viod 



Figure i, - System of axes and positive direction of angles > 



Model sta. 
41.00 



Mass -flow 
coaatrol i^Lug 




Sting sugpport 



Side view 



3-250 

i 



4.125 



m 



Z axis- 



9 



Note: Model sbo'wn stqoported 

In an inverted position 



Blmensloas in inches 
No scale 



Front view 




Figure 2.- Side view of the "basic model incorporating the NtEaiber 172 inlet version. 



Reference axis 








Boarp BlsensiooasI Data 


©3 3 
• 3 


Saoip 
aibe 


r leng^thj 
In- 


Baa^ 
heli^rt, 

in. 


Total rasBp 
area, 

aq, In- 


Bebb^ «rea asrail- ^| 
able for bleed ^M 

8^ in- fl 


1 


2.821 


3.250 


9.168 


0.000 3 


2 


1.681 


3.250 


5.^3 


0.000 M 


3 


4.952 : 


3.250 


16.09J^ 


10.917 Ifl 


It 


2.85D 


3.250 


9.262 


5.168 ■ 


5 


13-750 


varies 


13.^55* 


13.^95 I 


6 


8.1^^ 


tart.ieaj 


20.065* 


0.000 I 






loBiaal Yalfies 


1 



]iotes- lSm&$ac9 an figure iztftlcste zaBp 
deals>3&tl<m 

Tbte aztgle iMitveen the first amS. 
aecosA raa$ a:«rfaces sod tlie ref « 
ersB&e asdU sqre fixed at 7* astd , 
11% reapectivaly. 

Model is slKnut in imrerted ^c»t- 
Sb seaOUs 



Figure 4*> Scbooatle dravriag of tlBBft utaiber ITS inlet versicm, vitb \»ott<» ccfWI plate 3r«DdvtKL i^tiOving 

tbe TGoedflible reaep attest. 



Reference axis 




A 



Sbte- HvBBbers on figure indicate 
rasrp designation 



Typical grid area available for 
the application of "boundary -layer 
bleed control 

Ko scale 



Figure 5.' 



Ifodel is shown In inverted 
position 

Schosatic side view oT tike vHariable raap systoi ^own in figure 3 showing relative locations! 
of ranip JBz«as available for 'bom^tsaj-la.jei' bleed control. 



»« • > I 




Reference ajcls 




Model sta. 
-8.60 



Model sta. 
0.00 



Area available for 
bleed contjrol 



All dimensions In Inches 
No 3caJ.e 



Note: Top cowl plate ahowi 

Bottoin cowl plate Identical 



Figure 6, - Schematic plan -view detail of top and bottom cowl plates of the 

Number 172 inlet version. 



33< 



O '^T ,T 




3.000 



Reference axis 




Area available for 
"bleed control 



Model ata. 
0.00 



All dimensions in inches 
Wo scale 



Figure 7.. - Schematic side-view detail of cowl side plate. 



34< 





A-23851 



Figure 8.- Modification of the inlet from the Kvtmber 172 version to the 
Number 1^5 version hy^use of vedge extension 1 and the Wm ving 
version. iiJ^S"^- 





Lateral displacemsttt of reference axis 
Typical for all vedge extension 
modifications »1 . 2k inches 



Wedge extension No. 1 



0.16 inches - Typical for all 
wedge extension modifications 




TjiTplcal for all 
vedge exi^sion 

modifications 



Model sta. 
-IT. ^55 



Model Sta« 
•8.60 



Cowl side 
plate 



Model sta. 
0.00 



Note; Bottom cowl plate not shown 



No scale 



Figwre 9.- Drawing of the Niaiber 172 inlet version modified by the use of a 
typical wedge extension to the Nvmiher ik^ version. 



36- 




> » • 

'• ••? < 




Model sta. 
-8.600 



1.08 




a^iraop 



r^ 



III 
III 
Hi I 
II I 



nd 



(a) Wedge extension Number 1 with 1 — and 2 — ramps 




Isentropic ccanpression 
surface 



(b) Wedge extension Number 2 




Same as Number 2 except 
for larger top fairing . 




(c) Wedge extension Nianber 3 



Piigure 10.* Details of wedge extensions investigated. 

37< 





Section through 
cowl side plate 




-th 

5 — rajnp 



2— ramp 



rd 
3"^ — ramp 



k — ramp 



'— 1— reaii) 



reap 




(a) Cowl 0id« pXate with lip angle of 6' with mod©l i. 




(b) Cowl side plate with lip angle of 11" wltJi model t, 
Flgijre 11 »- Details of the cowl side plate showing the 8" and U* lip angle. 



38< 




Model sta. 
-15.125 



Model sta. 
0.00 



Model sta. 
-8.60 



Dimensions in inches 
No scale 




Reference axis 



Wing data 

Airfoil section forward of the k% element - NACA 66A002.5 

Ai]-foil section aft of the k^ia element - h% to fOp. hexagonal, 205*^ thick 

Aspect ratio - I.88O 
Taper ratio - 

?51eed gutter height between wing and inlet - 0.100 inches 



(a) jlasic model with Number I72 inlet version and the W^ wing 
Figu]'e 12.- Schematic drawing of basic model -plus -wing configurations tested. 



39< 




]i4odel sta. 
-13.855 



Model sta. 
0.00 



Model sta. 
-8.60 



Dimensions in inches 
No scale 



60^ seini8pan»19,50 




Beferenee axis 



Wing data 

Airfoil section forward of the k^ia element - NACA 66AOO2.5 

Airfoil section aft of the k3i) element - k3i to 70^ hexagonal, 2.5^ thick 

Aspect ratio - I.880 
Taper ratio - 

Bleed gutter hel|(ht betwen ving and inlet - 0.100 inches 



(b) Basic model with the Nvmher 172 inlet version and the Wrp^ wing 

Figure 22,- Continued. 



4©< 





Model ata. 
♦17.^55 



Model sta. 
0.00 




Dimensions in inches 
No scale 



60^ 8ealBpan»19.50 




Reference axis 



> Wing data 

Airfoil section forward of the U5«t element - NACA 66A0O2.5 

Airfoil section a:ft of the k^lo element - k5i) to 70^ hexagonal, 2.5/& thick 

Aspect ratio - 1.880 
Taper ratio - 

Bleed gutter bei^t between ving and inlet - 0.100 inches 



(c) Basic mocilel with the Number 1^5 inlet version and the Wip- wing 

Figure 12.- Concluded. 



41- 





A-23843 

Figure I3.- Installation photograph afi^;W3.e Wqira.C^S. model configuration. 



m 



e n fl 




<C 



Model sta 





Model sta. 
0,00 
Wing 



Bl*«d gutter helfifkit » .33I 



Porelsody 



Detail of bleed gutter between 
f orebody e^id wing 



Note; Plmenslons In Inches 
No scale 



?igure lU.- Typical jnodcl configuration including the forebody. 

43< 



^ 



^ 

^ 







Figure 15.- Installation photograph of the WrpBrpIR^C ' 4S4 model configuration 




Model $ta. 
-55.575 



10.60 




Model sta. Model ata. 
^16M 0.00 



Coaard 25^ c location 



Z 






Model sta. 
-25.96 



Detail Bhovlng angular 
incidence of canard 



Canard data 

Sweep of 25^ element • kj* 

Airfoil section - NACA 66AOO3 

Aspect ratio - 2.078 

Taper ratio - .1591 



Figure 16. - Typical model configuration Including the foretody and canard. 



45- 



"■^©NFIBSNflAt. 



O « 

• • e 



■B, afartanide to tislllng idj^ 




For all wing versions 
A»19,50 in. 
B-6T.it-5 in. 

Airfoil seetiona at all stations are: 
forvaard of i^5^ elwdent, BACA 66A002.5, 
aft of 45^ elttaent, U5% to 70^6 liexagonal, 
2.5^ i^iek, except for lftadlng(-edge ex> 
tension, vhich la a flat plate on lover 
atarfaee. 



t) © (D ® 

Ho scale 

NuDbera on figure are 
orifice nvmlaera 



Orifice 

No, 


Location 




Orifice 
So. 


