WATIOM^iL AERONAUTICS AND SPACE ADMINISTRATION
NASA MEMO 1-3-59A
for
UNITED STATES AIR FORCE
WIND-TUNKE]j INVESTIGATION OF THE EFFECTS OF COMPONENT
BUILD-UP ON THE INLET PERFORMANCE OF AN 0.05-SCALE
AIR INDUCTION MODEL OF THE B-70 AIR]?LANE AT
MACH NUMBERS FROM 2.58 TO 2.96
(COORD. NO. AF-AM-163)*
By Robert U. Hofstetter, Kenneth C. Endicott,
and Walter E. Isler
ABSTRACT
Exiierimental djtta are presented to show some effects of wing,
fuselage:, and canarcl on the inlet performance and external pressures
in the -vicinity of 1:he inlet. The comparative effects of several wing
configuiations on inlet performance are included.
INDEX HEADINGS
Air Inlets 1,4.1
Airplanes - Components in Combination 1,7.1.1
NASA MEMO 1-3-59A
for
UNITED STATES AIR FORCE
WIND-TUHTIEL INVESTIGATION OF THE EFFECTS OF COMPONENT
BUILD-IJP ON THE INLET PERFORMANCE OF AN 0.05-SGALE
AIR INDUCTION MODEL OF THE B-70 AIRPLANE AT
MACH NUMBERS FROM 2.58 TO 2.96
(COORD. NO. AF-AM-163)*
By Robert U. Hofs tetter^ Kenneth C. Endicott,
and Walter E. Isler
SUMMARY
An experimental investigation was made to determine the effects of
■vring^ fuselage^ and canard on the inlet performance and external pressures
of an D. 05- scale air induction model of the North American Aviation B-70
airplane .
T'Bst observations showed that the addition of the canard increased
the maicimum inlet pressure recovery by 1.1 percent over that obtained in
the presence of the fuselage forebody less canard. Lower surface wing
pressures outboard of the 24-percent semispan location were xniaffected by
the addition of the canard.
No significant change in inlet performance was caused by the addition
of both the fuselage forebody and canard.
Tvro of the wing configurations (North American Aviation Numbers I72
and 154 ) had a favorable effect on inlet performance^ while the third
(Number 1^5) wing affected performance adversely. The Number I72 wing
generaJ.ly exhibited more positive lower surface pressures than the Ni^m-
bers l^iU and 1^5 wing configurations .
INTRODUCTION
Tt.e North American B-70 airplane is an all-supersonic intercontinental
bomber designed to cruise at a Mach number of 3 '00. The successful
9 oa
t) § o
operation of the aircraft at this speedy over the range and with the
loading set forth in reference 1, requires that specific values of engine
perforiaance be realized. To this end considerable developmental work has
been done by the contractor on an air induction system which will satisfy
stipulated engine requirements. The outgrowth of this development program
has been a twin duct system utilizing two-dimensional-type inlets, and
combining variable internal geometry with a boundary-layer bleed system.
At the request of the Air Research and Development Command of the
United States Air Force an investigation was conducted in the 8- by 7~foot
test section of the Ames Unitary Plan wind tunnel on an air Induction
model of the B-70 airplane incorporating the North American Number 172
inlet version. The purpose of the investigation was to evaluate the
effects of wing, fuselage, and canard on the inlet performance and on
pressures external to, but in the region of, the inlet. Evaluation of
wing ej'fect on inlet performance included a comparative investigation of
severa], wing confiigurations to determine that which would produce a pres-
sure f:.eld, behind the leading-edge shock wave, most favorable to the
attainrient of good inlet performance. The results of this investigation
are re]5orted hereiii.
SYMBOLS
b
c
M
mc
mo
P
Pt
q.
^00
inlet capture area, 0.0933 sq ft
wing span, ft
wj.ng chord, ft
M£,ch number
m£-ss-flow rate based on free-stream conditions eind inlet capture
area, slugs/sec
di.ct mass-flow rate at engine face station, slugs/sec
st.atic pressure, Ib/sq ft
total pressure, Ib/sq ft
d;>-namic pressure, Ib/sq ft
P-Poo
pi'essure coefficient.
loo
a ai.gle of attack of basic model reference axis, deg
P angle of sideslip of basic model reference axis^ deg
X longitudinal "body axis in the vertical plane of symmetry of the
complete twin-duct system (denoted as the model reference axis
in figure 1; positive rearward)
X distance measured along the X axis positive aft of model station
0.00^ in.
Y lateral axis perpendicular to the vertical plane of symmetry of
the compj.ete twin-duct system, positive as shown in figure 1
y distance measured along the Y axis, in.
Z vertical axis in the vertical plane of symmetry of the complete
twin-duct system, positive as shown in figure 1
z distance measured along the Z axis, in.
Subscripts
CO free-stream conditions
2 c.uct station corresponding to the engine face location
MODEL
I'he basic mocLel tested was an 0.05-scale model of the B-70 airplane
air induction system furnished by Worth American Aviation, Incorporated.
It consisted, as shown in figures 1 through 3^ of an inlet-afterbody
combination with ei variable-geometry two-dimensional duct and true-scale
contours on one side of the model center line. The opposite side of the
model was unducted and designed so that the flow conditions occurring on
the ducted side simulated those existing during twin-duct operation.
Additionally, this offside portion of the model provided exits for the
b3.eed flow originating at the porous ramp surfaces on the ducted side of
the model. Mass -flow variation was accomplished by a remotely controlled
plug as illustrated in figure 2. The model was sting-mounted from the
wind-tunnel model support strut in an inverted attitude (see fig. 3)«
The basic inl.et used corresponded to the Worth American Aviation
Number 172 version. Figures 2 through 7 show pertinent inlet geometry
for this version, and indicate over-all areas available for the
application of boundary -layer bleed control.
VJhen wecig* extens2®ns»vere«e]Kipioiyed»in coniimcticn" <H>i'tek a supporting
wing configuration (see fig. 8) modification to the external geometry of
the Number 172 inlet version was possible. The extent of the alterations
resulting from the use of the wedge extensions is indicated in figures 9
and 10. Interchangeable segments of the cowl side plate were also used
to vary the cowl lip angle (see fig. 11 ).
The boundary-layer bleed capabilities of the Number 172 inlet version
were determined by the porosity of the plates attached to the areas avail-
able for bleed control. Variation separately of the porosity of these
plates^ and the effective porous area., altered the bleed characteristics
of the inlet. Four boundary-layer bleed configurations were used and are
tabulated in table I. Since a comparison of the effects of porosity varia-
tion is desired rather than a detailed evaluation of bleed mass flow, the
diminution of the net porous plate area caused by the webbing supporting
the plates is not considered.
Provision was made for the addition to the basic model of a wing, a
wing and forebody, and a wing, forebody, and canard. These components
were also furnished by the contractor. Several wings were tested in
conjuncition with the basic model to establish which configuration resulted
in a p:ressure field at the inlet conducive to the best inlet performance.
The va:rious wings are shown in figure 12, and a photograph of one version
is presented in fi,gure 13-
F:-gures l^f and 15 show the configuration consisting of the addition
to the basic model of a wing plus forebody. Figures l6 and 17 show the
configuration composed of the basic model and a wing plus forebody and
canard.
A summary of all configurations tested is given in table II.
MODEL COWOEIENT DESIGNATION
The model component identifying symbols and version nxunber designa-
tions established by North American Aviation, Inc., have been retained,
except where noted, and are defined as follows:
By Number 172 fuselage version. Including a forebody and the afterbody
portion of the basic model (fig. .15)
cowl side plate with an 11 cowl lip angle
(Subscripts 1, 2, 3, and h designate the boundary-layer bleed
configuration (see table l) used on the side plate.)
'■■ ^' O CO
C ' cowl side plate vith an o cowl lip angle
(Subscrli)ts 1, 2, 3^ and k designate the boundary-layer bleed
conflgur8.tion (see table l) used on the side, plate. )
Ct Number 172 canard version (fig. l6)
I Number 172 inlet version (schematically shown in fig. k)
(The first ramp extends from model station -8.6o to -5.8O, and
the bleed gutter height between the inlet and wing is 0.100 in.)
I2 Number 1^5 inlet version
(This is a modification of the Number I72 inlet version obtained
by extending the first ramp forward to model station -17-^55 by
means of wedge extension number 1 (fig. lO), used in conjunction
with the Number 1^5 wing version (figs. 8 and 9)> )
14 same as Ig above except the bleed gutter height between wing and
inlet is increased to G.165 inch
15 same as 1^ above except wedge extension number 2 (fig. 10 ) is
used
Ig same as I2 above except wedge extension number 3 (fig* 10 ) is
used
R movable ram]? system of the inlet
(Subscripts 1, 2, 2>f a-nd k designate the boundary-layer bleed
configuration (see table I) used on the ramp system.)
S upper and lower cowl plates
(Subscripts 1, 2, 3^ and h designate the boundary-layer bleed
configuration (see table l) used on the plates.)
Wrp Number I72 wing version (fig. 12)
Wij DTumber 15^ wing version (fig. 12)
Wip Number 1^5 wing version (fig. 12)
TEST PROCEDURE
Tlie test was conducted in the 8- by 7~foo't test section of the
Ames Unitary Plan wind tunnel. Pitch runs were made through an angle-
of -attack range from 0.2° to 4.2° at 0° angle of sideslip. Yaw runs
were mJide at angles of sideslip of -2.2° to +2.1° at 0° angle of attack,
and at 1.0° angle of sideslip at 2.2° angle of attack. All data were
taken at a nominal total pressure of 28o8 poimds per square foot absolute.
^The sjrmbol used by the contractor for this side-plate configuration is C^
S:lnce the inlet was located behind the wing leading edge^ the Mach
niuriber just ahead of the inlet was less than the free-stream value because
of the influence of the wing leading-edge shock wave. To provide inlet
perfornance comparison between configurations involving no component
additions ahead of the inlet with those which included a wing, the Mach
mamber schedule listed below was used.
Free-streiam Mach number
Free- stream Mach number
used for basic model
used for basic model
with no components
with a wing version
ahead of the inlet
added
2.880
2.955
2.700
2.799
2.i^98
2.578
Pi'essures existing in the model duct and over the external model
surface.'S were indicated on multiple tube manometers , and photographically
recorded. Figures I8 through 21 show static -pressure orifice locations
on all model components .
The total pressure existing at the engine face was obtained by
averaging 26 total-pressure tubes located at the engine face station.
Tt.e duct mass-flow rate existing at the engine face was determined
by use of an ISA flow nozzle located downstream of the engine face sta-
tion. , The flow nozzle was calibrated against a standard ASME orifice
plate to obtain a correction factor to be applied to the nozzle mass -flow
measurements .
Precision of Data
The uncertainties estimated to exist in the test data are listed
below :
Parameter
Uncertainty
a
±0.20°
P
±0.20°
Ptoo
±3.5 Ib/sq ft
K.
±0.005
I^tg/Ptoo
±0.002
P/Ptco
±0.002
Ap/q^o
±0.008
mo/mc
±0.003
o • c • •
RESULTS
Results of the present investigation are shown in the form of graphs
and tal)les. Plots of inlet performance showing effects of alteration of
the ba!5ic model, as well as the effects of free-stream conditions^ model
attitude, and wing addition, are presented in figures 22 through 29. No
inlet jperformance data are given for configurations including the forebody,
wedge extension nu;^"bers 2 and 3^ alteration of basic bleed gutter height
between wing and iiolet, and the cowl configuration employing no boundary-
layer bleed control. This omission is the result of failure of model
instruiaentation affecting the mass-flow rate measurements obtained during
tests of the af oreinentioned configurations . Qualitative analysis of inlet
perfonaance, based on pressure recovery alone, is possible however, and is
discussed in the following section.
Pressure coefficient data are presented graphically and in tabiilar
form (nee figs. 30 through 35) showing representative effects of Mach
number variation, and component variation on the pressures over the lower
wing surfaces. Table III is an index to figures 22 through 35.
External cowl surface pressure ratios are included (tables V and VI )
to sho\r the variations resulting from the addition of a wing and forebody
to the basic model. These data were obtained during runs in which solid
plates were faired over the cowl bleed areas preventing outflow through
the co\rl surface.
Pressure ratios obtained within the duct are also presented in
tables VII through XV. The data selected for presentation in this report
have been chosen to illustrate the effects on the internal flow of varia-
tion oj' free-stream conditions, model attitude, and component variation.
Table j'.V is an index to tables V through XV.
Tiie geometry of the subsonic portion of the duct was suitable for
use in assessing only incremental changes of inlet performance since it
was known to provide nonuniform flow to the engine. Presentation of
engine face flow distortion values would, therefore, not be meaningful
and are not included as part of the results.
DISCUSSION
The following discussion does not include an analysis of all the
data contained herein, but merely summarizes the significant findings of
the im'estigation relating to the over-all effects of component addition
on inlet performance . - '
Tlie four inlet bleed configurations tested are compared in figure 22.
Bleed <:onfiguration k was used in subsequent evaluations of the incremental
effects of component addition or alteration. (The scope of the investiga-
tion d:ld not include developmental refinements of the bleed system, and
bleed configuration h is not to be construed as necessarily optimum. )
Variation of inlet performance caused by the addition of the various
wing versions to the basic model is shown in figure 26. For the model
attitude and stream conditions noted in the figure, the Wrp and W^p wings
had nesirly the same effect on perfonnance - favorable, except near optimum
operati.ng conditions where a loss of 2.7 percent in pressure recovery
occurreid. The addition of the
inlet e,dversely.
Wt wing to the basic model affected the
Kg significant difference in optimum inlet performance for the basic
model -with the Wrp wing as compared to the basic model plus the Wt„
wing wa.s noted for variations in Mach number and angle of attack (see
figs. 27 and 28).
Presentation of inlet performance data showing the effect of the.
canard and the foreibody was precluded by model instrumentation failure
affecting mass flow measurements. Qualitatively, however, these effects
were indicated by pressure recovery data observed during the test. In
comparative runs, where the only variable was the canard, it was found
that maximum inlet pressure recovery for the canard-on configuration was
1.1 peroent_ higher than in the case of the canard-off configuration.
Comparative runs between configurations with and without the forebody-
canard combination showed no significant change in peak inlet pressure
recovery.
For the stream conditions and model attitudes shown in figures 30,
31, and 32, the W^ wing had generally more positive lower surface
pressures outboard of the 19-percent b/2 spanwise station than the
Wy and Wip wings.
The; addition of forebody and canard to the Wi3iIR4C4S4 configuration
(fig. 3!)) increased the lower surface wing pressures slightly at the
50-percent b/2 and 4o-percent b/2 spanwise locations. Ko effect was
appareni; at the 30-percent b/2, 2i4-percent b/2, or 19-percent b/2
locations. The addition of the canard (fig. 3^ had no effect on
pressures outboard of the 24-percent b/2 location.
Ames Res.earch Center
National Aeronautics and Space Administration
Moffett Field, Calif., Nov, 3^ 1958
REFERENCE
1. Aiion.: Weapon System 110-A, AF33(600)-3l801. Rep. No. WA-5T-39^-l>
North American Aviation^ Inc.
• ••
• • • (?•• p o*« ce
' » ^ C C CO
• 1500 COS on
• • • ..* i.
TABLE I.- BI^EEI; COMFIGURATIONS
Configuration 1
Bleed plate
location
Third
ramp
Bleed plate luet porous
porosity,
percent
8
area, sq. in.
13'^
Cowl
side plate
Cowl top
and
■bottom
plates
3i
2i+.21
8
26.17
-L
Bleed plate geometry,
dimensions in Inches
l*-»V.te-
3.05
U-2.8O-J
Fourth j
8
8.54
ramp
;
Fifth
8
16.28
ramp
3.05
5>3h
3.05
Note: Unshaded areas indicate portions of bleed plates through which
bleed flow may occur. 'I 0*^
org
»a e
Configuration 2
Bleed plate ;EJ^ea plate ^^^ ^^^^^^
T
location J JSS"^ ^
area., sq. in . ;
Bleed plate geometry,
dimensions in inches
Third
ramp
8
* — 4A2 •
6.93
T
3-05
4.__,^
»e.85-
,08
2.30
-.78
.^0 l»2.80-*
J.
Fourth
8 •
ramp
. Fifth
A
ramp
Cowl
elde plate
3i
Cowl top
and
.8
bottom
plates
21.12
2.30
Note: Unshaded areas indicate portions of hleed plates through which
bleed flow may occur.
11<
•• oot oo
C
TABLE I.- BLEED COMFIGURATIONS ■ Continued
Configuration 3
Bleed plate I ^^® Jjg J^?:*® i Net porous !
location [ percent iarea, sq.ln. ;
Third
ramp
8
Fotirth
ramp
8
Fifth
ramp
8
I Cowl
iside plate
Cowl top
and
hottom
plates
8
9.03
5.16
12.38
20.52
23.69
Bleed plate geometry,
dimensions in inches
— 4.42
1-2.86 H i;
-2. 80.
Note: Unshsxied areas indicate portions of bleed plates through which
hleed flow may occur . -| «^
O ??
C
* * -** • i.
TABLE I.- BLEED CONFIGURATIONS- Concluded
Configuration 4
Bleed plate 3leed plate Ijjet porous j
: location ; leycljt*^' ;area,6<i to. I
Bleed plate geometry,
dimensions in inches
Third
ramp
3*
13.i^8
Same as
Configuration 1
~^-
Fourth
ramp
3i
8.5^
Same as
Configuration 1
Fifth
ramp
16.28
Same as
Config\iration 1
Cowl
side plate
3i
2k. 62
Same as
Configuration 1
Cowl top
and
bottom
plates
3h
26.17
Same as
Configuration 1
13<
TABLE II.- SUMMARY LISTING OF C0IJFI3UIIATI0NS TESTED
A
Configuration
designation
Basic model inlet details
Wing
version
Forebody
version
Canard
version
Tnlet
version
Covllip
a^e,deg
Bleed
conf ig .
Wing -inlet "bleed
gutter, ht., in.
Wedge ext.
config.
IRCS
172
11
Ifolieed
0.100
IRiCiSi
172
11
1
.100
IR2C2S2
■ 172
11
2
.100
IR3C3S3
172
11
3
,100
1
IR4C4S4
172
11
h
.100
*
1
IR4C'4S4
172
8
h
.100
1
i
1
^^IR4C4S4
172
U
h
.100
172
1
«
WT2IR4C4S4
172
A
h
.100
I5U
•
•
¥T3l2R4C4S4
U5
11
k
.100
1
li^5
- "-51
*
WrpBrlRCS
172
11
HbMeea
.100
172
172
ff
•
WtBtIR4C«4S4
172
8
u
h
.100
172
172
•
WrpBjCr|iIR4C4S4
172
k
.100
172
172
s-
Wr[iBrjiC(jiIR4C'4S4
172
8
k
.100
172
172
172
WT2I4R4C4S4
172
U
h
.165
15if
¥T3l5R4C4S4
11+5
11
h
.100
2
145
^^3leR4C4S4
li^5
11
h
.100
3
11+5
3 ,i ^ .5
• ; J) o o o
TABLE III . - INDEX TO GRAPHICAL DATA
Subject
Configuration
Figure
Pressure recovery^
bleed effect
IRiCiSi, IR2C2S2
^3*^3^3^ IR4C4S4
22
Pressure recovery,
Mach number effect
IR4C4S4
23
Pressure recovery,
covl lip angle effect
IR4C4S4
IR4C'4S4
2h
Pressure recovery,
attitude effect
IR4C4S4
25
Pressure recovery,
wing effect
IR4C4S4
Wr]iIR4C4S4
WT2IR4C4S4
WT3IR4C4S4
26
Pressure recovery,
angle -of -attack effect
at three Mach numbers
WrrIR4C4S4
27
Pressure recovery,
angle -of -attack effect
at three Mach numbers
WT2IR4C4S4
28
Pressure recovery,
angle -o:?- attack effect
WT3I2R4C4S4
29
Wing pressure coefficients,
comparison of wing types for
various angles of attack
WriiIR4C4S4
WT2IR4C4S4
WT3IR4C4S4
30, 31, 32
Wing pressure coefficients,
Mach number effect
WTIR4C4S4
33
Wing pressure coefficients,
canard effect
WrpBTCTlR4C ' 4S4
WtBtIR4C'4S4
3h
Wing pressure coefficients,
forebody and canard effect
WriiIR4C4S4
WTBTCr[iIR4C4S4
35
15<
TABLE IV.- IKDEX TO TABULATED DATA
SulDJect
Configuration
Table
Bleed configurations
All
I
List of configurations tested
All
II
External cowl pressure ratios
IRCS
V
External cowl pressure ratios
WtBtIRCS
VI
Internal duct pressure ratios,
shoving effect of
bleed configuration
IRiCiSi
IRgCgSg
IR3C3S3
11x40404
VII
Internal duct pressure ratios,
shoving effect of Mach nvunber
IR4C4S4
VIII
Internal duct pressure ratios,
showing effect of
wing adc^itions
IR4C4S4
WrpIR4C4S4
¥t^IR4C4S4
Wt^IR4C4S4
3
IX
Internal duct pressure ratios,
shoving effect of
variation of covl lip angle
IR4C4Q4
IR4C'4S4
X
Internal duct pressure ratios,
showing effect of
variations of model attitude
iii^C^o^
XI
Internal duct pressure ratios,
showing effect of
wing, forebody, and canard
XR4C4b4
XII
Internal duct pressure ratios,
showing effect of the canard
WrpBTCrpIR4C ' 4S4
Wr|TBriiIR4C'4S4
XIII
Internal duct pressure ratios,
showing effect of variation
in "bleed gutter height
WT2IR4C4S4
¥T2l4R4C4S4
XIV
Internal duct pressure ratios,
showing effect of
the wedge extensions
WT3I2R4C4S4
%3l5R4C4S4
WT3I6R4C4S4
XV
16<
« 9 « « « «
TABLE v.- EXTERNAL SURFACE -PRESSURE RATIOS FOR THE IRCS
COHFIGURATION AT OPTIMUM INLET PRESSURE RECOVERY
(a) H.