Location 




Orifiee 
So. 


Location 


li''/^^ 


^e 


U>>^] 


i>o 




$0 


1 


50 


5 


13 


ItO 


85 


25 


19 


5 


12 


50 


10 


Ik 


30 


5 


26 


19 


10 


3 


50 


20 


15 


30 


10 


27 


19 


20 


''4- 


50 


35 


16 


30 


20 


28 


ll^.70 


3.54 ^ 


'5 


50 


50 


17 


30 


35 


29' 


13^0 


3*28 


i5 


50 


65 


18 


30 


50 


30 


12.12 


2.96 


7 


ko 


5 


19 


30 


65 


31 


10.83 


2.65 


3 


ko 


10 


20 


30 


85 


32 


9.51^ 


2.36 


!? 


ko 


20 ■ 


SI 


2k 


5 


33 


U.60 


2,8if 


10 


ko.. 


35 


22 


2k 


10 


3^^ 


0.00 


3.13 


i:l 


kQ 


50 


23 


2k 


20 


35 


7.00 


5.06 


111 


ko 


65 


2k 


2k 


35 











Figux« 18, • Location of preasure orlflcea on tbe lo^rer surface of all ving veraiona. 



00 
A 



.80— 



21.90 



12.00 



- l^.82-~^ 



Model sta. 
0,00 



^ ^ ^ 



Numbers on figure 
are orifice nioDbers 



-38-98 



-30.92- 



-Reference 
axis 



^ W^ 




2.22 



.i 



^~n 



J^.125 



o -J o c 

o 



0000 

<9 a 



^ I 6.025 r'^ 



Dimensions In inches 



No scale 



« o O 3 4 



Figure 19.- Locaticaa of exteamal pressure orifices on bottom cowl plate. 




■ju.yii 



@ @€> 



k.Q2^ 



Model sta* 
0.00 



21.90 



-Reference axis 



^^ 



f-^^ 



^^ 



-I — IJI3 typ. 



-12.00 




^^'^^^^^^ &=^ 



Numbers cm figure 
are orifice numbers 






DiBieBslons In Inches 
Ko scale 



Figure 20.- Locatlcsn of external pressiore oririces on co^rl side plate. 



Reference exla - 




Dimensions in inches 
No scale 



1. X -dimensions for raap surface 
orifices are "based on ramps 
positioned such that angles 
betveen the raop surfaces and 
the reference axis are; 

7* for first ramp 
11" for second reunp 
l6" for third ramp 
21* for fourth romp 

a. Orifices numher 122, 013, ^^f 
115 » and ll6 are not shovn, but 
lie on the bottom cowl plate 
directly opposite orifices 107, 
108, 109, no, and Ul. 

3. Model la shown in an inverted 
position. 



Orifice location 



71^ 



3e,ln. 



2*3 



'».3 



50 



5.8 



6.9 



15.6 



2, in. 



Orifice 
no. 


Orinee location 


x,ls. 


z,ln. 


85 


I8.e 


—19 


86 


21.1 


-.3lt 


87 


21A 


-53 


88 


26.9 


-.725 


89 


0.8 





90 


2.0 





91 


3.5 





92 


5.0 





93 


5-3 





9k 


5.6 





9595 


5-9_^ 








_2I_ 



T.* 



18.3 



23-'' 



26.9 



Orifice 
no. 


Orifice 








107 


li,6 


li.08 


108 


5.9 


U.27 


109 


6.6 


U.35 


110 


7.3 


k.k5 


111 


26.9 


V.75 


112 


lt.6 


1..08 






h t-J 


Ull 


6.6 


I..35 


115 


7.3 


l*.U5 


U6 


26.9 


lt.75 



• 3 5 O O 

• o o 



♦ o c c o 
e <£ 4 



•■•«*-■ 



Figure 21.- Schematic drawing shoving locations of the duct internal static -pressiore orifices. 



& 

I 

V 

to 
m 



.u 


. . . . 1 . . . 
- ' • ' 1 • • '- • 


;:;:;■;■' 




-r— T 

.;:;!.■.; 
.:„|..._. 

; ■ i - ; • 
< ■ 

i ■ ' ■ 


- ; ■ 




;:■ :::•; 






IReCsSe 
D IRiCiSi 
OIR3C3S3 
^ IR4C4S4 




.... _.. . . ... 


.... J ....... 


T"":" 




t- :■■:;:::■- 


.— .-"^— .*.— 


— "-^— • — 






r^ 




:::.:l;.lu 
: : : : 1 ; ■ : : 


-:•-- 


.9 




... i ... . 


.:: :.G) 


li 


■<^^^2^^ 


.:' :k.:: 


;;;;;;■; 














-::~"~r:- 









I 





.:.... 


........ 


--— 









;:::•:;•: 


-::\[\\:l: 




V ■ 1 ■ • 


::-:i:;-: 


. . , , 


'.'■'■', 


! 1 ; 1 










....(.. 









•VijA; 


m 














..,.:.... 










. . . i . . . . 




:::: :::: 


• ■ 


^;;;;i:;i 


';::i":- 


;.;;;!•;; 





i 







fi 


l:::\^ 




;:::li;;; 


;;;•; 










;:;'::;: 












:;:: 


.:.; 


:.■: 


; ; ; • ■ 




■••;:;;;; 


..,,..... 


"*Ti~~"T 


rtT T'p r. . 


t:7"'-".'.' 


-;;~H 


1 


>\\\\^ 


"TrrtrTTr 


-; •~z*'-r^-. i. 


TT! T 


''. '~ 




*-••-! p* 




-:rr.''-TT 




■;r-~'-ff 


','.'.'.] 


■f^ 




Xi^-rrH-- 


■:•: ;-;; 


•—-;- 




•T 










;;::;;;:; 


'.'..'. '.'.'. 't 






:;:::;::; 




.J ..-'.,.. . 






;;:::j/ 


ii 


;-:^^^l!;^'^;- 


'.'.'.'.]'.'•'.'. 


-— r 






;'';i^;" 




:'•!:;:!': 


■ ■ ■ -1 : : • 


^;-;;" 


'y^.'V:' 




:';:i;:;^ 


:■;:::;■: 




. . 1 . . : 


rUf^-rrfrHf-i^r-: 




T-H-r-r— 


■.:■:■. .:■.■. 
... t ... - 




:;;:;::■.: 






• b 






::: j;r: 


-r'-'r/r.-. 


Tr:T-::rr^:T;-:-:--:r 






;::;;;;;■■ 




\\\-M':\': 




;:':i:'::p-::^::;; 




:'.'.'.;'.'.'.'. 


.:...,.... 






• ;;;;:: :;:':: i :': .: 


•::;i::::r-;'::::: 


:::; 1 ;.;: 1 :;::;:;. : 




i^^naaiiii^^^iiL 


T;*7::':"' 


-'"'-':-■'■ 




; : 1!: : : : 


r 


J : ; ,'r:,: ,■ ; 


;;i;if;;i 




••;::' 




::::;:::! 




;;:; 






* . . . . 

' ■ - 



.7 .8 

Net mass -flow ratlo> vIqMq 



.9 



1.0 



Figure 22.- Effect of toimdary -layer bleed on the optim-um performance of 
the Ni^mber I72 inlet version, vfith an 11" cowl lip, at Jlj„"2.880, 
31=0.2% |3=0". 




51- 



n " r> 




1.0 



.9 



8 
(U 






.).... 
..;)..:: 


:.;!;;;. 


. : 1 ... 

. . .« . ... 


1 — , '. ..■ 
:;::t.:-; 


.:.i... 






: : : ; 1 ; . : ; 












1 


"' ; : J ::t" 




M:^ 




":yt::v.- 


.:„. 






_•-.: . 


O Me,=»2.880 
D Meri-2.700 
OMo*«2'^98 
A l4r«2.955 


::;t.; . 
— •- 


■ - i • ' ■ • 


::::!■::: 






.:.:.:_U;^.. 


.;. >:;::-: 


'J. :;;:.. . . 


:: >. 




:- :-; ;■:-- 


:':;:TT;: 


":: 


:.;::;:;; 




-;;:- ::: f^ 


! . . : 1 , . : 






.:. :.-.f? 