-2.955,
p=o°
p =
=2.799,
= 0°
(C) Hx,
= 2.578,
13 = 0°
P/Pt.,
p/
Ptoo
P/Ptoo
Orifice
0^0.2°
a^2.2°
a^l+.2°
a^2.2°
a^l+.2°
ot=0.2°
a^2.2°
a^l+.2°
number
36
0.091^
0.092
0.116
0.108
0.138
O.II+8
0.128
0.132
36A
.07^
.072
.095
.085
.097
.101+
.096
.093
36B
.053
.036
.058
.06i+
.055
.080
.078
.060
36c
.o4o
.038
.033
.039
.031
.050
.01+7
.035
37
.038
.037
.035
.0^1
.038
.058
.052
.01+8
38
.Oi+0
.03^
.030
.039
.037
.057
.056
.053
39
.039
.OifO
.oi+o
.01+5
.01+6
.061+
.062
.063
i^0
.026
.028
.032
.037
.oi+o
.052
.052
.055
hi
.022
.022
.021
.025
.026
.038
.037
.037
k2
.096
.100
.055
.097
.07^
.113
.116
.095
J+2A
.070
.072
.050
.066
.060
.088
.081
.077
i<-2B
.oi+5
.oh6
.oi+i
.052
.05^
.075
.067
.065
i^2C
.Oi+0
.01+2
.01+3
.0I+9
.052
.067
.063
.066
^3
.039
.oi+i
.01+2
.01+6
.01+9
.059
.058
.060
kk
.03^
.03^
.035
.039
.ol+l
.056
.054
.055
i^5
.038
.oii-i
.oi+o
.0I+7
.01+7
.066
.066
.067
h6
.030
.03^
.037
.0I+2
.01+5
.058
.057
.062
ki
.018
.021
.023
.026
.029
.039
.038
.01+2
hQ
.022
.029
.031+
.037
.01+2
.052
.053
.058
h9
.022
.027
.030
.03^
.038
.0I+8
.0I+8
.053
50
.028
.030
.033
.039
.oi+o
.055
.055
.057
51
.028
.030
.032
.037
.039
.052
.051
.051+
52
.027
.029
.033
.036
.039
.050
.050
.055
53
.oi+5
.0I+9
.0^5
.0I+8
.01+7
.067
.056
.063
^h
.032
.035
.Olj-0
.0I+5
.048
.061
.061
.066
55
.031
.035
.0I+3
.01+5
.060
.060
.065
^6
.031
.033
—
.Ol+l
.01+1+
.051
.055
.059
57
.028
.030
—
.037
.oi+o
.052
.052
.055
58
.029
.032
—
.037
.oi+o
.050
.050
.053
59
.030
.035
—
.oi+i
.052
.058
.060
.069
60
.030
.033
.Ol+l
.01+6
.057
.058
.063
61
.032
.035
.01+3
.01+7
.062
.063
.065
62
.029
.033
.ol+l
.01+1+
.055
.055
.060
63
.028
.030
.036
.ol+l
.025
.050
.053
61+
.028
.030
.036
— — — ^
.037
.0I+9
.oi+8
.050
r?<
TABLE VI.- EXTERNAL SURFACE -PRESSURE RATIOS FOR THE WqiBtIRCS
CONFIGURATION AT OPTIMUM IKLET PRESSURE RECOVERY
(a) Hx. = 2.955, P = 0°
(b) Ho = 2.578, p = 0°
p/pt^
P/Pt^
Orifice
number
a = 2.2°
a = 4.2°
a =2.2° a -4.2°
36
0.107
0.110
0.157
0.161
36A
.072
.084
.109
.129
36B
.067
.065
.117
.125
36c
.Okk
.050
.075
.082
37
.051
.054
.075
.079
38
.oi+o
.045
.061
.068
39
.oi<-8
.038
.060
.067
ko
.032
.035
.060
.063
41
.070
.057
.045
.050
k2
.085
.103
.133
.120
k2k
■073
.076
.097
.096
J+2B
.060
.052
.083
.089
i+2C
.048
.050
.065
.072
^3
.0^3
.052
.067
.077
kk
• OifO
.044
.063
.063
i^5
.035
• 039
.060
.069
k6
.031
.035
.055
.061
hi
.023
.027
.04l
.046
k8
.029
.034
.050
.057
k9
.029
.032
.048
.054
50
.033
.037
.055
.063
51
.029
.033
.050
.055
52
.030
.034
.050
.056
53
.046
.053
.065
■ 079
^h
.037
.o4o
.065
.070
55
.035
.o4o
.067
.073
56
.035
.038
.056
.063
57
.030
.033
.052
.057
58
.030
.033
.049
.055
59
.033
.036
.057
.064
60
.032
.035
.057
.062
61
.037
.039
.069
.075
62
.034
.038
.057
.062
63
.030
.033
.051
.056
6h
.029
.031
.048
.053
18<
TABLE VII.- INTERNAL DUCT SURFACE-PKESSURE RATIOS AT OPTIMUM INLET PRESSURE RECOVERY FOR TEE BASIC
MODEL EMPLOYING FOUR DIFFERENT BOUNDARY-LAYER BLEED CONFIGURATIONS; K^ = 2.88, a = 0.2°;, p = 0°
I
S
Orifice
number
^/Pt^
Orifice
number
p/pt
IR3_CiS3_
XJa^ ^ 2 2
IRgC^^a
XR^C^Q^
IRiCiSi
-^■^2^2 2
'^^3^3^ 3
IR4C4S4
65
0.056
0.057
0.055
0.057
91
0.210
0.216
0.223
0.229
66
.071
.071
.069
.ori
92
.676
.378
.306
.420
67
.093
.095
.091
.077
93
• 364
.362
.369
.476
68
.096
.098
.094
.097
9^
.363
.509
.360
.488
69
.052
.053
.052
.053
95
.366
.595
.535
.602
70
.053
.055
.052
.055
96
.628
.614
.750
.729
71
.052
.054
.052
.054
97
.615
.606
.600
.663
72
.068
.068
.067
.069
98
.616
.591
.600
.653
73
.069
.070
.069
.070
99
.648
.603
.612
.670
7^
.095
.091
.095
.088
100
.680
.625
.643
.717
75
.121
.123
.135
.132
101
.646
.573
.612
.651
76
.267
.222
.243
.273
102
.834
.731
.795
.820
77
.221
.173
.239
.346
103
.856
.744
.822
.845
78
.308
.293
.322
.269
104
.864
.731
.830
.854
79
.280
.425
.321
.421
105
.869
.729
.834
.858
80
.500
.533
.543
.496
106
.870
.728
.835
.859
81
.625
.570
.595
■.582
107
.244
.303
.253
.167
82
.653
.579
.632
.619
108
.121
.168
.123
.220
83
.795
.663
.747
.771
109
.11?
.235
.123
.188
.84
.831
.728
.792
.693
110
.074
.211
.073
.085
85
.853
.761
.820
.844
111
.873
.784
.837
.863
86
.864
.773
.830
.854
112
.287
.300
.295
.073
87
.869
.777
.833
.857
113
.044
.108
.042
.046
88
.873
.784
.837
.864
114
.097
.255
.081
.082
89
.137
.135
.134
.133
115
.203
.449
.169
.126
90
.167
.165
.166
.163
116
.871
.780
• 835
.860
TABLE VIII.- INTERNAL DUCT SURFACE -PRESSURE RATIOS AT OPTIMUM INLET PRESSURE RECOVERY FOR THE BASIC
MODEL AT FOUR DIFFERENT MACH NUMBERS; a = 0.2°, (3 = 0°
IR4C4S4 configuration
Orifice
number
P/Pteo
Orifice
number
^/Ptoo
M=o = 2.^98
M)o = 2.700
Mx =2.880
M=o= 2.955
Moo= 2.498
H>o = 2.700
M«,= 2.880
Mx. = 2.955
65
0.103
0.07^
0.057
0.050
91
0.271
0.223
0.229
0.213
66
.^^6
.088
.071
.063
92
.330
.341
.420
.411
67
.126
■ .108
.077
.085
93
.258
.287
.476
.389
68
.125
.109
.097
.089
94
.276
.373
.488
.422
69
.091
.068
^053
.048
95
.278
.512
.602
.391
70
.092
.069
.055
.048
96
.639
.661
.729
.501
71
.091
.068
.05*+
.048
97
.672
.634
.663
.486
72
.113
.086
.069
.061
98
.683
.642
.653
.415
<iMi
73
.118
.088
.070
.063
99
.701
.662
.670
.394
■
7^
.113
.098
.088
.081
100
.739
.710
.717
.636
■
75
.076
.061
.132 '
.045
101
.681
.650
.651
.613
■
76
.086
.158
•273
.254
102
.815 ,
.815
.820
.796
^
77
.136
.174
• 3^6
.076
103
.835
.838
.845
.824
fO
78
.318
.304
.269
.252
104
.846
.849
.854
.832
o
79
.335
.286
.421
.376
105
.855
.856
.858
.837
A
80
.269
.i+30
M6
.364
106
.859
.860
.859
.839
81
.617
.58U
.582
.371
107
.265
.251
.167
.139
82
.662
.630
.619
.573
108
.325
.336
.220
.151
83
.772
.768
•771
.739
109
.533
.521
.188
.118
81^
.810
.810
.693
.791
no
.620
.589
.085
.061
85
.827
.835
.844
.824
ni
.862
.863
.863
.842
86
.8ii5
.850
.854
.833
112
.277
.314
.073
.043
87
.856
.856
.857
.836
113
.308
.362
.046
.038
88
.865
.863
.864'
.842
n4
.550
.507
■ .082
.038
89
.134
• 133
.133
.129
115
.606
.595
.126
.055
90
.166
.174
.163
.155
116
.859
.860
.860
.839
• ; 3 5
• JO.) .a
* * «
I
©23!
* 1? -> 4
*0 3<|
TABLE IX.- IWTEEWAL DUCT SUFtFACE-PKESSURE RATIOS AT OPTIMUM IKLET PRESSURE RECOVERY FOR THE BASIC
MODEL AT M^ = 2.88, AM) THE BASIC MODEL PLUS WING ADDITIONS AT N^ = 2.955; a
0.2°,
p = 0'
Orifice
number
P/Pt^
Orifice
number
^/Pt^
XJA4.C/4.O4
WTrR4C4S4
WT2IR4C4S4
WT3IR4C4S4
IR4C4S4
Wr[iIR4C4S4
WT2IR4C4S4
WT3IR4C4S4
65
0.057
o.oi+9
0.051
0.056
91
0.229
0.194
0.195
0.P2P
66
.071
,062
.063
92
.1+20
.1+16
.4o7
67
• 077
.o8ii-
.088
.089
93
.i+76
.396
.389
.392
68
.097
.772
.kih
M^
9h
.1+88
.1+12
.1+21
.420
69
.053
.okk
.oi+8
.061+
95
.602
.539
.i+36
.533
70
.055
.oh6
.050
.061+
96
.729
.707
.69k
.711
71
.054
.oh6
.01+9
.061+
91
.663
.705
.657
.603
72
.069
.060
.063
.061+
98
.653
.611+
.61+0
.587
73
.070
.062
.065
.061+
99
.670
.637
.660
.610
1^
.088
.770
.083
.076
100
»717
.680
.707
.621
■
75
.132
,782
.01+8
.061+
101
.651
.627
.61+5
.595
■
76
.273
.263
.259
.279
102
.820 ■
.798
.696
.790
■
77
.3^6
.308
.220
.308
103
.8^5
.836
.835
.815
w
78
.269
.236
.256
.21+1+
IOI+
.851+
.837
.81+3
.823
^ &
79
.ij-21
.377
.21+6
.379
105
.858
.843
.81+8
.826
^5
80
.h96
M^
.501
.k69
106
.859
.81+9
.851
.831
81
.582
.556
.601
.533
107
.167
.11+6
.134
.089
82
.619
.609
.630
.578
108
.220
.731
.156
.114
83
.771
.750
.763
.739
109
.188
.782
.126
.024
81+
.693
.794
.807
.668
TIO
.085
.066
.078
,068
85
.dkk
.822
.833
.816
m
.863
.81+9
.853
.834
86
.8^k
.838
.81+5
.823
11?
.073
.038
.158
.143
87
.857
.81+5
.81+8
.825
113
.01+6
.038
.045
.039
88
.86i|-
.851
.853
.833
11I+
.082
.037
.150
.122
89
.133
.11+8
.138
.126
115
.126
.053
.156
,122
90
.163
.165
.161
.Ikk
116
.860
.81+6
.850
.831
t 3 :j o
I -0 .; J o
TAEiLE X.- INTEMAL DUCT SURFACE -PRESSIHE RA.TIOS AT OPTIMUM INLET
PRESSURE RECOVERY FOR THE BASIC MODEL EMPLOYING CONSTANT
INTERNAL DUCT GEOMETRY AND VARYING COWL LIP ANGLES; N^=2.88o,
a = 0.2°, p =0°
Orifice
P/Ptoo
Orifice
P/
^t^
number
nuniber
Jj\^O^iD^
IR4C'4S4
IR4C4S4
^40*484
65
0.057
0.055
91
0.229
0.289
ee
.071
.070
92
.1+20
.330
67
.077
.092
93
.1+76
.171+
68
.097
.095
9k
.1+88
.1+15
69
.053
.052
95
.602
.1+1+3
70
.055
.103
96
.729
.575
71
.05^
.103
97
.663
.623
72
.069
.067
98
.653
.651+
73
.070
.070
99
.670
.671+
Ik
.088
.087
100
.717
.689
75
.132
.01+9
101
.651
.711
76
.273
.313
102
.820
.817
77
.3^6
.175
103
.81+5
.81+1+
78
.269
.232
101+
.851+
.857
79
.i^2l
.330
105
.858
.857
80
.I196
.501+
106
.859
.860
81
.582
.590
107
.167
.168
82
.619
.631+
108
.220
.226
83
.771
.769
109
.188
.208
Qk
.693
.811+
110
.085
.100
85
.81+1+
.81+2
111
.863
.862
86
.851+
.853
112
.073
.056
87
.857
.857
113
.0I+6
.ohk
88
.861+
.863
Tll+
.082
.039
89
.133
.16.1+
115
.126
.115
90
.163
.ll+O
116
.860
.860
2Z<
TA:5LE XI.- INTERNAL DUCT SURFACE -PRESSURE RATIOS AT OPTIMUM INLET
PR13SSURE REC0V:ERY for the BASIC MODEL AT THREE ATTITUDES; M^=2.880
IR
4C4S4 configuration
P/Pt
p/p+
Orifr.ce
number
^00
Orifice
number
^00
a=0.2°
a = 2.2°
a- 0.2°
a=0.2°
a = 2.2°
a = 0.2°
p=o°
(3 = 0°
P = 2.2°
p = o°
p = o°
p=2.2°
65
0.057
0.050
0.066
91
0.229
0.212
o.?n
66
.071
.06k
.080
92
.if 20
.430
.337
67
.077
.089
.101
93
.hie
.396
.318
68
.097
.097
.105
9k
.488
.452
.^39
69
.053
.052
.062
95
.602
.570
.428
70
.055
.053
.063
96
.729
.700
.451
71
.05^
.0i^9
.062
91
.663
.622
.509
72
.069
.065
.078
98
.653
.623
.632
73
.070
.066
.080
99
.670
.6ij-2
.631
Ih
.088
.088
.091
100
.717
.692
.693
75
.132
.oh9
.0i^8
101
.651
.620
.646
76
.273
.276
.243
102
.820
.800
.8o4
77
.3^6
.336
.192
103
.8if5
.830
.831
78
.269
.252
.286
io4
.Q^k
.8i^-3
.842
79
.U21
Mh
.256
105
.858
.850
.849
60
.496
.^^70
.273
106
.859
.856
.657
81
.582
.5^3
.579
107
.167
.193
.310.