^ 


: : : : 1 : . : : 
.... 1 ... . 


-'■.'■—':•: 


1 ..;,... . 


. : : : 


r- • ■ 


::.:|::::| 




--.'•-■ ".': 


: ; . . i : . . . 


W 


i-i ' i ' 


7 ! I .' 








::-.|:::: 




:::*^, 








. . .,...- 


: ; '. \ : ' . 


:'-.:x:'.'.: 




^Jn 


■Tr:- 


■'\\\'"'-- 


H-- 


: : : : 


i,:.;.L 




;;:L-;li;. 




■. ' : 




;.■■:;!;;;; 






:: : :.:: 


'. 1 '. ^ I ' , . i . - * " ' . . 
■ ' *■'"""?""! |7 ' ITT . ' 


.:i: :]-;.:.:. 'i'-.u:,:. 




: : y 


■A 


.- •■. . ... 

. . . , , . 


. . . . . . . 




--.■::t~:- 


'.''.'...'.' !.'■'"•".'" 






■..x 


■ ;:: •,■..;.■,;•■■. i ;:. : 






: -.1 . .;••:; 
i 






'..'.'. I 


■3 


?'" ." i '" '7 


L^ ' U. ' ' ' ' 


.::.;. i';-.::L^:.-i.iii- 




. . . . . . 




:■::!:::: 


::..i:::: 




' '. ! t I ! ^ ! ; 






....... 






. .. . i 


■ ■ - • ! ■ ■ ■ 


' ■ . ■ - ■ 
■ : : • i : . : 




,...(...- 


;;:;i:;.; 


:■•-■-. r':r: 


— ,_.i 


Ql 


•:::i:::; ;;;:i:::' 




j.'.li 


• ■ . - J 

■ ■ ■ : i : : : : 


','.'.'.,'. 


..'''•'.'.'.', 


:;::';■; 




1 .' i " i ! ' ! ' 


:.;.;..-.U:.;- 


-: ...I'.: .:. 


'. . ' .\ ' '.'.' 


:M^^- 


■ i • — 














;:;:!;:■: 






....', ... 
• : : : 1 : . -. : 


:...i;::; 


:.;.;..; 


..:.;:: 


........ 


■''■■-'■.--:■.: 


. , i . . . . 




■ • I 




■ • • • t ' ■ ■ 


";;f::; 


■ '""_'";'', " ~ 


"Tt"rT! ~ '. 


'•■-(• - ■ 
'rrr.r.::-:- 

■ : 


"'^in'::;;::*::?:* 
• ; i . . . . 




■ ; • • 1 ■ ■' ;' 


"" :ir*". : 


'.'.':■.'.:::: 




; ; • : I ; ; ; : 


-rrrHi:-- 


*:.*■' • ' 


\\\\\\\/-\y\-\'.\-\ 



.5 



.6 .7 .8 

Net mass -flow ratio, mQ/niQ 



.9 



1.0 



Figure 23.- Effect of Mach number variation on the optimum performance 
of the IE4C434 inlet configuration at ■ i=0 ,2" , p=0°. 



52< 




« e o • 

9 « « e •• 



1.0 



J 






I 



v> 



Pi 



o 







?...|..;' 


"nr 


— .*— 


f::- 


-:r: 


:'■ ■::: 


rrr-f 


■•TV 


•!---: 


~t 


' '. : . .j : : : 


O IR4C4S4 


. .i. 










: : . .1 ; ; : : 












; : : : 1 ::.: - 


:ILi. 


■rir- 


;':■ ;':.:■ 


; : : ! 


'■':'■■': 


■~t: fr-:T 


J- 


-::■: 


r:'-f 


--"■ 




■;;.i..:. 
■ ■ ■ \- - ■ 






:;•;:!:•:: 


::: : 


: ; : :. 


::.:'. :.: 








.... 




■*r!T 




i !"! ' T-^.' - ,. 






iOl? 


.'... '. i 


i 


•H--T 








: : : ; ' : ; : ■ 


::rr 




■':;• ^: 


i-T.'; L 


! * . ;. 




•.:::■ 


■:;:: 






£!:u 


nrf 


•;;.;;;:;;- 


T:rf-::Tr 




;;■;[;.■; 


Xf); 






;::; 

-.«.*i- 

:::; 


•■••[';': 




: . : '. 


• ; • : 




-■::i: 


;;i.i 




;;;; 


: : ■ i 


•j::!'!;; 


hO 




;■:: ::ir 


:-;-:!;::: 




t- . — *. 


: : ; :r ;: ; :■ 


. . 1 " 


P 


i L i ■ 


'-■T-r 


. ., . I . , 


■rrn- 


■..■':■ 


\iii 




it;; 


" : '.',1 








:;::|:-^: 




I-; 


;; ; : 




i ■ • 

... t . . . . 






.- - ■ ; 


.... 




: : : : 1 : : : : 


ziv, "".r.!?. 


..... 1 ; .^. .. 

■■;i-f;;;' 


■\::ii::.i' 




: ; ' i f • ; ' • 


.. ..^ ^. 




I :.;:■;:: : 


'-'■■'.'■• .-' ; • 


?ii^ 


::;:: 


;-.::j::;:: 


i ■••■■■ ' 


■.■■■; 


'Ti 'i; ■'; ; 


i;:;ti::'r::::::r;: 


t[r:Tii:H' 


-^i.;:'. 


: 'il 


■•■:■;;;;;;:■ 


■ -^ ■■■;;■' ; 1 


: ! ; .' I ; . , . 

;:•■;•;•; 




:t;y:;:; 


hrr --t-i.rrrrr.. 


^rri- 


. 1 1 . • 




©: 


Tt. . .. 


. . . . . 


;:::t::r:r 


■:;•*.:■:' 
::::j:;:; 


:::::::;': 


prtr.y. 


:::: 


:: : : 


;.!;.. 


; ■.::?;.; ;;; 




:;::|:;-:: 


. . i . t^, . , ;. 


Tff ■* • -;■ 


— 


♦ T M 


...,.;,. ,,J. ...,,..-.. 


;;:ri.,,:: 


• ■• •• 




..;:,i. .-, 


.......... 






.i:r::Hl-i: 


ilni^inin;;!;^: 


-rr-; 


:rr: 


;ir: :::.: 


•nH-K; 


;:::t-::r 
; : : : ' : : .: : 




I,:... 


• <•■-. 




':■.'■": 


.:?:i 




?^;:i 


riiiir'^T 


:■:::';:;; ':,:HV;!:'l 


;: : : 




:;'H 


. I . . 

-J. , 


:l;.1...;4..,:... :;;! 


:::;i;-::;::l:.::; 


:i:i: 


rH:;:.:;.;r:r::];;:.: 


::::';^::; 








•;r;::-i:.::U- ■:;■;;■;: 
;:::i:;;:tr;-;:::i.-: 
. .. . , ,, . I-.--.,, .- . - 




■;1;r: 


;:-.r.jr;:: 


•i-iri^; 


'■.'■.:::::'.:' 




:::;■; i;;i;; 


I'^^r ; t i; 


:;■:; ;;;:^.;i4!.;.;; 
Hii ::;:i;iu;;:;: 


::;;;-;; •_-; ':-;;:;:::: 


^;^njn;i{;Ii:^;?iy 


.:,.■.]::.: 


L", ! '. '.*, . '. ' '. 




\l\^l 


;:Hr 


frr: 


^Hili;;;!:^:^-^^ 


.i;;:!.:;:4,:i.L:J±Jj. 


l;.::Uf;:;r;::;!::'; 


.... J - 5 . . 




'.'■::''. 



.5 



.6 .7 .8 

Net mass -flow ratio, Bq/ihq 



.9 



1.0 



Ifigure 2k,- Kffeot of variation of cowl lip angle on optimum inlet per* 

formaace at Hxi»2.880, a«0.2°, ^oO'*. 



53< 



1»0 



J^ 



Pi 






to 

w 






.8 




.6 



-rr 



■ - ■■ f ' 



-■vm:: 



Internal inltt 

geametry varied to 
establish optimum 
performance . 