82
.619
.599
.609
108
.220
.209
.304
83
.771
.7^5
.756
109
.188
0I75
.361
m
.693
.796
.800
110
.085
.078
.267
85
.Qkk
.825
.826
111
.863
.858
.854
86
.Q^h
.8I13
.8i^2
n?
.073
.093
.330
87
.857
.851
.8i^9
113
.0h6
.okQ
.252
88
.861^-
.858
.856
iii^
.082
.102
.444
89
.133
.137
.133
115
.126
.141
.532
90
.163
.161^
.173
116
.860
.855
.852
23<
n 5 g
B1> 9
TAI5LE XII.- IN'EERMAL DUCT SURFACE -PRESSURE RATIOS AT OPTIMUM IKLET
PRESSURE RECOVERY FOR THE BASIC MODEL AT IV^ = 2.880, AND THE
BASIC MODEL PLUS AWING, FOREBODY, AND CANARD AT M^„ = 2-955;
a = 2.2°, p = 0°
Orifice
number
pM.,
Orifice
number
^/^t^
IR4C4S4
WrpBrpCrpIR4C4S4
XR^O^b^
¥rpBrpC5.IR4C4S4
65
0.050
0.055
91
0.212
0.209
66
.061^
.072
92
.430
.560
61
.089
.093
93
.396
.527
68
.097
.099
9^
.ii52
.528
69
.052
.05^
95
.570
.528
70
.053
.056
96
.700
.585
71
.oii-9
.059
91
.622
.508
72
.065
.072
98
.623
M9
73
.066
.076
99
.61^2
M9
7^
.088
.091
100
.692
M6
75
.oJ+9
.0i^6
101
. .620
.333
76
.276
.295
102
.800
.768
77
.336
.317
103
.830
.798
78
.252
.h6-i
lOi^
.8i^3
.809
79
Mh
M'^
105
.850
.816
30
.ij-70
.375
106
.856
.821
31
.5^3
.407
107
.193
.174
32
.599
.338
108
.209
.117
33
.7^5
.IQk
109
.175
.099
Bij-
.796
.739
110
.078
,ohk
35
.825
.792
111
.858
.823
86
.8i<-3
.813
112
.093
.oi^3
37
.851
.819
113
.Oit8
.0^3
88
.858
.823
lli^
.102
.oif-3
89
.137
,li^9
115
.liH
.05*^
90
.164
.196
116
.855
.818
24<
TAB]J1 XIII.- IWZERWAL DUCT SURFACE-PEESSUEE RATIOS AT OPTIMUM INLET
].5RESSURE RECOVERY FOR THE BASIC MODEL WITH A WING, FOREBODY, MD
CANARD, AND WITH AWING MD FOREBODY; M^ = 2.955, a = 2.2°, p = 0°
Orifice
number
P/Pt.,
Orifice
nimber
I^/^t«,
WtBtCtIR^C'^S^
W-pBrpIR^C'^S^
WrjiBr]iCrrIR4C'4S4
Wr£BrrIR4C'4S4
s^
0.057
0.023
91
0.259
0.253
66
.072
.059
92
.320
.319
67
.092
.082
93
.370
.326
68
.098
.093
9h
.389
.353
69
.055
.050
95
.416
.426
70
.057
.051
96
.lj-71
.571
71
.060
.050
91
.58ij-
.595
72
.072
.062
98
.627
.630
73
.170
.203
99
.6h6
.649
Ih
.090
.083
100
.661
.662
75
.01^8
.051
101
.556
.536
76
.308
.297
102
.799
.796
77
.273
.165
103
.82ij-
.820
78
.293
.205
lOi^
.832
.805
79
.313
.312
105
.841
.837
80
.1^19
.i^95
106
.739
.698
81
.566
.577
107
.668
.667
82
.616
.619
108
.155
.164
83
.752
.7^9
109
.806
.173
81^
.77^^
.1^5
110
.078
.084
85
.816
.702
111
.848
.843
86
.820
.81^0
112
.043
.04i
87
.81^-1
.837
113
.047
.047
88
.81^9
.812
\\\
.051
.061
89
.173
.163
115
.102
.096
90
.153
.139
116
.844
.842
25<
TABLE XIV.- IIi(TEMAL DUCT SURFACE-PRESSURE RATIOS AT OPTIMUM INLET
PRESSURE RECOVEIRY FOR THE BASIC MODEL PLUS A WING CONFIGURATION,
USING TWO BLEED GUTTER HEIGHTS BETWEEN THE WING MD INLETj
^ = 2.955, a = 0.2°, p = 0°
Orifice
numoer
^/Pt^
Orifice
mamber
^/^t^
WT2IR4C4S4
%2l4R4C4S4
WT2IR4C4S4
WT2I4R4C4S4
6;?
0.053
0.051
91
0.261
0.195
6(5
.065
.063
92
.360
.023
61
.088
.088
93
.351
.389
68
.093
.411^-
9^
.516
.kZL
69
.043
.okQ
9^
.588
M6
70
.050
.050
96
.532
.69\
?:-
.Oi^9
.0J<-9
91
.601
.657
72
.063
.063
98
.621
.640
73
.065
.065
99
.651
.660
1^'r
.081
.083
100
.687
.707
T^
.138
.0l<.8
101
.557
.645
16
.268
.259
102
.700
.696
77
.320
.220
103
.673
.835
78
.259
.256
10i<-
.663
.843
19
.i^26
.21^6
105
.658
»848
80
.507
.501
106
.673
.851
81
.58i^
.601
107
.160
.134
82
.611.
.630
108
.200
.156
8-.
.754
.763
109
.099
.126
Qk
.781
.807
110
.150
.078
Ql'
.829
.833
111
.850
.853
86
,eh2
.8i<-5
112
.130
.158
87
.660
.8i^8
113
.0l<-2
.045
88
.850
.853
lll^
.121
.150
89
.139
.138
115
.139
.156
90
.li^2
.161
116
.8i^7
.850
26<
TABLE XV.- IlilTERWAL DUCT SUEFACE-HRESSURE RATIOS AT OPTIMUM lULET PRESSURE RECOVERY FOR THE BASIC
MODEL-PLUS -WING COHFIGURATIOIT EMPLOYING CONSTABT INTERNAL DUCT GEOMETRY AND THREE WEDGE
I
A
Tpvrnmvra TrvTT qtta-dcg .
'■'00
— o riKei
} y
Orifice
munber
P/Pt«,
Orifice
niuriber
^/Pt,,
WT3I2R4C4S4
WT3I5R4C4S4
%3l©R4C4S4
WT3I2R4C4S4
WT3I5R4C4S4
WT3I6R4C4S4
65
0.056
n n^^
c\ n^^
m
r\ 000
0.249
0.275
\^ • •^y-'
V ©^^w
y-'-
\j ,i~i-i-
ee
.066
.068
.067
92
.407
.455
.454
67
.089
.092
.091
93
.392
.378
.441
eQ
A35
.091
.088
9"^
.420
.459
.491
69
.o6it
.066
.066
95 .
.533
.437
.458
70
.061^
.067
.066
9e
.711
.382
.456
71
.061^
.066
.066
91
.603
.454
.447
72
.061^
.066
.066
98
.587
.427
.418
73
.06i^
.066
.066
99
.610
.550
.531
7it
.076
.083
.080
100
.621
.630
.627
75
.06I1-
.127
.136
101
.595
.518
.496
76
.279
.293
.289
102
.790
.732
.772
77
.308
.307
.339
103
.815
.801
.802
78
.2>^
.249
.294
104
.823
.815
.813
79
.379
.362
.380
105
.826
.822
.8?1
80
M9
.355
.369
106
.831
.793
.657
81
.533
.410
.413
107
.089
.137
.145
82
.578
.552
.545
108
.114
.155
.172
83
.739
.708
.709
109
.024
.093
.104
84
.668
.747
.747
no
.068
.123
.128
85
.816
.801
.801
m
.834
.829
.828
86
.823
.815
.800
IIP
.143
.069
.064
87
.825
.8?1
.818
113
.039
.037
.038
88
.833
.828
.828
114
.1??
.o4i
.038
89
.T?6
.\\h
.131
115
.122
.057
.082
•90
.Ikk
.166
.153
116
.831
.824
.823
Diotieiisloss In incbes
Ho scale
RefePMice axis
Model shovn in sn
inverted position
«p T O O -,>
«■: o .i
Relative viod
Figure i, - System of axes and positive direction of angles >
Model sta.
41.00
Mass -flow
coaatrol i^Lug
Sting sugpport
Side view
3-250
i
4.125
m
Z axis-
9
Note: Model sbo'wn stqoported
In an inverted position
Blmensloas in inches
No scale
Front view
Figure 2.- Side view of the "basic model incorporating the NtEaiber 172 inlet version.
Reference axis
Boarp BlsensiooasI Data
©3 3
• 3
Saoip
aibe
r leng^thj
In-
Baa^
heli^rt,
in.
Total rasBp
area,
aq, In-
Bebb^ «rea asrail- ^|
able for bleed ^M
8^ in- fl
1
2.821
3.250
9.168
0.000 3
2
1.681
3.250
5.^3
0.000 M
3
4.952 :
3.250
16.09J^
10.917 Ifl
It
2.85D
3.250
9.262
5.168 ■
5
13-750
varies
13.^55*
13.^95 I
6
8.1^^
tart.ieaj
20.065*
0.000 I
loBiaal Yalfies
1
]iotes- lSm&$ac9 an figure iztftlcste zaBp
deals>3&tl<m
Tbte aztgle iMitveen the first amS.
aecosA raa$ a:«rfaces sod tlie ref «
ersB&e asdU sqre fixed at 7* astd ,
11% reapectivaly.
Model is slKnut in imrerted ^c»t-
Sb seaOUs
Figure 4*> Scbooatle dravriag of tlBBft utaiber ITS inlet versicm, vitb \»ott<» ccfWI plate 3r«DdvtKL i^tiOving
tbe TGoedflible reaep attest.
Reference axis
A
Sbte- HvBBbers on figure indicate
rasrp designation
Typical grid area available for
the application of "boundary -layer
bleed control
Ko scale
Figure 5.'
Ifodel is shown In inverted
position
Schosatic side view oT tike vHariable raap systoi ^own in figure 3 showing relative locations!
of ranip JBz«as available for 'bom^tsaj-la.jei' bleed control.
»« • > I
Reference ajcls
Model sta.
-8.60
Model sta.
0.00
Area available for
bleed contjrol
All dimensions In Inches
No 3caJ.e
Note: Top cowl plate ahowi
Bottoin cowl plate Identical
Figure 6, - Schematic plan -view detail of top and bottom cowl plates of the
Number 172 inlet version.
33<
O '^T ,T
3.000
Reference axis
Area available for
"bleed control
Model ata.
0.00
All dimensions in inches
Wo scale
Figure 7.. - Schematic side-view detail of cowl side plate.
34<
A-23851
Figure 8.- Modification of the inlet from the Kvtmber 172 version to the
Number 1^5 version hy^use of vedge extension 1 and the Wm ving
version. iiJ^S"^-
Lateral displacemsttt of reference axis
Typical for all vedge extension
modifications »1 . 2k inches
Wedge extension No. 1
0.16 inches - Typical for all
wedge extension modifications
TjiTplcal for all
vedge exi^sion
modifications
Model sta.
-IT. ^55
Model Sta«
•8.60
Cowl side
plate
Model sta.
0.00
Note; Bottom cowl plate not shown
No scale
Figwre 9.- Drawing of the Niaiber 172 inlet version modified by the use of a
typical wedge extension to the Nvmiher ik^ version.
36-
> » •
'• ••? <
Model sta.
-8.600
1.08
a^iraop
r^
III
III
Hi I
II I
nd
(a) Wedge extension Number 1 with 1 — and 2 — ramps
Isentropic ccanpression
surface
(b) Wedge extension Number 2
Same as Number 2 except
for larger top fairing .
(c) Wedge extension Nianber 3
Piigure 10.* Details of wedge extensions investigated.
37<
Section through
cowl side plate
-th
5 — rajnp
2— ramp
rd
3"^ — ramp
k — ramp
'— 1— reaii)
reap
(a) Cowl 0id« pXate with lip angle of 6' with mod©l i.
(b) Cowl side plate with lip angle of 11" wltJi model t,
Flgijre 11 »- Details of the cowl side plate showing the 8" and U* lip angle.
38<
Model sta.
-15.125
Model sta.
0.00
Model sta.
-8.60
Dimensions in inches
No scale
Reference axis
Wing data
Airfoil section forward of the k% element - NACA 66A002.5
Ai]-foil section aft of the k^ia element - h% to fOp. hexagonal, 205*^ thick
Aspect ratio - I.88O
Taper ratio -
?51eed gutter height between wing and inlet - 0.100 inches
(a) jlasic model with Number I72 inlet version and the W^ wing
Figu]'e 12.- Schematic drawing of basic model -plus -wing configurations tested.
39<
]i4odel sta.
-13.855
Model sta.
0.00
Model sta.
-8.60
Dimensions in inches
No scale
60^ seini8pan»19,50
Beferenee axis
Wing data
Airfoil section forward of the k^ia element - NACA 66AOO2.5
Airfoil section aft of the k3i) element - k3i to 70^ hexagonal, 2.5^ thick
Aspect ratio - I.880
Taper ratio -
Bleed gutter hel|(ht betwen ving and inlet - 0.100 inches
(b) Basic model with the Nvmher 172 inlet version and the Wrp^ wing
Figure 22,- Continued.
4©<
Model ata.
♦17.^55
Model sta.
0.00
Dimensions in inches
No scale
60^ 8ealBpan»19.50
Reference axis
> Wing data
Airfoil section forward of the U5«t element - NACA 66A0O2.5
Airfoil section a:ft of the k^lo element - k5i) to 70^ hexagonal, 2.5/& thick
Aspect ratio - 1.880
Taper ratio -
Bleed gutter bei^t between ving and inlet - 0.100 inches
(c) Basic mocilel with the Number 1^5 inlet version and the Wip- wing
Figure 12.- Concluded.
41-
A-23843
Figure I3.- Installation photograph afi^;W3.e Wqira.C^S. model configuration.
m
e n fl
<C
Model sta
Model sta.
0,00
Wing
Bl*«d gutter helfifkit » .33I
Porelsody
Detail of bleed gutter between
f orebody e^id wing
Note; Plmenslons In Inches
No scale
?igure lU.- Typical jnodcl configuration including the forebody.
43<
^
^
^
Figure 15.- Installation photograph of the WrpBrpIR^C ' 4S4 model configuration
Model $ta.
-55.575
10.60
Model sta. Model ata.
^16M 0.00
Coaard 25^ c location
Z
Model sta.
-25.96
Detail Bhovlng angular
incidence of canard
Canard data
Sweep of 25^ element • kj*
Airfoil section - NACA 66AOO3
Aspect ratio - 2.078
Taper ratio - .1591
Figure 16. - Typical model configuration Including the foretody and canard.
45-
"■^©NFIBSNflAt.
O «
• • e
■B, afartanide to tislllng idj^
For all wing versions
A»19,50 in.
B-6T.it-5 in.
Airfoil seetiona at all stations are:
forvaard of i^5^ elwdent, BACA 66A002.5,
aft of 45^ elttaent, U5% to 70^6 liexagonal,
2.5^ i^iek, except for lftadlng(-edge ex>
tension, vhich la a flat plate on lover
atarfaee.
t) © (D ®
Ho scale
NuDbera on figure are
orifice nvmlaera
Orifice
No,
Location
Orifice
So.
Location
Orifiee
So.
Location
li''/^^
^e
U>>^]
i>o
$0
1
50
5
13
ItO
85
25
19
5
12
50
10
Ik
30
5
26
19
10
3
50
20
15
30
10
27
19
20
''4-
50
35
16
30
20
28
ll^.70
3.54 ^
'5
50
50
17
30
35
29'
13^0
3*28
i5
50
65
18
30
50
30
12.12
2.96
7
ko
5
19
30
65
31
10.83
2.65
3
ko
10
20
30
85
32
9.51^
2.36
!?
ko
20 ■
SI
2k
5
33
U.60
2,8if
10
ko..
35
22
2k
10
3^^
0.00
3.13
i:l
kQ
50
23
2k
20
35
7.00
5.06
111
ko
65
2k
2k
35
Figux« 18, • Location of preasure orlflcea on tbe lo^rer surface of all ving veraiona.
00
A
.80—
21.90
12.00
- l^.82-~^
Model sta.
0,00
^ ^ ^
Numbers on figure
are orifice nioDbers
-38-98
-30.92-
-Reference
axis
^ W^
2.22
.i
^~n
J^.125
o -J o c
o
0000
<9 a
^ I 6.025 r'^
Dimensions In inches
No scale
« o O 3 4
Figure 19.- Locaticaa of exteamal pressure orifices on bottom cowl plate.
■ju.yii
@ @€>
k.Q2^
Model sta*
0.00
21.90
-Reference axis
^^
f-^^
^^
-I — IJI3 typ.
-12.00
^^'^^^^^^ &=^
Numbers cm figure
are orifice numbers
DiBieBslons In Inches
Ko scale
Figure 20.- Locatlcsn of external pressiore oririces on co^rl side plate.
Reference exla -
Dimensions in inches
No scale
1. X -dimensions for raap surface
orifices are "based on ramps
positioned such that angles
betveen the raop surfaces and
the reference axis are;
7* for first ramp
11" for second reunp
l6" for third ramp
21* for fourth romp
a. Orifices numher 122, 013, ^^f
115 » and ll6 are not shovn, but
lie on the bottom cowl plate
directly opposite orifices 107,
108, 109, no, and Ul.
3. Model la shown in an inverted
position.
Orifice location
71^
3e,ln.
2*3
'».3
50
5.8
6.9
15.6
2, in.
Orifice
no.
Orinee location
x,ls.
z,ln.
85
I8.e
—19
86
21.1
-.3lt
87
21A
-53
88
26.9
-.725
89
0.8
90
2.0
91
3.5
92
5.0
93
5-3
9k
5.6
9595
5-9_^
_2I_
T.*
18.3
23-''
26.9
Orifice
no.
Orifice
107
li,6
li.08
108
5.9
U.27
109
6.6
U.35
110
7.3
k.k5
111
26.9
V.75
112
lt.6
1..08
h t-J
Ull
6.6
I..35
115
7.3
l*.U5
U6
26.9
lt.75
• 3 5 O O
• o o
♦ o c c o
e <£ 4
•■•«*-■
Figure 21.- Schematic drawing shoving locations of the duct internal static -pressiore orifices.
&
I
V
to
m
.u
. . . . 1 . . .
- ' • ' 1 • • '- •
;:;:;■;■'
-r— T
.;:;!.■.;
.:„|..._.
; ■ i - ; •
< ■
i ■ ' ■
- ; ■
;:■ :::•;
IReCsSe
D IRiCiSi
OIR3C3S3
^ IR4C4S4
.... _.. . . ...
.... J .......
T"":"
t- :■■:;:::■-
.— .-"^— .*.—
— "-^— • —
r^
:::.:l;.lu
: : : : 1 ; ■ : :
-:•--
.9
... i ... .
.:: :.G)
li
■<^^^2^^
.:' :k.::
;;;;;;■;
-::~"~r:-
I
.:....
........
--—
;:::•:;•:
-::\[\\:l:
V ■ 1 ■ •
::-:i:;-:
. . , ,
'.'■'■',
! 1 ; 1
....(..
•VijA;
m
..,.:....
. . . i . . . .
:::: ::::
• ■
^;;;;i:;i
';::i":-
;.;;;!•;;
i
fi
l:::\^
;:::li;;;
;;;•;
;:;'::;:
:;::
.:.;
:.■:
; ; ; • ■
■••;:;;;;
..,,.....
"*Ti~~"T
rtT T'p r. .
t:7"'-".'.'
-;;~H
1
>\\\\^
"TrrtrTTr
-; •~z*'-r^-. i.
TT! T
''. '~
*-••-! p*
-:rr.''-TT
■;r-~'-ff
','.'.'.]
■f^
Xi^-rrH--
■:•: ;-;;
•—-;-
•T
;;::;;;:;
'.'..'. '.'.'. 't
:;:::;::;
.J ..-'.,.. .
;;:::j/
ii
;-:^^^l!;^'^;-
'.'.'.'.]'.'•'.'.
-— r
;'';i^;"
:'•!:;:!':
■ ■ ■ -1 : : •
^;-;;"
'y^.'V:'
:';:i;:;^
:■;:::;■:
. . 1 . . :
rUf^-rrfrHf-i^r-:
T-H-r-r—
■.:■:■. .:■.■.
... t ... -
:;;:;::■.:
• b
::: j;r:
-r'-'r/r.-.
Tr:T-::rr^:T;-:-:--:r
;::;;;;;■■
\\\-M':\':
;:':i:'::p-::^::;;
:'.'.'.;'.'.'.'.
.:...,....
• ;;;;:: :;:':: i :': .:
•::;i::::r-;':::::
:::; 1 ;.;: 1 :;::;:;. :
i^^naaiiii^^^iiL
T;*7::':"'
-'"'-':-■'■
; : 1!: : : :
r
J : ; ,'r:,: ,■ ;
;;i;if;;i
••;::'
::::;:::!
;;:;
* . . . .
' ■ -
.7 .8
Net mass -flow ratlo> vIqMq
.9
1.0
Figure 22.- Effect of toimdary -layer bleed on the optim-um performance of
the Ni^mber I72 inlet version, vfith an 11" cowl lip, at Jlj„"2.880,
31=0.2% |3=0".
51-
n " r>
1.0
.9
8
(U
.)....
..;)..::
:.;!;;;.
. : 1 ...
. . .« . ...
1 — , '. ..■
:;::t.:-;
.:.i...
: : : ; 1 ; . : ;
1
"' ; : J ::t"
M:^
":yt::v.-
.:„.
_•-.: .
O Me,=»2.880
D Meri-2.700
OMo*«2'^98
A l4r«2.955
::;t.; .
— •-
■ - i • ' ■ •
::::!■:::
.:.:.:_U;^..
.;. >:;::-:
'J. :;;:.. . .
:: >.
:- :-; ;■:--
:':;:TT;:
"::
:.;::;:;;
-;;:- ::: f^
! . . : 1 , . :
.:. :.-.f?
^
: : : : 1 : . : :
.... 1 ... .
-'■.'■—':•:
1 ..;,... .
. : : :
r- • ■
::.:|::::|
--.'•-■ ".':
: ; . . i : . . .
W
i-i ' i '
7 ! I .'
::-.|::::
:::*^,
. . .,...-
: ; '. \ : ' .
:'-.:x:'.'.:
^Jn
■Tr:-
■'\\\'"'--
H--
: : : :
i,:.;.L
;;:L-;li;.
■. ' :
;.■■:;!;;;;
:: : :.::
'. 1 '. ^ I ' , . i . - * " ' . .
■ ' *■'"""?""! |7 ' ITT . '
.:i: :]-;.:.:. 'i'-.u:,:.
: : y
■A
.- •■. . ...
. . . , , .
. . . . . . .
--.■::t~:-
'.''.'...'.' !.'■'"•".'"
■..x
■ ;:: •,■..;.■,;•■■. i ;:. :
: -.1 . .;••:;
i
'..'.'. I
■3
?'" ." i '" '7
L^ ' U. ' ' ' '
.::.;. i';-.::L^:.-i.iii-
. . . . . .
:■::!::::
::..i::::
' '. ! t I ! ^ ! ;
.......
. .. . i
■ ■ - • ! ■ ■ ■
' ■ . ■ - ■
■ : : • i : . :
,...(...-
;;:;i:;.;
:■•-■-. r':r:
— ,_.i
Ql
•:::i:::; ;;;:i:::'
j.'.li
• ■ . - J
■ ■ ■ : i : : : :
','.'.'.,'.
..'''•'.'.'.',
:;::';■;
1 .' i " i ! ' ! '
:.;.;..-.U:.;-
-: ...I'.: .:.
'. . ' .\ ' '.'.'
:M^^-
■ i • —
;:;:!;:■:
....', ...
• : : : 1 : . -. :
:...i;::;
:.;.;..;
..:.;::
........
■''■■-'■.--:■.:
. , i . . . .
■ • I
■ • • • t ' ■ ■
";;f::;
■ '""_'";'', " ~
"Tt"rT! ~ '.
'•■-(• - ■
'rrr.r.::-:-
■ :
"'^in'::;;::*::?:*
• ; i . . . .
■ ; • • 1 ■ ■' ;'
"" :ir*". :
'.'.':■.'.::::
; ; • : I ; ; ; :
-rrrHi:--
*:.*■' • '
\\\\\\\/-\y\-\'.\-\
.5
.6 .7 .8
Net mass -flow ratio, mQ/niQ
.9
1.0
Figure 23.- Effect of Mach number variation on the optimum performance
of the IE4C434 inlet configuration at ■ i=0 ,2" , p=0°.
52<
« e o •
9 « « e ••
1.0
J
I
v>
Pi
o
?...|..;'
"nr
— .*—
f::-
-:r:
:'■ ■:::
rrr-f
■•TV
•!---:
~t
' '. : . .j : : :
O IR4C4S4
. .i.