A o:»0.2*j paa.l* 



Internal inlet - 
geometry fixed for 
optlnxan perfornumce 
at as<0♦2^■^-0•. 

n 0-0.2', $»2.1» 



.5 



.6 .7 .8 

Net mass -flow ratio, aiQ/aig 



.9 



1.0 



Figure 25 «" Effect of variation of model attitude on the perfonnanee of 
the IR4,Q434, inlet configuration at M«i»2.880. 



5i- 



1.0 



J 



p.. 



I 

o 

<D 



ID 

ft 
H 
-P 




.6 .7 .8 .9 

Ket mass -flow ratio, rio/iBq 



1.0 



Figijre 264 - Effect of wing addition to the basio model on optitDum inlet 

performance at aaiO.2*, 3«0*'. 




55< 



»y=2.955 



Kr2,199 



Hd=2.579 



A 



1.0 



I 



Pi 



o 

V 



s 

« 

ID 
V 

Pi 






.8 



•i^ -T 



.6 



;:-:.:l::;; 




; r'l 




r-' - •■ 


.: \\-, 




!:;•[::;• 






m^ 


• lit 


rr:r 


A'J. 


r;;: 








•:;;[:;;i 


t-;::.?i;i 




I!< 


m 


itli 


i' ' '. ■ ■"- 


.1.: r. ♦-;:;;• 




: :t:. 


i.,.; 






^ 1 . J 




^%^ 


xf";-; 


. . i-» 


ii;! 


ir'i 




l\\: 


: laJV ; ?" 


\M 


A-r* 




!•;■:. 


+ ■-»■: 




. - . f 


■■■M 


•^r 


^:: 






MJ-' 


:;;: 


* - • ■ 




: : Stir ■- 


■ - . r 




* ■ - » 




T\'", 


:!':' 


I It i t-i rr 


I*-: 


* ;.'.{ 


.::t:: 


'pi:|:-:f: 


M ; 1 


■l-*.M 


Hr; 


■^ ■* ♦ • 
1 1"-* 


* .. . L 








.;■>» * r 


ni: 




LZ'.\v.'zz: 


It'* 






'1 .. .. 


v^ 


.r^ixT 


F-H+::::: 


Ijji. 






Pli; 




^^ 


t ' - ■ 



:65 



■75 



.85 




.65 .75 

Net aasa-flow ratio, b1o/h»^ 



; : : . i : : : i 




".' .\ '.'.'. '. 




. . . : 




i5^ 


1 : : : i : ■ ■ : 


. ■ . 1 

• :.:'[■:■•:. 




\,\\^ 


N-i 


■:--f.:: 
1 ; .' .' 1 !. ■ It 


;:i'i :;; 






.2 , ; .!";■' ! 
.■■.;U::.::; 

• • • . + • . 


•:;rr 


- ■-- 


: ;r^j 


::::r;::: 


... i . . . 


:::r;. 


; ■. ; '. 1 . ! : ; 








. . . ,. 


■::::r 


-r:.:T 


;:•—• 


■; ; : :■ ;:; ; 


-rr^nrr 





\' 1 ■" ■ 


;i;: 


: ." ■ '. 


J -.».» - : ■ 


;r;t;:;.: 


.?iH 


Q 0=0.2°, p-0° 




:;.;: 


Da=2.2°, p^O" 



.65 



.75 



.85 



c 3 ; _■ o 



Figure 27* - Optlm-uin inlet perfoiraance characteristics of the W1J1IR4C4S4 configuration at varying 

angle of attack for several Mack nianbers. 



Me.p2.955 



1.0 







# 



.8 



.6 





::::(::- 




..... ... 


'..'.:' ",:.' 


Jj -|; -'^ 


::;:!:::: 


.:-.:;].;: :i 






.---•- 


:::; 


.... 1 ... . 


— t ■ ■ • ■ 
... J . 
. . ,. ..... 




fn- 


r. ; : 




TTTT ■*^ " ft "^ 


.... 
■ 1 : ' 




— r- ' 






■iill'*^ 


: : '; : 




::;: 


;:H 


;-;: 


: 'i ; 






VA^ 


Ii 


^;i 


:;'.;ir:-t 


::;': 


' : ; - 


■ :': ; 


\ V ", : 


1 


1^ 


P 


yil 


■;i: 




•■: : ; 




■V 


HX! 


...... 1.. 


. . .j '. 


* - *-.; 


.. . ; . 

: : : : 


iiCii:::: 
:.t! ti: , ; : 








h: i 


:::7i{;:; 
:;:rlVK 


J: 


::Hl;;:: 


,ni;ji.u; 


— -^j 
.... 




W:j"?ri: 

; • ; ■ f - ; ; 


■ *-,-. 


-rifr 




j;;; 




: ■ :t 


i:l-.i:i;I 
: ; - :^ : : ": 




ii':: 


;!■; 


--*r 


ill'. 




r.V: 


i:!;',r::: 






.Orr 




iiil 


- . t ' 


••i:: ::r 


:.;::■ 


^r:;': 



.65 



.75 



.85 







•V2-799 






■ ■ ■ i ■ ' * - 


....;:: ::.r:: ■- 

:.::;:. ;;l;;:: :i:- 


-—- -~ 


i;:!*-:^ 


— - — i-T-''-^ 


:.,:[:... 


'1:1]--"1 






::;;l,;';! 




.:;. 


!•:; 


::;; 


ii|«a;y 


i;r: 




:::: 


. . • • 


,;:;;itf 


r^ 


^iiV 


:-^:r 


:*:: 


ffll 




1 


t^.;! \'±. 


:::: 


.... 


'.\\' \ '.'.'.'. 


-;iii^"? 


. , . 1- .. . . . 
■ • ■ '\V,\'\ 






;;:; ::f" 


;::H:::- 




'\:\ 




■•iii::;; 


, : " : 1 ' : ' : 


~".r 


r:~ 


ini:"^:- 


-:;:t.^:. 

... , . . . , 


: ' '■ : • :.: r: 


:::;i:::-: 

.... t ... . 


:••;!;::: 






H^iiii-: •-'■■.: 




; : ^' [ijl 






. , , . t ...... ,. 


•-: 




■■f - • • 


\ilh^^ 



^^=2.579 



.65 .75 .85 

Het mass -flow 3fatio, mQ/m^ 





■ ■ : ■ I ■ " ■ • 


■ ■ t 

.::■;;:.■ ::-.:] :.: 


.... 


3ip, 


■',■':,:''; 


■■.:";":— 


::::;:::: 


":■:■::;. 




.:.:: _i_ u_ 
::::!::.■ 


....... . 

;'.::}"■:: 
-•••p.:.;.; 

riHp;; 


- - '+ - 


^0m^^ 


■■::!;.:' 

'--■-+- ■ ■ 
,. : : ; i ; : : : 
:. ■:!:::: 


:,"n,i:.'.; , 


■■•■•G'- ii'ii''-' 


:;.:.:i_l-l 
:::•:-:::■ 


.... i ... . 


:"'::. :': ' ^ '.''.'.-.'. '. : 


....it-... 


^ ! r .' '. ; 'I 


■:.:];::.!:.■•:■.-: 


•::.: 


1 - . . 


O 0=0.2', 6=0" 


. 1 ; ! 


-~ 


D a=2.2', 
O a=l^.2% 


p=o«' 
p=o* 



>-3 ^ 



I Q ^ 3 "3 

► 

o o o 




.6§ 



■75 



.85 



Figiire 28. » Optim-ura inlet performance characteristics of the VJT2IR4C4S4 configuration at varying 

angle of attack for several Mach ntnnbers. 



O P c? 
1 



n ';■ t^ 

■ • • 




1.0 



8 

•p 

(M 

•P 

t' 



i 



CO 

(0 

i) 
^. 
H 

EH 



.8 



uii 


r *- 


TTTi.-,rn- 


M 


W: 


TFT 


^'T - ' 


0^0.2°, 


-*-o' 1 




j-li; 


■Irrr 


rii-'l. 