: : . .1 ; ; : :
; : : : 1 ::.: -
:ILi.
■rir-
;':■ ;':.:■
; : : !
'■':'■■':
■~t: fr-:T
J-
-::■:
r:'-f
--"■
■;;.i..:.
■ ■ ■ \- - ■
:;•;:!:•::
::: :
: ; : :.
::.:'. :.:
....
■*r!T
i !"! ' T-^.' - ,.
iOl?
.'... '. i
i
•H--T
: : : ; ' : ; : ■
::rr
■':;• ^:
i-T.'; L
! * . ;.
•.:::■
■:;::
£!:u
nrf
•;;.;;;:;;-
T:rf-::Tr
;;■;[;.■;
Xf);
;::;
-.«.*i-
:::;
•■••[';':
: . : '.
• ; • :
-■::i:
;;i.i
;;;;
: : ■ i
•j::!'!;;
hO
;■:: ::ir
:-;-:!;:::
t- . — *.
: : ; :r ;: ; :■
. . 1 "
P
i L i ■
'-■T-r
. ., . I . ,
■rrn-
■..■':■
\iii
it;;
" : '.',1
:;::|:-^:
I-;
;; ; :
i ■ •
... t . . . .
.- - ■ ;
....
: : : : 1 : : : :
ziv, "".r.!?.
..... 1 ; .^. ..
■■;i-f;;;'
■\::ii::.i'
: ; ' i f • ; ' •
.. ..^ ^.
I :.;:■;:: :
'-'■■'.'■• .-' ; •
?ii^
::;::
;-.::j::;::
i ■••■■■ '
■.■■■;
'Ti 'i; ■'; ;
i;:;ti::'r::::::r;:
t[r:Tii:H'
-^i.;:'.
: 'il
■•■:■;;;;;;:■
■ -^ ■■■;;■' ; 1
: ! ; .' I ; . , .
;:•■;•;•;
:t;y:;:;
hrr --t-i.rrrrr..
^rri-
. 1 1 . •
©:
Tt. . ..
. . . . .
;:::t::r:r
■:;•*.:■:'
::::j:;:;
:::::::;':
prtr.y.
::::
:: : :
;.!;..
; ■.::?;.; ;;;
:;::|:;-::
. . i . t^, . , ;.
Tff ■* • -;■
—
♦ T M
...,.;,. ,,J. ...,,..-..
;;:ri.,,::
• ■• ••
..;:,i. .-,
..........
.i:r::Hl-i:
ilni^inin;;!;^:
-rr-;
:rr:
;ir: :::.:
•nH-K;
;:::t-::r
; : : : ' : : .: :
I,:...
• <•■-.
':■.'■":
.:?:i
?^;:i
riiiir'^T
:■:::';:;; ':,:HV;!:'l
;: : :
:;'H
. I . .
-J. ,
:l;.1...;4..,:... :;;!
:::;i;-::;::l:.::;
:i:i:
rH:;:.:;.;r:r::];;:.:
::::';^::;
•;r;::-i:.::U- ■:;■;;■;:
;:::i:;;:tr;-;:::i.-:
. .. . , ,, . I-.--.,, .- . -
■;1;r:
;:-.r.jr;::
•i-iri^;
'■.'■.:::::'.:'
:::;■; i;;i;;
I'^^r ; t i;
:;■:; ;;;:^.;i4!.;.;;
Hii ::;:i;iu;;:;:
::;;;-;; •_-; ':-;;:;::::
^;^njn;i{;Ii:^;?iy
.:,.■.]::.:
L", ! '. '.*, . '. ' '.
\l\^l
;:Hr
frr:
^Hili;;;!:^:^-^^
.i;;:!.:;:4,:i.L:J±Jj.
l;.::Uf;:;r;::;!::';
.... J - 5 . .
'.'■::''.
.5
.6 .7 .8
Net mass -flow ratio, Bq/ihq
.9
1.0
Ifigure 2k,- Kffeot of variation of cowl lip angle on optimum inlet per*
formaace at Hxi»2.880, a«0.2°, ^oO'*.
53<
1»0
J^
Pi
to
w
.8
.6
-rr
■ - ■■ f '
-■vm::
Internal inltt
geametry varied to
establish optimum
performance .
A o:»0.2*j paa.l*
Internal inlet -
geometry fixed for
optlnxan perfornumce
at as<0♦2^■^-0•.
n 0-0.2', $»2.1»
.5
.6 .7 .8
Net mass -flow ratio, aiQ/aig
.9
1.0
Figure 25 «" Effect of variation of model attitude on the perfonnanee of
the IR4,Q434, inlet configuration at M«i»2.880.
5i-
1.0
J
p..
I
o
<D
ID
ft
H
-P
.6 .7 .8 .9
Ket mass -flow ratio, rio/iBq
1.0
Figijre 264 - Effect of wing addition to the basio model on optitDum inlet
performance at aaiO.2*, 3«0*'.
55<
»y=2.955
Kr2,199
Hd=2.579
A
1.0
I
Pi
o
V
s
«
ID
V
Pi
.8
•i^ -T
.6
;:-:.:l::;;
; r'l
r-' - •■
.: \\-,
!:;•[::;•
m^
• lit
rr:r
A'J.
r;;:
•:;;[:;;i
t-;::.?i;i
I!<
m
itli
i' ' '. ■ ■"-
.1.: r. ♦-;:;;•
: :t:.
i.,.;
^ 1 . J
^%^
xf";-;
. . i-»
ii;!
ir'i
l\\:
: laJV ; ?"
\M
A-r*
!•;■:.
+ ■-»■:
. - . f
■■■M
•^r
^::
MJ-'
:;;:
* - • ■
: : Stir ■-
■ - . r
* ■ - »
T\'",
:!':'
I It i t-i rr
I*-:
* ;.'.{
.::t::
'pi:|:-:f:
M ; 1
■l-*.M
Hr;
■^ ■* ♦ •
1 1"-*
* .. . L
.;■>» * r
ni:
LZ'.\v.'zz:
It'*
'1 .. ..
v^
.r^ixT
F-H+:::::
Ijji.
Pli;
^^
t ' - ■
:65
■75
.85
.65 .75
Net aasa-flow ratio, b1o/h»^
; : : . i : : : i
".' .\ '.'.'. '.
. . . :
i5^
1 : : : i : ■ ■ :
. ■ . 1
• :.:'[■:■•:.
\,\\^
N-i
■:--f.::
1 ; .' .' 1 !. ■ It
;:i'i :;;
.2 , ; .!";■' !
.■■.;U::.::;
• • • . + • .
•:;rr
- ■--
: ;r^j
::::r;:::
... i . . .
:::r;.
; ■. ; '. 1 . ! : ;
. . . ,.
■::::r
-r:.:T
;:•—•
■; ; : :■ ;:; ;
-rr^nrr
\' 1 ■" ■
;i;:
: ." ■ '.
J -.».» - : ■
;r;t;:;.:
.?iH
Q 0=0.2°, p-0°
:;.;:
Da=2.2°, p^O"
.65
.75
.85
c 3 ; _■ o
Figure 27* - Optlm-uin inlet perfoiraance characteristics of the W1J1IR4C4S4 configuration at varying
angle of attack for several Mack nianbers.
Me.p2.955
1.0
#
.8
.6
::::(::-
..... ...
'..'.:' ",:.'
Jj -|; -'^
::;:!::::
.:-.:;].;: :i
.---•-
:::;
.... 1 ... .
— t ■ ■ • ■
... J .
. . ,. .....
fn-
r. ; :
TTTT ■*^ " ft "^
....
■ 1 : '
— r- '
■iill'*^
: : '; :
::;:
;:H
;-;:
: 'i ;
VA^
Ii
^;i
:;'.;ir:-t
::;':
' : ; -
■ :': ;
\ V ", :
1
1^
P
yil
■;i:
•■: : ;
■V
HX!
...... 1..
. . .j '.
* - *-.;
.. . ; .
: : : :
iiCii::::
:.t! ti: , ; :
h: i
:::7i{;:;
:;:rlVK
J:
::Hl;;::
,ni;ji.u;
— -^j
....
W:j"?ri:
; • ; ■ f - ; ;
■ *-,-.
-rifr
j;;;
: ■ :t
i:l-.i:i;I
: ; - :^ : : ":
ii'::
;!■;
--*r
ill'.
r.V:
i:!;',r:::
.Orr
iiil
- . t '
••i:: ::r
:.;::■
^r:;':
.65
.75
.85
•V2-799
■ ■ ■ i ■ ' * -
....;:: ::.r:: ■-
:.::;:. ;;l;;:: :i:-
-—- -~
i;:!*-:^
— - — i-T-''-^
:.,:[:...
'1:1]--"1
::;;l,;';!
.:;.
!•:;
::;;
ii|«a;y
i;r:
::::
. . • •
,;:;;itf
r^
^iiV
:-^:r
:*::
ffll
1
t^.;! \'±.
::::
....
'.\\' \ '.'.'.'.
-;iii^"?
. , . 1- .. . . .
■ • ■ '\V,\'\
;;:; ::f"
;::H:::-
'\:\
■•iii::;;
, : " : 1 ' : ' :
~".r
r:~
ini:"^:-
-:;:t.^:.
... , . . . ,
: ' '■ : • :.: r:
:::;i:::-:
.... t ... .
:••;!;:::
H^iiii-: •-'■■.:
; : ^' [ijl
. , , . t ...... ,.
•-:
■■f - • •
\ilh^^
^^=2.579
.65 .75 .85
Het mass -flow 3fatio, mQ/m^
■ ■ : ■ I ■ " ■ •
■ ■ t
.::■;;:.■ ::-.:] :.:
....
3ip,
■',■':,:'';
■■.:";":—
::::;::::
":■:■::;.
.:.:: _i_ u_
::::!::.■
....... .
;'.::}"■::
-•••p.:.;.;
riHp;;
- - '+ -
^0m^^
■■::!;.:'
'--■-+- ■ ■
,. : : ; i ; : : :
:. ■:!::::
:,"n,i:.'.; ,
■■•■•G'- ii'ii''-'
:;.:.:i_l-l
:::•:-:::■
.... i ... .
:"'::. :': ' ^ '.''.'.-.'. '. :
....it-...
^ ! r .' '. ; 'I
■:.:];::.!:.■•:■.-:
•::.:
1 - . .
O 0=0.2', 6=0"
. 1 ; !
-~
D a=2.2',
O a=l^.2%
p=o«'
p=o*
>-3 ^
I Q ^ 3 "3
►
o o o
.6§
■75
.85
Figiire 28. » Optim-ura inlet performance characteristics of the VJT2IR4C4S4 configuration at varying
angle of attack for several Mach ntnnbers.
O P c?
1
n ';■ t^
■ • •
1.0
8
•p
(M
•P
t'
i
CO
(0
i)
^.
H
EH
.8
uii
r *-
TTTi.-,rn-
M
W:
TFT
^'T - '
0^0.2°,
-*-o' 1
j-li;
■Irrr
rii-'l.
-r-U-'
j';.i
.T/
* ' * ;
~ "-t/
llil
.^j-. ;
::.:■.:;•
iiR
.111-4
:ti:.:
r ,-4 "
'"Xl
+-j :
5;.i
fiii.
irl:
■trn.
Eli
TZT
"It IT
p
Tjf.
■* -!-4
-f-t--t !■
I .it.
4r..
-t-t .1
■ • I-
:r::
■FL;.-
ii.i^
■*- • 1
JS-^
.;+. ^.
■rrrf
i
iHi
T^.l '■
^ii-F
". ; ; ;■
~^Tr!
! -.! '
::irf
IT-l 4.
■''-;;^j-
:.;.':r
ir:-?
1^
;r1:t
.; 1 '^
;r.;-: ;
t:T:
^ i-,
V:r
■-* T m'
-Tti't
•■• r r
.r.Li.1
^r
fe
■r~f
-t ' '. '.
::;.:
;:-:;.!
'.'. J T r
:;1^
'*■; * '
'M
:-Tf
1
-Is
^.j .;....
il . *
';^::r
., ., ... i
r:.;±
iri-i:
iljii.
rJt.r
H'Th
!;■;.:
^:i
w
:ii!
;';:;f
I ,*" '^^
.-i.f ».
i:i;.
-rn.
;:iil
!i[i
•;"::'
"A:
.;::f
■::::
jjfi:
i:H
■"::T':
'.'".!-*.!'
-tt;
: ; : : • ■ ■
; :.:;;■
V::'i
pi
;:•;
:--f:.
. I . .
* r • •-
-1 .^*4:
.1.1.,,.
it; :rt'.
.:.iu:
4.: .-
rrr::
":;:
-fnr
! • ' ■
;•••;
i:r;'
rrii
■• M-
-rjli:
- • - 1
■ 1 .'f
* '1'
1 ' ■ i
:::-;1;:..
.:;::!:::;
. ' i 1
.,, .-^ .
fri-l
¥;i
iijij
- ■ t
•'";':'!';•!'
•TiK:;::
M ! '.
.'.I'. V
::'.:■
liii
.; ::]
irn
I:'" I.-''
-•--»• ■ *
::.;;■
'. i-t-^
r. ; .;' ;^
•6^
.65 .75 .85 .95
Net mass -flow ratio, m^/m^
Figure 29." Optimvan InXet performance characteristics of the Wrp 12^40434
conilgxiration at varying angle of attack for 1^2,955.
58<
Pi
<
I
8
o
0)
^
n
r^ '\ 3
Spanwlse location - 50^ b/2
.2
-.2
rrr-t
■+-*-^*-
i :; ;
M.
.. ^ .
rrr-
i'Mii
■;•: ;;■-
Ll^
'.'.'.'.
1 ;
o
n
Wjnuc4S4
, ,'.
WT3IR4C4S4
....
. : . .
■.;:..
::::
■r-rH
; ; : :
:::;
: : : : i : : ■ :
• i-*^ *■
■irr:
T'trr
.^-i-, — -,.
■.iii'j":
rr:-;-
¥,
:•::
U ::
■'i;:
nvC
M
1
1
I 1 . . . .
.... ...
. . . ,^
"fr.'rl
: ; : :
l^i ■ ■ ■
■^
%,.*+
-»— J
^■r-t^
1
; * ;■'■
::.::
; , . .
•i.::
;:;■!;:•;■
:::;i:;:'
:".:;::::
^tfe
i^=«r^
*','.'.
.-..:
....
',-'•'■
::::
.,^-;
. ;.- .
. . . ,
."'if*
;:;:
;■.:•
: i '4 .- ' : '
•- ■ • I ■ • '
':;•'::•
: .■ . :
:;■. ;
....
'....{'...'.
■■'Hri^T^
•::':
:::-r
:.••;■-::-■
;;;':
:: :;
:■;:•:
'}]':
....
■:: ■ ■
- ■ - • 4
1 ^ ; * J ^ ■ J ■
;:;;!;■;;
. . - . j , i i .
.... I . - .
ir:":-
::■■
■ ■ ; 1
r;i : :.
. . . i.. . ^.
::'::
■ ' ' \
._, . .
:;;:
....
• * T- '
^in
11^
:'::l
Spanwlse location - kO^o "b/s
f ■ *
:•:!
III!
rrrm
:::;
....
* • • *
." '.' 1
iii;
:'!;
^:;"i
;;i;
;;.':
* ' ! !
;:■;
; : : :
....
: ::r
:';'
Tt.Tr^
! ! !"!
11 ! .'
1
7""'
;:::.
; ; ; [
~'.~
--r
':;:-i::-:
: : : : i .' ; : :
... ...
.::::
;;;;
"■'■■
r: :H
.- ; : :
':•.':
':::;:
i: - i,
1
■■»-'-*■■-■■
i
• ; 1 ;
::::
• • ■
1 — ' —
.:.;.„,i..:.:.
;'.;;]:;::
\\-.\
:;:*
_..:_
■H-f
:"::■•
::,::K:::1
—
►-Li
JJIU.
1
■ 1 • :
dipf
liiilii.i
T^
F
"^
:•:;
.....
;|
—rr
§
i.-.Ii-
....
;;i:
i . i .
-r?.
TTlt
^
........
-^
P
^
"^
)• ■
p.
;';;!
! I! 4
:ti:
-Hir
_«.^— ^
::::
< i i '
' ri-'
::t;
:::L
. . . .
: ; : ; i : : : ;
• 1 ; •
-Hi:
» 4 . !
; ; ; ;
•i!:;
' ' ^ '
iw-
- 1 : ■
' 1 ' '
.... 1 ... .
.•;;:1.-.:j
'. '• '. '.
HH
t I '. 1
I:::
M »t
iliL
:::;
-^i
'■:': : ;
::,':
.::::[: ;ji
m
; ': : :
; . . .
' ; ;-v
••il
:,: ;:
.;::•
■•* - •
'..'.I ',
:::".:
• ' ' •
: : ■ :
-.2
,0 20 1^0 60 80 100
Percent wing .chord, ^c
(a)
Figure 30.- Ccattparlson of pressure coefficients on the lower surface of
the NtBuber I72, 15i4., and li^5 wing versions for optimum Inlet pres-
sure recovery at ^^»2.955, a=0.2°, ^»0*.
59<
O ',~ "^
Q on
r 3
<
I
to
n
0)
Spanwist
8 locatior
I -
30^ V2
.:;:: Li::
: i i:
-i-r-
— ^,-4-
ji;;
—
:;:i
:rr:
TT"
:;::
! 1 1 L
■ ■ . ' ; . . ^
O Wri.IR4C4S4
n WTgIR4C434
O Wt,3IR4C4S4
>s
m
i-;-!^
;:::!::;■.
. ..,
....
-L: i-l
....
i ^
yy.'l'. . '. .
. i : . ;;
-fr:
\::
::'.:
. . - .
;-n
.'!',:
; : : r
- • • ' t : * -T
' ■ : ri ; " ;
l^;;^
;;;■
'; : : :
,: -i ii-i.L
- ; : :
-.1-,..%
: : : • r: : : :
;H;
J.: ; :
:;;;■
.:;,":
.: : r:
; : ::
-:::!::::
;%H^
iww
. , : .
. . . . , ...
....
;;;,*■
;i]i
A
'. '.'.'. \ 1 '. '.
i&iJ
't^^.
::::
■ .' ". t
. .'/\\'.:'.
:-i:^
BS
^
."•■^
rriS
-^
.:':;:
■ ; ; - I ■ • : .
.'. '. \ ',
WW
r-r-H-i::-:
".rrrt . . rT
— -.-_»-. — -
• : : : i : ; : :
:;:;l:;;;
^
n«|:;;
.:::,: yyy.
o
'■ \ ' ] • ' • '
.........
t . >T ■■
-::-;■
.'!.''
-TT r: :^-
i ' i i 1
tt::
;■::.:;::
-— 'f • • ■ -
: ; ; ' I • - - -
ii:
■.yy.\yyy:
; : : : f : : ; :
;:::}■;:",
: • ' :
■. : ■. : ! ; ■ . ;
": : ; 1 *. : . I
.........
::::j;::-
. . . , j . . . .
: : :..r
:' ■ : :
. ::Tt: r . r
. , . i . . . .
^i^;:ii;
i I ^'
;;;;.
::;;
Spaoiwlse location - 24^ "b/s
20 i^O 60
Percent wing chord, 5^
Figure 30.- Continued.
60<
100
<
I
o
•H
8
0}
to
Spanwise location - 19^ b/2
20 IfO 60
Percent wing chord, ^e
100
A p/euo
^ b/2
'h
W1PIR4C4S4
W5igIR4C4S4
W|]ig33l4C4S4
14.70
3.54
.024
.435
.480
13 Ac
3.28
.024
.069
.192
12.12
2.96
.030
.031
,142
10.83
2.65
.024
.003
.094
9.5^^
2.36
.024
-.001
.092
7.00
5.06
.042
.041
.156
i^.60
2.84
.024
-.001
.011
0.00
3-13
.016
-.007
.098
(e)
Figure 30. • ConclviflLed.
61^
Pi
I
o
»
Spanwise location - 50^ t>/2
.2
;ffr
• . ■ f
'■:::
::::
••■• 1-;:
1 . . '.' . ~T7
I . . i
~
1
■:-r.
::::
W:
....
TTTT
i ^ ' ' 1 ! ! ! 1
... i ... .
- ■•I'" ;
f-r -rrrr
:-f:-
O Wr|iIB4C4S4
D WTgIR4C4S4
OW^ IB4C4S4
ii:^
1
B
■'.r'-:
::::.::::
"■•r
:;;:
. . . , j , . -, .
:;:;j:;::
;.':;
-7..r-.--1
. : : ; 1 : : :^
■ j-7 -
;■::■
.;::|:::;
\:::\:::\
; : ; :
•:::l:;::
• . ■ • 1
.... j ... .
:: ; : ; ; ";
—
H
*^^
• : : - ; ■ ;
;•'•! ■ ■
::...!. ,:;
: : : : 1 : ; : :
iil:
• : vr
;■::: :..-
Si.--
S^-aJH
iii-i/Hrrr
~~«c
" ::i : : ;;
.:.;}.,..
~~
■lilil^-J
i-M
:::;
':':•:[
: :.: '.
::': t :;::.:;..: i ■;: :
■ ■ ' ■ I • - • ■
1 . »i
r— J
: ■ : :
■ : ■ ; I : : : ;
W^
:;;■■:
•u''
—T
; ::■:
::;-:::,:|::::
:::'::::
'. '. ". ".' ".:'.'.
: : : ;
'.'.','.
•.:: :;:;[:.::
:;;!:;:.!:: ■;';■: ;
.........
•■■-i-r:
■'■::: -r,z:
,:'•:
: : ; ;
--.--
:: :r:n.
.Tr~rnr-
■ : : ; i : : : :
. ' . ' y. '. '.
. . ', . ^ ! !
;; ; .
....
■„■ 'i::::.
.........
: : •. ; t : ■. : .
- • ■ - j • ■ ■ •
'■•-■I-;';;
•.-.;; 1. ■. ■- :
....
;;:^!;;;;
: '■ : :'
;;;;.
"■ . ■; :
....
: : ::
;;:; j::-^
;:;;':;:;
::::!;•-
Spaawise location - 4o^ b/2
.2 -rr
;;; ;
:- ; :
i:::
y.'.'. y.y.
.....' 1 : . :
; .... J ... .
yy
■:;:i:-:::
.... 1 . , .
:::;!;;:;
: : ;7
r. . . 1 ...
■ -'■'■-•••
Ftr.:
fTTT
::::
;:::
i ; 1 •
y. y, '. y. '.
iiiii:;;:
;;;;
Lii: ■
rrrtr
' ■ • -
: : ■; 7
.: n ;
::;:t:;.:;
1
;;li
-1.! 1 ,
y.i'. '. y.i
^M\:\
' : * "
; '. '..'i
-rir
-;-:r-
TT"--:"-
: : ; :
;;!:•
yl\\l\:^
.... I ...
. i . , 4 . , . .
\2'-. '
: : ; ;
y.y.'fy::
::if
..l
;■:!
;:::!:'■;;
.....
:: :;
....
: ; ":
'.'.■.■Vy':':
;:;:;:.:.■<
;::: :;:;
";:1
....
^
"rfHi'JT'T
^
=4*
TTi
"ii^
:y.-
■:;:!;.:::
■ • •
- . . t
; ; ; ;
::'::
I;i:
::::•:':;
••' ' ■
. . .7i
....
i«3:i
*^
i
y-
m
~~
1
ill::
n;^
•^ii
i : ': :
•: : ;
y-l
; : : :
;:;;
- 1 • ■
lir!
■ i ' '
nit
; 1 : :
■;;:
—rr
': ; • ;
V.', I i
-TTTr
;i;;
'•■1-, ,
••i:
y.y.
;■;;_;;
i::'::":
1 '. '. i
i-, . <
••** +
H:.;
■; t ••;
'::::
■}-l
: : -.:
T.-~
E\
!■• ;i
rti;
r:': i
;:;•
iin
Ht - •
l::;-
:i.l i !
;-i:
I j' I .
i;;i
'*♦"*.
:r;.;
iifi.
^hI
; ; ;■;,
T ' ■ '
nlmi^-:
■i :::
i!:;
-.2
20 1^0 60 80 100
Percent vlng chord, ^c
, (a)
Pig' ore 31.- CompariBon of pressure coefficients on the lower surface of
•the Nxanber 172, l^k, and li^5 wing versions for optlfflum inlet pres-
uure recovery at Mad-2.955» a»2.2', p=0*.
9i
O
8
to
n -J ;t
• c« «
Spanvlse location - 30^ b/a .
O WQ1IR4C4S4
D WTgIR4C4S4
O WijjgIR4C4S4
.2
SpanvlsiG
> locatlor
I -
21*^
'V
'2
u;;
'MI
—it
'. ' 1 1
;•;•
tfr-
• ' ' •
....
^;;i
....
; ; : ; ; : : ;
— r:
l-rr'r
....
—f-
nif^
tit
•::;;
;;•;:
Ttir
1
■^'i ;
T-rr
-~
-■•■»■■ ■
; :...a:.; .;.
. . . i . . , .
:!::!;:•;
rt
jjiij:;;^
. ; . .
F> • : 1
i
1
^
ip
... ) . . . .