-r-U-' 


j';.i 


.T/ 


* ' * ; 




~ "-t/ 




llil 


.^j-. ; 


::.:■.:;• 


iiR 


.111-4 


:ti:.: 


r ,-4 " 




'"Xl 


+-j : 


5;.i 




fiii. 


irl: 


■trn. 


Eli 


TZT 


"It IT 


p 


Tjf. 


■* -!-4 


-f-t--t !■ 


I .it. 


4r.. 

-t-t .1 


■ • I- 


:r:: 


■FL;.- 


ii.i^ 




■*- • 1 


JS-^ 








.;+. ^. 


■rrrf 


i 


iHi 


T^.l '■ 


^ii-F 


". ; ; ;■ 


~^Tr! 


! -.! ' 


::irf 


IT-l 4. 


■''-;;^j- 


:.;.':r 




ir:-? 


1^ 


;r1:t 


.; 1 '^ 


;r.;-: ; 




t:T: 


^ i-, 


V:r 


■-* T m' 




-Tti't 


•■• r r 


.r.Li.1 




^r 


fe 


■r~f 


-t ' '. '. 




::;.: 


;:-:;.! 


'.'. J T r 


:;1^ 


'*■; * ' 


'M 


:-Tf 






1 


-Is 


^.j .;.... 


il . * 


';^::r 


., ., ... i 


r:.;± 


iri-i: 


iljii. 


rJt.r 


H'Th 


!;■;.: 


^:i 


w 


:ii! 


;';:;f 




I ,*" '^^ 


.-i.f ». 


i:i;. 


-rn. 


;:iil 


!i[i 




•;"::' 




"A: 


.;::f 


■:::: 


jjfi: 


i:H 




■"::T': 


'.'".!-*.!' 


-tt; 




: ; : : • ■ ■ 


; :.:;;■ 


V::'i 


pi 


;:•; 


:--f:. 




. I . . 


* r • •- 


-1 .^*4: 


.1.1.,,. 
it; :rt'. 


.:.iu: 




4.: .- 


rrr:: 


":;: 


-fnr 


! • ' ■ 


;•••; 




i:r;' 


rrii 


■• M- 


-rjli: 


- • - 1 


■ 1 .'f 


* '1' 


1 ' ■ i 




:::-;1;:.. 
.:;::!:::; 




. ' i 1 


.,, .-^ . 




fri-l 


¥;i 


iijij 


- ■ t 


•'";':'!';•!' 


•TiK:;:: 


M ! '. 


.'.I'. V 




::'.:■ 


liii 






.; ::] 


irn 


I:'" I.-'' 


-•--»• ■ * 




::.;;■ 


'. i-t-^ 


r. ; .;' ;^ 



•6^ 
.65 .75 .85 .95 

Net mass -flow ratio, m^/m^ 

Figure 29." Optimvan InXet performance characteristics of the Wrp 12^40434 
conilgxiration at varying angle of attack for 1^2,955. 



58< 



Pi 
< 



I 



8 

o 

0) 



^ 



n 
r^ '\ 3 




Spanwlse location - 50^ b/2 



.2 



-.2 



rrr-t 




■+-*-^*- 


i :; ; 


M. 


.. ^ . 




rrr- 


i'Mii 


■;•: ;;■- 


Ll^ 


'.'.'.'. 


1 ; 


o 

n 


Wjnuc4S4 




, ,'. 
























WT3IR4C4S4 







.... 



















. : . . 




■.;:.. 


:::: 


■r-rH 


; ; : : 




:::; 






: : : : i : : ■ : 






• i-*^ *■ 




■irr: 


T'trr 


.^-i-, — -,. 




■.iii'j": 


rr:-;- 




¥, 




:•:: 


U :: 


■'i;: 






nvC 


M 


1 


1 


I 1 . . . . 






.... ... 








. . . ,^ 


"fr.'rl 
: ; : : 








l^i ■ ■ ■ 


■^ 


%,.*+ 


-»— J 




^■r-t^ 


1 




; * ;■'■ 


::.:: 


; , . . 


•i.:: 


;:;■!;:•;■ 


:::;i:;:' 
:".:;:::: 




^tfe 


i^=«r^ 


*','.'. 










.-..: 




.... 


',-'•'■ 




:::: 




.,^-; 


. ;.- . 


. . . , 










."'if* 


;:;: 


;■.:• 


: i '4 .- ' : ' 
•- ■ • I ■ • ' 


':;•'::• 


: .■ . : 
:;■. ; 


.... 


'....{'...'. 


■■'Hri^T^ 










•::': 


:::-r 




:.••;■-::-■ 


;;;': 








:: :; 


:■;:•: 


'}]': 


.... 
■:: ■ ■ 




- ■ - • 4 


1 ^ ; * J ^ ■ J ■ 


;:;;!;■;; 




. . - . j , i i . 




.... I . - . 


ir:":- 


::■■ 


■ ■ ; 1 


r;i : :. 




. . . i.. . ^. 


::':: 


■ ' ' \ 




._, . . 


:;;: 


.... 










• * T- ' 




^in 


11^ 




:'::l 





Spanwlse location - kO^o "b/s 



f ■ * 


:•:! 




III! 








rrrm 




:::; 




.... 










* • • * 




." '.' 1 


iii; 


:'!; 


^:;"i 


;;i; 


;;.': 


* ' ! ! 


;:■; 






; : : : 
.... 


: ::r 




:';' 


Tt.Tr^ 




! ! !"! 


11 ! .' 




1 


7""' 


;:::. 


; ; ; [ 




~'.~ 


--r 




':;:-i::-: 


: : : : i .' ; : : 






... ... 


.:::: 








;;;; 


"■'■■ 


r: :H 


.- ; : : 




':•.': 


':::;: 




i: - i, 


1 

■■»-'-*■■-■■ 


i 








• ; 1 ; 


:::: 


• • ■ 
1 — ' — 


.:.;.„,i..:.:. 


;'.;;]:;:: 


\\-.\ 


:;:* 




_..:_ 


■H-f 


:"::■• 


::,::K:::1 


— 










►-Li 


JJIU. 


1 


■ 1 • : 




dipf 


liiilii.i 


T^ 


F 


"^ 






:•:; 




..... 


;| 


—rr 


§ 


i.-.Ii- 


.... 

;;i: 

i . i . 




-r?. 


TTlt 




^ 


........ 


-^ 


P 


^ 


"^ 




)• ■ 










p. 


;';;! 




! I! 4 


:ti: 


-Hir 


_«.^— ^ 


:::: 


< i i ' 


' ri-' 


::t; 


:::L 


. . . . 


: ; : ; i : : : ; 










• 1 ; • 








-Hi: 


» 4 . ! 


; ; ; ; 


•i!:; 


' ' ^ ' 


iw- 


- 1 : ■ 
' 1 ' ' 


.... 1 ... . 
.•;;:1.-.:j 


'. '• '. '. 




HH 


t I '. 1 


I::: 








M »t 




iliL 




:::; 


-^i 




'■:': : ; 


::,': 




.::::[: ;ji 








m 


; ': : : 

; . . . 








' ; ;-v 


••il 








:,: ;: 


.;::• 


■•* - • 


'..'.I ', 


:::".: 


• ' ' • 


: : ■ : 



-.2 



,0 20 1^0 60 80 100 

Percent wing .chord, ^c 

(a) 

Figure 30.- Ccattparlson of pressure coefficients on the lower surface of 
the NtBuber I72, 15i4., and li^5 wing versions for optimum Inlet pres- 
sure recovery at ^^»2.955, a=0.2°, ^»0*. 

59< 



O ',~ "^ 

Q on 

r 3 



< 

I 



to 
n 
0) 














Spanwist 


8 locatior 


I - 


30^ V2 














.:;:: Li:: 


: i i: 


-i-r- 


— ^,-4- 


ji;; 
— 


:;:i 


:rr: 


TT" 


:;:: 


! 1 1 L 




■ ■ . ' ; . . ^ 




O Wri.IR4C4S4 
n WTgIR4C434 

O Wt,3IR4C4S4 










>s 


m 

i-;-!^ 






;:::!::;■. 




. .., 
.... 

-L: i-l 
.... 


i ^ 


yy.'l'. . '. . 


. i : . ;; 


-fr: 




\:: 


::'.: 


. . - . 






;-n 


.'!',: 


; : : r 








- • • ' t : * -T 

' ■ : ri ; " ; 


l^;;^ 


;;;■ 


'; : : : 


,: -i ii-i.L 


- ; : : 


-.1-,..% 


: : : • r: : : : 




;H; 


J.: ; : 




:;;;■ 


.:;,": 


.: : r: 


; : :: 




-:::!:::: 


;%H^ 


iww 




. , : . 


. . . . , ... 


.... 




;;;,*■ 


;i]i 


A 


'. '.'.'. \ 1 '. '. 


i&iJ 


't^^. 




:::: 


■ .' ". t 




. .'/\\'.:'. 


:-i:^ 


BS 




^ 


."•■^ 


rriS 




-^ 


.:':;: 


■ ; ; - I ■ • : . 




.'. '. \ ', 




WW 


r-r-H-i::-: 




".rrrt . . rT 


— -.-_»-. — - 
• : : : i : ; : : 


:;:;l:;;; 




^ 




n«|:;; 


.:::,: yyy. 


o 


'■ \ ' ] • ' • ' 


......... 

t . >T ■■ 


-::-;■ 


.'!.'' 


-TT r: :^- 




i ' i i 1 


tt:: 


;■::.:;:: 


-— 'f • • ■ - 

: ; ; ' I • - - - 


ii: 


■.yy.\yyy: 




; : : : f : : ; : 


;:::}■;:", 




: • ' : 


■. : ■. : ! ; ■ . ; 


": : ; 1 *. : . I 
......... 




::::j;::- 


. . . , j . . . . 






: : :..r 










:' ■ : : 


. ::Tt: r . r 
. , . i . . . . 






^i^;:ii; 






i I ^' 






;;;;. 


::;; 



Spaoiwlse location - 24^ "b/s 




20 i^O 60 

Percent wing chord, 5^ 

Figure 30.- Continued. 

60< 



100 




< 

I 

o 

•H 

8 



0} 

to 




Spanwise location - 19^ b/2 




20 IfO 60 

Percent wing chord, ^e 



100 









A p/euo 




^ b/2 


'h 








W1PIR4C4S4 


W5igIR4C4S4 


W|]ig33l4C4S4 


14.70 


3.54 


.024 


.435 


.480 


13 Ac 


3.28 


.024 


.069 


.192 


12.12 


2.96 


.030 


.031 


,142 


10.83 


2.65 


.024 


.003 


.094 


9.5^^ 


2.36 


.024 


-.001 


.092 


7.00 


5.06 


.042 


.041 


.156 


i^.60 


2.84 


.024 


-.001 


.011 


0.00 


3-13 


.016 


-.007 


.098 



(e) 
Figure 30. • ConclviflLed. 



61^ 



Pi 

I 

o 



» 




Spanwise location - 50^ t>/2 



.2 











;ffr 








• . ■ f 


'■::: 


:::: 




••■• 1-;: 


1 . . '.' . ~T7 


I . . i 








~ 


1 






■:-r. 




:::: 


W: 


.... 




TTTT 


i ^ ' ' 1 ! ! ! 1 
... i ... . 

- ■•I'" ; 


f-r -rrrr 


:-f:- 


O Wr|iIB4C4S4 
D WTgIR4C4S4 
OW^ IB4C4S4 


ii:^ 


1 


B 


■'.r'-: 






::::.:::: 


"■•r 


:;;: 


. . . , j , . -, . 


:;:;j:;:: 


;.':; 


-7..r-.--1 


. : : ; 1 : : :^ 




■ j-7 - 




;■::■ 




.;::|:::; 


\:::\:::\ 


; : ; : 




•:::l:;:: 


• . ■ • 1 

.... j ... . 


:: ; : ; ; "; 


— 


H 


*^^ 




• : : - ; ■ ; 


;•'•! ■ ■ 




::...!. ,:; 


: : : : 1 : ; : : 




iil: 




• : vr 




;■::: :..- 


Si.-- 


S^-aJH 


iii-i/Hrrr 


~~«c 


" ::i : : ;; 


.:.;}.,.. 


~~ 




■lilil^-J 




i-M 




:::; 




':':•:[ 


: :.: '. 


::': t :;::.:;..: i ■;: : 


■ ■ ' ■ I • - • ■ 


1 . »i 


r— J 

: ■ : : 




■ : ■ ; I : : : ; 


W^ 




:;;■■: 




•u'' 


—T 


; ::■: 


::;-:::,:|:::: 




:::':::: 




'. '. ". ".' ".:'.'. 






: : : ; 




'.'.','. 


•.:: :;:;[:.:: 


:;;!:;:.!:: ■;';■: ; 


......... 


•■■-i-r: 


■'■::: -r,z: 




,:'•: 


: : ; ; 


--.-- 


:: :r:n. 

.Tr~rnr- 
■ : : ; i : : : : 


. ' . ' y. '. '. 


. . ', . ^ ! ! 






;; ; . 

.... 







■„■ 'i::::. 


......... 


: : •. ; t : ■. : . 

- • ■ - j • ■ ■ • 


'■•-■I-;';; 


•.-.;; 1. ■. ■- : 


.... 




;;:^!;;;; 


: '■ : :' 


;;;;. 




"■ . ■; : 




.... 




: : :: 






;;:; j::-^ 


;:;;':;:; 


::::!;•- 



Spaawise location - 4o^ b/2 



.2 -rr 



;;; ; 


:- ; : 


i::: 




y.'.'. y.y. 


.....' 1 : . : 

; .... J ... . 


yy 








■:;:i:-::: 
.... 1 . , . 


:::;!;;:; 


: : ;7 




r. . . 1 ... 
■ -'■'■-••• 


Ftr.: 


fTTT 
:::: 


;::: 


i ; 1 • 


y. y, '. y. '. 


iiiii:;;: 


;;;; 










Lii: ■ 




rrrtr 

' ■ • - 


: : ■; 7 


.: n ; 


::;:t:;.:; 


1 




;;li 


-1.! 1 , 


y.i'. '. y.i 


^M\:\ 


' : * " 


; '. '..'i 


-rir 


-;-:r- 


TT"--:"- 


: : ; : 




;;!:• 




yl\\l\:^ 


.... I ... 
. i . , 4 . , . . 














\2'-. ' 


: : ; ; 








y.y.'fy:: 




::if 




..l 
;■:! 




;:::!:'■;; 


..... 




:: :; 








.... 


: ; ": 


'.'.■.■Vy':': 


;:;:;:.:.■< 


;::: :;:; 








";:1 

.... 




^ 


"rfHi'JT'T 




^ 


=4* 


TTi 


"ii^ 


:y.- 




■:;:!;.::: 


■ • • 


- . . t 

; ; ; ; 


::':: 




I;i: 








::::•:':; 


••' ' ■ 


. . .7i 






.... 


i«3:i 




*^ 


i 


y- 

m 


~~ 


1 


ill:: 


n;^ 


•^ii 


i : ': : 










•: : ; 




y-l 




; : : : 


;:;; 






- 1 • ■ 


lir! 


■ i ' ' 

nit 




; 1 : : 




■;;: 


—rr 


': ; • ; 




V.', I i 


-TTTr 






;i;; 




'•■1-, , 




••i: 










y.y. 




;■;;_;; 




i::'::": 


1 '. '. i 


i-, . < 




••** + 




H:.; 


■; t ••; 


':::: 




■}-l 


: : -.: 


T.-~ 


E\ 


!■• ;i 


rti; 


r:': i 


;:;• 


iin 


Ht - • 


l::;- 


:i.l i ! 


;-i: 




I j' I . 


i;;i 


'*♦"*. 


:r;.; 






iifi. 




^hI 


; ; ;■;, 


T ' ■ ' 




nlmi^-: 




■i ::: 


i!:; 





-.2 



20 1^0 60 80 100 

Percent vlng chord, ^c 

, (a) 

Pig' ore 31.- CompariBon of pressure coefficients on the lower surface of 
•the Nxanber 172, l^k, and li^5 wing versions for optlfflum inlet pres- 



uure recovery at Mad-2.955» a»2.2', p=0*. 