■; : : : '
■•i-r
~T-
• • ■ - 1 ■ ■ ■
........
— I . ....
..:.!.:::
:H:': :;;
....
-.ri-r
- . • .
:.■::.
! ! ' 1
-l-TTT
;:: ::::
i'::iv:!.
.... 1 ... .
..,.,...,
• • ■ : r . ; :
; : : . I
: : : ;
.;;:
~::'n!];'
, ... 1 ... .
: : ; : 1 : : : :
■;7rri:::'
:;::t::::
;:::!::■.:
.' ; ; ' i ". ! ! '
rrrr-
Trrrr-rr
,z
^W
■-rf-
:::.:
.,..
-'/'■ i
TT"*?
• ; ; •
....
— .--^
-rrr
f::T
*::r
.::-:.:
l:r:
....
-"'■TT
;;::
- ; ~i
;;■;;;::•
• •■!--
'ill
* . .1 1
■rr.T
::::
;;;;■;!:
^i.:;:
• - ■ M ■ : '. ■
; : : :
-rrrr
: fir
::'::
:i^:.
1,
ini.
M
•■•• ■■■■-
I * ' !
20 40 -60
Percent ving chord, ^
Figure 31. - Continued.
80
100
63<^
Spaawise location - 19^ "5/2
0)
g
I
to
.2
'.2
; : : :
fi
1
:i:: :::'
;l:;.r--'
, ... 1 ... :
-.'-
....
I wT
rrr/
■ T ■ • ■
.........
: : : : j : : : i
rr-.
WrpIR4C434
D Wrp2lR4C434
:;.';:
-r-fl
^;
........
: . : ; 1 ; : : ;
~y
■ ■ • ■
r-fr:
••:::
WT3IR4G4S4
rr-T-rr-^
■ ; ; : . : :
— f— ^ —
:::;!:;■:
"r^:?*":"
;\\
....
::::i:|
|;;;j:h;
■ . : . i ! ' '. !
■ ■ - 1 ' ■
..... p, .
: : : :
;:*;
i;;:
;;:: :::;
: : : : i ; : :
• ; : : 1 : • :<
::;:(;:!:'
.-..,....
:;:'i::-:'
:.:■!:;:!
". : : ". i . ; : :
:::■';:::
:;:•-;•:::
: . : : 1 ; . : :
■:.;f;:.
.:::!::::
; ; ; ; f ■ ;; ;
: : : i . : : :
. ... 1 .....
::;:i:;::
:t;-:i::;-
r-fi"
■;■:::
-•::■--
■ • - ■ t - ■ ■
'•■-(•■■
■:;;i::;:
. * i i . " ; .
... J , ... .
:■:::!■:::
•.'.':!•.;;:
1 , . . .
;;;^i:::i
::::];:::
i;;^l:;;^
- ■ • • 1 ' ■ ■ '
;:::r::::
■ • •, 1 ■ ■ • ■
; r ■. ;
". .' : 1 ; : : : :
: : ; '. j : ." ■ '
: : . : r : : ;
. . . . 1 . . , .
...-;....
:;::'::::
Hi: ;i:.:.
'.'. :.: i: ::
HtT:!::;;
m
iil"r
.;:■•;
■•Hj-i:;
2C
)
h
^0
60
80
100
Percent wing chord, ^
-^ p/<3oo
^W2
^
%IR4C434
WTgIR4C4S4
WqigIR4C4S4
lil.70
3.54
.03l«-
,he6
.430
I3.i^0
3.28
.03!^
,132
.202
12.12
2.96
.03i^
.070
.146
10.83
2.65
.OU
.026
.108
9'5h
2.36
.012
.018
.108
7.00
5.06
.026
.106
.146
l*.6o
2.81^
.010
.026
.122
0.00
3.13
.006
.001^
.122
(c)
Figxire 31.- Concliiaed.
64<
• •*• ••
••• •• *»s
Spanvise location • 50^ "b/2
^
p<
I
O
.2
.2 t
1 i '!
^iji
rrrr
'■III
TTTT
Jill'
' r ' '
: i i t
. I . ;.
rfrf
OWrpIR^C^S*
;-4
1 !.: ;
•1'; -ii'''
III:
■Ilk
ri'i
V:: r
^ '. T '.
I ' 1 «
;;;■
DW»PgIH4C4S4
Ul f-
.j . t ;■
: : : ;
.,,+-
.;:::.
;:::
!:;:
OWT9IR4C4S4
:iil^
Tpir
'••*
1! IZ
■ \-l.7 >
: : :,;
* * • 1
I '. ','
^l:.i
_;4-::.
• - • ■
- - ..*..
-,,- !
. ; » .
*;•
V";' I.'
■;7-!T
I . ,-.
^
<r- T
I * ^ *
Tl ~i
1 r r^
i 1 ■ f-
., J . .1 j . : .
.! .* .' ". j .' ; : !
:-; : ■.
. . , .
:■■;
- ; ' ^
1 - ' i^
, I ', .'
• -» • ■
.^.-;l
,4-4V
•T • •
'\i-
.;..4ii,-i
- 1 -•,.,.,
T - ^ ■
1. . . !
. I . -
-.-,],
1 . , ;
■ f • t
I . - .
rtrr
■'!■
• : ■ '
i
Tit!
ill:
... t *
i
*r^
■Hi
■I ', *'-' '
— ... -■
—■*-■■'-
rrrr
b
• t • '
■4-^4^
r.rr
1:
-' J r ;
■t t • J
4 * ( • ■
^44-
L. » .J.
-.at
^ ..1 V
Tv.l
l-:t;
- r- •
rrrrr
> if-
1 ■ • 1
■'I 'I i i
nli
' . • -
:'..r:
.. . . i
1
Spanwise locatlcai - 1^0^ 12/2
20
80
100
ko 60
Percent wing chord, ^
(a)
Flgvu.-e 32, ♦ compiirlBon of pressure coefficients on the lower surface of
tlie Ntnaber 17'-; 15^* an*! 1^5 ving versions for optimum inlet pres-
sure recovery at N^»2.955> Cf>k.2'', ^=0*'.
65<
no o 3 ©
Pi
<
o
9
n
Spanwlse location - 30^ b/s
Spaawlae location - 2ki) 'b/s
20
kO 60
Percent wing chord, ^
Pigvire ^.- Continued,
100
<
t)
8
V
0)
" *** "Spwiwfse location * 1^ b72
1^0 60
Percent wing chord, ^
100
^t V2
'k
Ap/cko
W^IR4C4S4
WijgIR4C4S-4
WT3IR4C4S4
U.70
3'5h
.061
.554
.khQ
13.i*0
3.28
.061
.238
.2kk
12.12
2.96
.149
.160
.304
10.83
2.65
.055
.080
.126
9.54
2.36
.051
.OkQ
.126
7.00
5. 06
.013
.136
.156
1^.60
2.8i^
.Oii-7
.037
.IU2
0.00
3.13
.033
.028
.142
(c)
Pigtire 32,- Concluded.
67<
p<
to
Spanviae location - 50^ b/2i
OJW"2.955
OH„=-2.579
WrpIR4C4S4
configuration
m
Trrr
m
t-r^
.'. I I = :
cs
U:il
;;.L
m:
rrrt.
Spanwise location - iK)^ t/a
20 to • 60 80 100
Percent vlng chord, ^
(a)
'.figure 33. - Effect of Mach nisniber variation on the lower surface pressure
coefficients of the Number I72 wing version for optimum inlet pres-
sure recovery at o»2.2*, ^=0*.
68'
ft
<
i
e a a
•/•«^
SpauwlBe location - 30^ b/2
T--
t:J.
fit
1 ii;
Hi;
nii
f 1 •■+■
TTT
r • + '
1::{-
t i t 1
lit:
lUi
1 if-t ,
iH:
l\:\
ih;ii;;
iiirT'it
^
fill
::;!"
11:1
Ijit
!;;•
. . 1 i..
(•.,-!
^ 1 ! '
■i »4^
J... .
■i'l
.; : : I
i..i
■* '■- t
; ! ;^
"1'
! ' * '
::::
^
; • 1 '
J.: fw
: '1 ■ ■
'■) *■ J
:::r :::;
;:;!
-i. . , 1
:IV:
^
i?F
P
^
^
:-::H-!i--:
"i ' '.
?St
iv;r^
f.T!-
;J-| t ;
t- I •
•iii
7^1
:::!
• H^
' ' . '.
i
^^
^;
; ' ; -K 7 ' ;
:;;:
T:':t
* • - »
T ' '"■^
■ill
1^! '
:?:":•
-• ; .' ;
-I U + r I t .'
:::;
' r 1 1
r ! '^.
]':':
,:i :i , ■ . .
^1!:
:;;;'
:"■ i T
.- . -i . -|
t t-'-i
■S:l
t-it:
M iiii
, . , . .. - .^
::::!: :;:
.;;■;
1 ! ! :.
:■::.
In
... 4-+
•;fl
).:.:.
.. . , i.
li I .'
iiiiit:^:.
T- ? i f ' ^ ^ i
.:T!T|:::r
't.'-', '..il ', .* ;
• ■"•:[;:::
iWi
* * " *
i;:.:
■ft:;:
Jiii
ii:l
+ t . t
fnniH=!:
n-u:
■:::ii;:I;v
•:;:-)r:.;.;
::;:;r^-r;:
-.:i;i:'-'-,
\[]] i]i-
i ■ ' •
■ • '■'
•|H}
Spanwlse location - 2h'f> t>/2
TTTT
;::f;
i:;Lf;.r*;' ■;.;.;'.
T;
Dl^»2.T99
OMce-2.579
Wrj;.IR4C4S4
conflgui'ation
Uo 60
Percent ving chord, ^c
Flgiare 33.- Continued.
80
100
69<
Pi
<
8
to
u
40 60
Percent wing chord, ^
100
i>'rt>/2
'k
Motf»2.955
Meo=2.799
Moo-2.579
Ap/q«,
Ap/q«
^p/q<«
14.70
13.40
12.22
10.83
9.54
4.60
0.00
7.00
3'5h
3.28
2.96
2.65
2.36
2.84
3.13
5.06
.034
.034
.034
.014
.012
.010
.006
.026
.0394
.0394
.27^3
.0283
.0195
.0666
'.0109
.1643
.0595
.0564
.4546
.0284
.0284
.0574
.0158
.0699
(c)
Figure 33,- Concluded.
70<
to
u
• • * •
Spaiiwise adcAtloii. - ^5C^
Spaawise location - kOf^ "b/s
-.2
20 1^0 60 80 100
Percent vlng chosrd, ^c
(a)
:?igtire 3!^. - Effect of canard on the lower sxarface pressure coefficients,
of the Wufflber I72 wing version, for optimum inlet pressure recovery
at 1V2.955, 06=2.2% p«0'.
"SpaQviaft'lVrfatlOn*'-' 305S i/l
<
I
1-1
u
o
o
«
«
Spanwise location - 2^ b/2
20 kC 60
Percent -wing chord, ^
(b)
Figure 3U.- Continued.
100
72<
=^
p<
to
kO 60
Percent wing chord,
^c
i \i/2
^c
^p/Qoo
W,j,BpCTlR4C4' S4
WrpRpIR4G4'S4
14.70
13.40
12.12
10.83
9.54
7,00
4.60
0,00
3.28
2.96
2.65
2.36
5. 06
2.84
3.13
.004
.056
.014
.008
.008
,036
.008
.014
.160
.062
.062
.012
,008
-.032
-.056
-.010
(c)
Figure 34. - Concliided.
73-
p<
<3
i)
•H
O
s
g
o
i
CO
I
Spanwlae location • 50^ b/s
Sjamwlse location • IfO^ Ij/s
20
100
1)0 . • .60
Percent wing chord, ^
(a)
]''ig-ure 35.- iSffeot of forebody and canard on the lower surface coefficients
of the Number 172 -i^dng version for optimum inlet pressure recovery
at M^=2.955; cj^2.2% p=0'.
74<
<
a;
o
<S3
Spanwiae location • 30^ 10/2
Spanwise location - 2^ b/2
i^O 60
Percent vlng chord, 56c
Figure 35.- Continued,
100
^pa^wlskiloe^tiosx I' ;:t9f>lt^£
4
<
u
Percent wing chord, ^c
i>-b/2
*c
A p /q,oo
WfrIR4C4S4
W|iBrjjCrpIR4C4S4
14.70
13.^^0
12.12
10.83
9.5^
7.00
4.60
0.00
3.54
3.28
2.96
2.65
2.36
5.06
2.84
3.13
.034
.034
.034
.014
.012
.026
,010
.006
.220
.058
.024
.090
.038
.052
.020
.024
(c)
Figure 35.- Concluded,
100
76'