9i 

O 

8 



to 



n -J ;t 
• c« « 




Spanvlse location - 30^ b/a . 



O WQ1IR4C4S4 
D WTgIR4C4S4 

O WijjgIR4C4S4 




.2 












SpanvlsiG 


> locatlor 


I - 


21*^ 


'V 


'2 












u;; 

'MI 


—it 


'. ' 1 1 




;•;• 


tfr- 


• ' ' • 


.... 


^;;i 


.... 


; ; : ; ; : : ; 


— r: 


l-rr'r 








.... 


—f- 




nif^ 


tit 


•::;; 








;;•;: 




Ttir 




1 


■^'i ; 


T-rr 


-~ 


-■•■»■■ ■ 


; :...a:.; .;. 

. . . i . . , . 


:!::!;:•; 


















rt 


jjiij:;;^ 



















. ; . . 


F> • : 1 


i 


1 


^ 


ip 


... ) . . . . 


■; : : : ' 

■•i-r 


~T- 


• • ■ - 1 ■ ■ ■ 










........ 




— I . .... 


..:.!.::: 










:H:': :;; 


.... 










-.ri-r 


- . • . 

:.■::. 


! ! ' 1 


-l-TTT 


;:: :::: 


i'::iv:!. 
.... 1 ... . 






..,.,..., 


• • ■ : r . ; : 






; : : . I 




: : : ; 


.;;: 


~::'n!];' 

, ... 1 ... . 


: : ; : 1 : : : : 

■;7rri:::' 

:;::t:::: 


;:::!::■.: 
.' ; ; ' i ". ! ! ' 




rrrr- 


Trrrr-rr 


,z 


^W 




■-rf- 


:::.: 

.,.. 


-'/'■ i 


TT"*? 


• ; ; • 


.... 


— .--^ 


-rrr 


f::T 


*::r 


.::-:.: 




l:r: 


.... 








-"'■TT 




;;:: 


- ; ~i 


;;■;;;::• 








• •■!-- 




'ill 


* . .1 1 


■rr.T 




:::: 


;;;;■;!: 


^i.:;: 


• - ■ M ■ : '. ■ 


; : : : 


-rrrr 


: fir 








::':: 




:i^:. 




1, 


ini. 


M 


•■•• ■■■■- 






I * ' ! 













20 40 -60 

Percent ving chord, ^ 

Figure 31. - Continued. 



80 



100 




63<^ 



Spaawise location - 19^ "5/2 






0) 



g 
I 

to 



.2 



'.2 



; : : : 


fi 


1 




:i:: :::' 


;l:;.r--' 

, ... 1 ... : 


-.'- 


.... 


I wT 


rrr/ 


■ T ■ • ■ 
......... 

: : : : j : : : i 


rr-. 


WrpIR4C434 
D Wrp2lR4C434 






:;.';: 


-r-fl 


^; 


........ 

: . : ; 1 ; : : ; 




~y 


■ ■ • ■ 




r-fr: 


••::: 


WT3IR4G4S4 




rr-T-rr-^ 


■ ; ; : . : : 
— f— ^ — 

:::;!:;■: 


"r^:?*":" 










;\\ 




.... 










::::i:| 


|;;;j:h; 


■ . : . i ! ' '. ! 


■ ■ - 1 ' ■ 
..... p, . 


: : : : 




;:*; 


i;;: 






;;:: :::; 


: : : : i ; : : 
• ; : : 1 : • :< 




::;:(;:!:' 


.-..,.... 
:;:'i::-:' 












:.:■!:;:! 


". : : ". i . ; : : 




:::■';::: 




:;:•-;•::: 






: . : : 1 ; . : : 
■:.;f;:. 


.:::!:::: 


; ; ; ; f ■ ;; ; 


: : : i . : : : 


. ... 1 ..... 






::;:i:;:: 


:t;-:i::;- 






r-fi" 


■;■::: 


-•::■-- 


■ • - ■ t - ■ ■ 
'•■-(•■■ 


■:;;i::;: 

. * i i . " ; . 


... J , ... . 

:■:::!■::: 






•.'.':!•.;;: 


1 , . . . 

;;;^i:::i 




::::];::: 




i;;^l:;;^ 




- ■ • • 1 ' ■ ■ ' 

;:::r:::: 

■ • •, 1 ■ ■ • ■ 




; r ■. ; 


". .' : 1 ; : : : : 


: : ; '. j : ." ■ ' 


: : . : r : : ; 
. . . . 1 . . , . 


...-;.... 

:;::':::: 




Hi: ;i:.:. 


'.'. :.: i: :: 






HtT:!::;; 







m 


iil"r 


.;:■•; 


■•Hj-i:; 











2C 


) 


h 


^0 






60 




80 




100 



Percent wing chord, ^ 









-^ p/<3oo 




^W2 


^ 








%IR4C434 


WTgIR4C4S4 


WqigIR4C4S4 


lil.70 


3.54 


.03l«- 


,he6 


.430 


I3.i^0 


3.28 


.03!^ 


,132 


.202 


12.12 


2.96 


.03i^ 


.070 


.146 


10.83 


2.65 


.OU 


.026 


.108 


9'5h 


2.36 


.012 


.018 


.108 


7.00 


5.06 


.026 


.106 


.146 


l*.6o 


2.81^ 


.010 


.026 


.122 


0.00 


3.13 


.006 


.001^ 


.122 



(c) 
Figxire 31.- Concliiaed. 



64< 



• •*• •• 



••• •• *»s 



Spanvise location • 50^ "b/2 



^ 



p< 



I 

O 






.2 



.2 t 





1 i '! 




^iji 


rrrr 
'■III 


TTTT 


Jill' 






' r ' ' 




: i i t 


. I . ;. 


rfrf 


OWrpIR^C^S* 






;-4 
1 !.: ; 


•1'; -ii''' 




III: 


■Ilk 


ri'i 


V:: r 


^ '. T '. 


I ' 1 « 


;;;■ 


DW»PgIH4C4S4 


Ul f- 


.j . t ;■ 






: : : ; 


.,,+- 


.;:::. 


;::: 


!:;: 












OWT9IR4C4S4 


:iil^ 




Tpir 


'••* 


1! IZ 


■ \-l.7 > 


: : :,; 


* * • 1 


I '. ',' 


^l:.i 


_;4-::. 




• - • ■ 










- - ..*.. 






-,,- ! 


. ; » . 






*;• 




V";' I.' 




■;7-!T 


I . ,-. 






^ 


<r- T 


I * ^ * 


Tl ~i 


1 r r^ 

i 1 ■ f- 


., J . .1 j . : . 


.! .* .' ". j .' ; : ! 


:-; : ■. 




. . , . 


:■■; 


- ; ' ^ 


1 - ' i^ 


, I ', .' 




• -» • ■ 


.^.-;l 


,4-4V 






•T • • 


'\i- 


.;..4ii,-i 


- 1 -•,.,., 




T - ^ ■ 


1. . . ! 




. I . - 


-.-,], 


1 . , ; 




■ f • t 


I . - . 




rtrr 






■'!■ 

• : ■ ' 




i 

Tit! 
ill: 

... t * 


i 


*r^ 


■Hi 




■I ', *'-' ' 
— ... -■ 
—■*-■■'- 


rrrr 


b 


• t • ' 




■4-^4^ 


r.rr 


1: 


-' J r ; 


■t t • J 

4 * ( • ■ 


^44- 

L. » .J. 

-.at 


^ ..1 V 




Tv.l 

l-:t; 








- r- • 

rrrrr 


> if- 


1 ■ • 1 




■'I 'I i i 


nli 


' . • - 
:'..r: 

.. . . i 




1 









Spanwise locatlcai - 1^0^ 12/2 




20 



80 



100 



ko 60 

Percent wing chord, ^ 

(a) 

Flgvu.-e 32, ♦ compiirlBon of pressure coefficients on the lower surface of 
tlie Ntnaber 17'-; 15^* an*! 1^5 ving versions for optimum inlet pres- 
sure recovery at N^»2.955> Cf>k.2'', ^=0*'. 



65< 



no o 3 © 



Pi 

< 



o 



9 

n 




Spanwlse location - 30^ b/s 




Spaawlae location - 2ki) 'b/s 




20 



kO 60 

Percent wing chord, ^ 

Pigvire ^.- Continued, 



100 




< 



t) 



8 

V 

0) 




" *** "Spwiwfse location * 1^ b72 




1^0 60 

Percent wing chord, ^ 



100 



^t V2 


'k 


Ap/cko 


W^IR4C4S4 


WijgIR4C4S-4 


WT3IR4C4S4 


U.70 


3'5h 


.061 


.554 


.khQ 


13.i*0 


3.28 


.061 


.238 


.2kk 


12.12 


2.96 


.149 


.160 


.304 


10.83 


2.65 


.055 


.080 


.126 


9.54 


2.36 


.051 


.OkQ 


.126 


7.00 


5. 06 


.013 


.136 


.156 


1^.60 


2.8i^ 


.Oii-7 


.037 


.IU2 


0.00 


3.13 


.033 


.028 


.142 



(c) 
Pigtire 32,- Concluded. 



67< 



p< 






to 




Spanviae location - 50^ b/2i 




OJW"2.955 
OH„=-2.579 

WrpIR4C4S4 

configuration 






m 



Trrr 



m 



t-r^ 



.'. I I = : 



cs 



U:il 



;;.L 



m: 



rrrt. 



Spanwise location - iK)^ t/a 




20 to • 60 80 100 
Percent vlng chord, ^ 

(a) 

'.figure 33. - Effect of Mach nisniber variation on the lower surface pressure 
coefficients of the Number I72 wing version for optimum inlet pres- 
sure recovery at o»2.2*, ^=0*. 



68' 




ft 
< 






i 






e a a 




•/•«^ 



SpauwlBe location - 30^ b/2 



T-- 

t:J. 

fit 


1 ii; 


Hi; 


nii 




f 1 •■+■ 






TTT 

r • + ' 


1::{- 


t i t 1 

lit: 




lUi 


1 if-t , 


iH: 


l\:\ 


ih;ii;; 


iiirT'it 


^ 




fill 


::;!" 


11:1 


Ijit 


!;;• 


. . 1 i.. 




(•.,-! 


^ 1 ! ' 




■i »4^ 






J... . 




■i'l 




.; : : I 


i..i 


■* '■- t 


; ! ;^ 
"1' 


! ' * ' 


:::: 




^ 


; • 1 ' 
J.: fw 




: '1 ■ ■ 


'■) *■ J 


:::r :::; 


;:;! 




-i. . , 1 


:IV: 




^ 


i?F 


P 


^ 


^ 








:-::H-!i--: 


"i ' '. 




?St 


iv;r^ 


f.T!- 

;J-| t ; 

t- I • 


•iii 






7^1 




:::! 


• H^ 




' ' . '. 




i 




^^ 


^; 


; ' ; -K 7 ' ; 


:;;: 




T:':t 
* • - » 


T ' '"■^ 


■ill 




1^! ' 


:?:":• 


-• ; .' ; 




-I U + r I t .' 


:::; 


' r 1 1 


r ! '^. 


]':': 


,:i :i , ■ . . 


^1!: 


:;;;' 


:"■ i T 






.- . -i . -| 


t t-'-i 




■S:l 


t-it: 


M iiii 


, . , . .. - .^ 


::::!: :;: 


.;;■; 


1 ! ! :. 




:■::. 




In 


... 4-+ 

•;fl 


).:.:. 




.. . , i. 


li I .' 






iiiiit:^:. 


T- ? i f ' ^ ^ i 


.:T!T|:::r 


't.'-', '..il ', .* ; 


• ■"•:[;::: 


iWi 


* * " * 


i;:.: 
■ft:;: 


Jiii 


ii:l 


+ t . t 


fnniH=!: 


n-u: 




■:::ii;:I;v 




•:;:-)r:.;.; 

::;:;r^-r;: 


-.:i;i:'-'-, 


\[]] i]i- 


i ■ ' • 

■ • '■' 


•|H} 



Spanwlse location - 2h'f> t>/2 




TTTT 



;::f; 



i:;Lf;.r*;' ■;.;.;'. 






T; 



Dl^»2.T99 
OMce-2.579 

Wrj;.IR4C4S4 

conflgui'ation 



Uo 60 

Percent ving chord, ^c 

Flgiare 33.- Continued. 



80 



100 



69< 




Pi 
< 



8 



to 
u 




40 60 
Percent wing chord, ^ 



100 



i>'rt>/2 


'k 


Motf»2.955 


Meo=2.799 


Moo-2.579 


Ap/q«, 


Ap/q« 


^p/q<« 


14.70 

13.40 

12.22 

10.83 

9.54 

4.60 

0.00 

7.00 


3'5h 
3.28 
2.96 
2.65 
2.36 
2.84 

3.13 
5.06 


.034 
.034 
.034 
.014 
.012 
.010 
.006 
.026 


.0394 
.0394 

.27^3 
.0283 
.0195 
.0666 
'.0109 
.1643 


.0595 
.0564 
.4546 
.0284 
.0284 
.0574 
.0158 
.0699 



(c) 
Figure 33,- Concluded. 



70< 










to 
u 




• • * • 



Spaiiwise adcAtloii. - ^5C^ 



Spaawise location - kOf^ "b/s 




-.2 



20 1^0 60 80 100 

Percent vlng chosrd, ^c 

(a) 

:?igtire 3!^. - Effect of canard on the lower sxarface pressure coefficients, 
of the Wufflber I72 wing version, for optimum inlet pressure recovery 
at 1V2.955, 06=2.2% p«0'. 




"SpaQviaft'lVrfatlOn*'-' 305S i/l 



< 



I 
1-1 
u 

o 
o 



« 
« 




Spanwise location - 2^ b/2 




20 kC 60 

Percent -wing chord, ^ 

(b) 
Figure 3U.- Continued. 



100 



72< 




=^ 



p< 






to 




kO 60 

Percent wing chord, 



^c 



i \i/2 


^c 


^p/Qoo 


W,j,BpCTlR4C4' S4 


WrpRpIR4G4'S4 


14.70 

13.40 

12.12 

10.83 

9.54 

7,00 

4.60 

0,00 


3.28 
2.96 
2.65 
2.36 
5. 06 
2.84 
3.13 


.004 
.056 
.014 
.008 
.008 
,036 
.008 
.014 


.160 

.062 

.062 

.012 

,008 

-.032 

-.056 

-.010 



(c) 
Figure 34. - Concliided. 



73- 




p< 

<3 

i) 

•H 
O 

s 

g 

o 

i 

CO 

I 




Spanwlae location • 50^ b/s 




Sjamwlse location • IfO^ Ij/s 




20 



100 



1)0 . • .60 

Percent wing chord, ^ 
(a) 

]''ig-ure 35.- iSffeot of forebody and canard on the lower surface coefficients 
of the Number 172 -i^dng version for optimum inlet pressure recovery 
at M^=2.955; cj^2.2% p=0'. 

74< 



< 



a; 
o 



<S3 




Spanwiae location • 30^ 10/2 




Spanwise location - 2^ b/2 




i^O 60 
Percent vlng chord, 56c 

Figure 35.- Continued, 



100 




^pa^wlskiloe^tiosx I' ;:t9f>lt^£ 



4 
< 



u 







Percent wing chord, ^c 



i>-b/2 


*c 


A p /q,oo 


WfrIR4C4S4 


W|iBrjjCrpIR4C4S4 


14.70 
13.^^0 
12.12 
10.83 

9.5^ 
7.00 
4.60 
0.00 


3.54 
3.28 
2.96 
2.65 
2.36 
5.06 
2.84 

3.13 


.034 
.034 
.034 
.014 
.012 
.026 
,010 
.006 


.220 

.058 

.024 
.090 
.038 
.052 
.020 
.024 



(c) 

Figure 35.- Concluded, 



100 



76'